def randomClassifier(dataset_add, feature_colm, label_colm, relation_list,
                     relation):
    try:
        # dataset = spark.read.parquet(dataset_add)
        dataset = spark.read.csv(dataset_add,
                                 header=True,
                                 inferSchema=True,
                                 sep=';')

        dataset.show()

        label = ''
        for y in label_colm:
            label = y

        print(label)
        #
        # summaryList = ['mean', 'stddev', 'min', 'max']
        # summaryDict = {}
        # for colm in feature_colm:
        #     summaryListTemp = []
        #     for value in summaryList:
        #         summ = list(dataset.select(colm).summary(value).toPandas()[colm])
        #         summaryListTemp.append(summ)
        #     varianceListTemp = list(dataset.select(variance(col(colm)).alias(colm)).toPandas()[colm])
        #     summaryListTemp.append(varianceListTemp)
        #     summaryDict[colm] = summaryListTemp
        # summaryList.append('variance')
        # summaryDict['summaryName'] = summaryList
        #
        # print(summaryDict)

        # print(summaryDict)
        # varianceDict = {}
        # for colm in feature_colm:
        #     varianceListTemp = list(dataset.select(variance(col(colm)).alias(colm)).toPandas()[colm])
        #     varianceDict[colm] = varianceListTemp
        # print(varianceDict)

        # summaryAll = {'summaryDict': summaryDict, 'varianceDict': varianceDict}
        # print(summaryAll)

        # extracting the schema

        schemaDataset = dataset.schema

        stringFeatures = []
        numericalFeatures = []

        for x in schemaDataset:
            if (str(x.dataType) == "StringType"):
                for y in feature_colm:
                    if x.name == y:
                        stringFeatures.append(x.name)
            else:
                for y in feature_colm:
                    if x.name == y:
                        numericalFeatures.append(x.name)

        print(stringFeatures)
        print(numericalFeatures)

        summaryList = ['mean', 'stddev', 'min', 'max']
        summaryDict = {}
        for colm in numericalFeatures:
            summaryListTemp = []
            for value in summaryList:
                summ = list(
                    dataset.select(colm).summary(value).toPandas()[colm])
                summaryListTemp.append(summ)
            varianceListTemp = list(
                dataset.select(variance(
                    col(colm)).alias(colm)).toPandas()[colm])
            summaryListTemp.append(varianceListTemp)
            summaryDict[colm] = summaryListTemp
        summaryList.append('variance')
        summaryDict['summaryName'] = summaryList
        summaryDict['categoricalColumn'] = stringFeatures
        print(summaryDict)

        # print(val)

        if relation == 'linear':
            dataset = dataset
        if relation == 'non_linear':
            dataset = Relationship(dataset, relation_list)

        # calling pearson test fuction

        response_pearson_test = Correlation_test_imp(
            dataset=dataset, features=numericalFeatures, label_col=label)

        # dataset = dataset.withColumnRenamed(label , 'indexed_'+ label)

        # dataset_pearson = dataset

        #
        # label_indexer = StringIndexer(inputCol=label, outputCol='indexed_'+label).fit(dataset)
        # dataset = label_indexer.transform(dataset)

        ###########################################################################
        indexed_features = []
        encoded_features = []
        for colm in stringFeatures:
            indexer = StringIndexer(inputCol=colm,
                                    outputCol='indexed_' + colm).fit(dataset)
            indexed_features.append('indexed_' + colm)
            dataset = indexer.transform(dataset)
            # dataset.show()
            # encoder = OneHotEncoderEstimator(inputCols=['indexed_'+colm], outputCols=['encoded_'+colm]).fit(dataset)
            # encoded_features.append('encoded_'+colm)
            # dataset = encoder.transform(dataset)
            # dataset.show()

        print(indexed_features)
        print(encoded_features)

        # combining both the features colm together

        final_features = numericalFeatures + indexed_features

        print(final_features)

        # now using the vector assembler

        featureassembler = VectorAssembler(inputCols=final_features,
                                           outputCol="features")

        dataset = featureassembler.transform(dataset)
        dataset.show()

        # output.show()
        # output.select("features").show()

        # output_features = dataset.select("features")

        #using the vector indexer

        vec_indexer = VectorIndexer(inputCol='features',
                                    outputCol='vec_indexed_features',
                                    maxCategories=4).fit(dataset)

        categorical_features = vec_indexer.categoryMaps
        print("Chose %d categorical features: %s" %
              (len(categorical_features), ", ".join(
                  str(k) for k in categorical_features.keys())))

        vec_indexed = vec_indexer.transform(dataset)
        vec_indexed.show()

        # preparing the finalized data

        finalized_data = vec_indexed.select(label, 'vec_indexed_features')
        finalized_data.show()

        # renaming the colm
        # print (label)
        # dataset.withColumnRenamed(label,"label")
        # print (label)
        # dataset.show()

        # f = ""
        # f = label + " ~ "
        #
        # for x in features:
        #     f = f + x + "+"
        # f = f[:-1]
        # f = (f)
        #
        # formula = RFormula(formula=f,
        #                    featuresCol="features",
        #                    labelCol="label")
        #
        # output = formula.fit(dataset).transform(dataset)
        #
        # output_2 = output.select("features", "label")
        #
        # output_2.show()
        #
        #
        #
        # splitting the dataset into taining and testing

        train_data, test_data = finalized_data.randomSplit([0.75, 0.25],
                                                           seed=40)

        rf = RandomForestRegressor(labelCol=label,
                                   featuresCol='vec_indexed_features',
                                   numTrees=10)

        # Convert indexed labels back to original labels.

        # Train model.  This also runs the indexers.
        model = rf.fit(train_data)

        # Make predictions.
        predictions = model.transform(test_data)

        # Select example rows to display.
        # predictions.select("prediction", "label", "features").show(10)

        print(model.featureImportances)
        feature_importance = model.featureImportances.toArray().tolist()
        print(feature_importance)

        features_column_for_user = numericalFeatures + stringFeatures

        feature_imp = {
            'feature_importance': feature_importance,
            "feature_column": features_column_for_user
        }

        response_dict = {
            'feature_importance': feature_imp,
            'pearson_test_data': response_pearson_test,
            'summaryDict': summaryDict
        }

        return response_dict
        print(response_dict)

        # Select (prediction, true label) and compute test error
        # evaluator = MulticlassClassificationEvaluator(
        #     labelCol="label", predictionCol="prediction", metricName="accuracy")
        # accuracy = evaluator.evaluate(predictions)
        # print("Test Error = %g" % (1.0 - accuracy))

        # rfModel = model.stages[2]
        # print(rfModel)  # summary only

    except Exception as e:
        print("exception is  = " + str(e))
Beispiel #2
0
    def lasso(self, dataset_add, feature_colm, label_colm, relation_list,
              relation):

        Rsqr_list = []
        Rsqr_regPara = {}
        print(self.xt)
        # print(data_add)

        try:
            dataset = spark.read.parquet(dataset_add)
            dataset.show()
            # data = spark.read.csv('/home/fidel/mltest/BI.csv', header=True, inferSchema=True)
            # data.show()
            # f_data = data.select('Sub Total', 'Tax Amount', 'Freight', 'Profit')
            # f_data.show()

            # class A():
            #     def __init__(self, feature='sahil', label='fcuk'):
            #         self.feature = feature
            #         # feature = 'sahil'
            #         self.label = label
            #         # self.test
            #         self.name = 'bro'
            #
            #     def linear_c(self):
            #         print(self.feature, '\n', self.label)
            #         print(self.name)
            #
            # # a = A(feature='test', label='f_t')
            # A(feature='test', label='f_t').linear_c()

            # renaming the colm
            # print(label_colm)
            # dataset.withColumnRenamed(label_colm, "label")
            # print(label_colm)
            # dataset.show()

            label = ''
            for y in label_colm:
                label = y

            print(label)

            # relationship

            if relation == 'linear':
                print('linear relationship')
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)

            dataset.show()

            # implementing the vector assembler

            featureassembler = VectorAssembler(
                inputCols=feature_colm, outputCol="Independent_features")

            output = featureassembler.transform(dataset)

            output.show()
            output.select("Independent_features").show()

            finalized_data = output.select("Independent_features", label)

            finalized_data.show()

            # splitting the dataset into taining and testing

            train_data, test_data = finalized_data.randomSplit([0.75, 0.25],
                                                               seed=40)

            ######################################################################33
            # lasso final
            for t in self.xt:
                lr1 = LinearRegression(featuresCol="Independent_features",
                                       labelCol=label,
                                       elasticNetParam=1,
                                       regParam=t)
                regressor1 = lr1.fit(train_data)
                print(t)
                print("coefficient : " + str(regressor1.coefficients))
                reg_sum = regressor1.summary
                r2 = reg_sum.r2
                Rsqr_list.append(r2)
                Rsqr_regPara[r2] = t
                print(r2)

            print(Rsqr_list)
            print(max(Rsqr_list))
            maximum_rsqr = max(Rsqr_list)
            print(Rsqr_regPara)
            final_regPara = []

            for key, val in Rsqr_regPara.items():
                if (key == maximum_rsqr):
                    print(val)
                    final_regPara.append(val)

            for reg in final_regPara:
                lr_lasso = LinearRegression(featuresCol="Independent_features",
                                            labelCol=label,
                                            elasticNetParam=1,
                                            regParam=reg)
                regressor = lr_lasso.fit(train_data)
                training_summary = regressor.summary
                r2 = training_summary.r2
                print(r2)

            # lr = LinearRegression(featuresCol="Independent_features", labelCol=label)
            # regressor = lr.fit(train_data)
            #
            # # from pyspark.ml.evaluation import RegressionEvaluator
            # # evaluator2 = RegressionEvaluator()
            #
            # # cross validation k-folds
            #
            # from pyspark.ml import Pipeline
            # from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
            # from pyspark.ml.evaluation import RegressionEvaluator
            #
            # lr1 = LinearRegression(featuresCol="Independent_features", labelCol=label, elasticNetParam=0, regParam=0.5)
            # regressor1 = lr1.fit(train_data)
            # # label_features = train_data.withColumnRenamed(label, 'label')
            # # label_features.show()
            # lr_t = LinearRegression(featuresCol="Independent_features", labelCol=label)
            # pipeline = Pipeline(stages=[lr_t])
            # paramGrid = ParamGridBuilder() \
            #     .addGrid(lr_t.regParam, [0, 0.01, 0.05, 0.1, 0.5, 1]) \
            #     .addGrid(lr_t.elasticNetParam, [0.0, 0.1, 0.5, 0.8, 1]) \
            #     .build()
            # evaluator = RegressionEvaluator(metricName='r2', labelCol=label)
            # crossval = CrossValidator(estimator=pipeline,
            #                           estimatorParamMaps=paramGrid,
            #                           evaluator=evaluator,
            #                           numFolds=10)
            # model = crossval.fit(train_data)
            # # best_model = model.bestModel
            # # print(best_model)
            #
            # #######################################################
            # # lasso reg
            #
            # xt = [0.0, 0.01, 0.05, 0.1, 0.5, 1.0]
            # Rsqr_list = []
            # Rsqr_regPara = {}
            #
            # for t in xt:
            #     lr1 = LinearRegression(featuresCol="Independent_features", labelCol=label, elasticNetParam=1,
            #                            regParam=t)
            #     regressor1 = lr1.fit(train_data)
            #     print(t)
            #     print("coefficient : " + str(regressor1.coefficients))
            #     reg_sum = regressor1.summary
            #     r2 = reg_sum.r2
            #     Rsqr_list.append(r2)
            #     Rsqr_regPara[r2] = t
            #     print(r2)
            #
            # print(Rsqr_list)
            # print(max(Rsqr_list))
            # maximum_rsqr = max(Rsqr_list)
            # print(Rsqr_regPara)
            # final_regPara = []
            #
            # for key, val in Rsqr_regPara.items():
            #     if (key == maximum_rsqr):
            #         print(val)
            #         final_regPara.append(val)
            #
            # for reg in final_regPara:
            #     lr_lasso = LinearRegression(featuresCol="Independent_features", labelCol=label, elasticNetParam=1,
            #                                 regParam=reg)
            #     regressor_lasso = lr_lasso.fit(train_data)
            #     reg_sum = regressor_lasso.summary
            #     r2 = reg_sum.r2
            #     print(r2)
            #
            # # print regressor.featureImportances
            #
            # # print(dataset.orderBy(feature_colm, ascending=True))
            #
            # # pred = regressor.transform(test_data)
            #
            # #############################################################################################
            # """
            # class Lasso_reg():
            #     def __init__(self, xt=[0.0, 0.01, 0.05, 0.1, 0.5, 1.0, 0.005, 0.8, 0.3]):
            #         self.xt = xt
            #
            #     def lasso(self):
            #
            #         Rsqr_list = []
            #         Rsqr_regPara = {}
            #
            #         for t in self.xt:
            #             lr1 = LinearRegression(featuresCol="Independent_features", labelCol=label, elasticNetParam=1, regParam=t)
            #             regressor1 = lr1.fit(train_data)
            #             print(t)
            #             print("coefficient : " + str(regressor1.coefficients))
            #             reg_sum = regressor1.summary
            #             r2 = reg_sum.r2
            #             Rsqr_list.append(r2)
            #             Rsqr_regPara[r2] = t
            #             print(r2)
            #
            #         print(Rsqr_list)
            #         print(max(Rsqr_list))
            #         maximum_rsqr = max(Rsqr_list)
            #         print(Rsqr_regPara)
            #         final_regPara = []
            #
            #         for key, val in Rsqr_regPara.items():
            #             if (key == maximum_rsqr):
            #                 print(val)
            #                 final_regPara.append(val)
            #
            #         for reg in final_regPara:
            #             lr_lasso = LinearRegression(featuresCol="Independent_features", labelCol=label, elasticNetParam=1,
            #                                         regParam=reg)
            #             regressor_lasso = lr_lasso.fit(train_data)
            #             reg_sum = regressor_lasso.summary
            #             r2 = reg_sum.r2
            #             print(r2)
            #
            # Lasso_reg(xt=[0.5]).lasso()
            # """
            # #############################################################################################
            # # applying the model
            #
            # # coefficeint & intercept

            print("coefficient : " + str(regressor.coefficients))
            coefficient_t = str(regressor.coefficients)

            print("intercept : " + str(regressor.intercept))
            intercept_t = str(regressor.intercept)

            prediction = regressor.evaluate(test_data)

            # VI_IMP = 2

            prediction_val = prediction.predictions
            prediction_val.show()

            prediction_val_pand = prediction_val.select(
                label, "prediction").toPandas()

            prediction_val_pand = prediction_val_pand.assign(
                residual_vall=prediction_val_pand[label] -
                prediction_val_pand["prediction"])

            prediction_val_pand_residual = prediction_val_pand["residual_vall"]

            prediction_val_pand_label = prediction_val_pand[label]

            # print prediction_val_pand_residual
            prediction_val_pand_predict = prediction_val_pand["prediction"]
            # print prediction_val_pand_predict

            # test_summary = prediction.summary

            # for test data

            lr_prediction = regressor.transform(test_data)

            lr_prediction.groupBy(label, "prediction").count().show()

            lr_prediction_quantile = lr_prediction.select(label, "prediction")
            lr_prediction_onlypred = lr_prediction.select('prediction')
            # lr_prediction_quantile.show()

            # training_summary = regressor.summary

            print("numof_Iterations...%d\n" % training_summary.totalIterations)
            print("ObjectiveHistory...%s\n" %
                  str(training_summary.objectiveHistory))
            print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
            RMSE = training_summary.rootMeanSquaredError
            print("MSE....%f\n" % training_summary.meanSquaredError)
            MSE = training_summary.meanSquaredError
            print("r**2(r-square)....::%f\n" % training_summary.r2)
            r_square = training_summary.r2
            print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
            adjsted_r_square = training_summary.r2adj
            print("deviance residuals %s" %
                  str(training_summary.devianceResiduals))
            training_summary.residuals.show()
            # residual_graph = training_summary.residuals
            # test = (residual_graph, lr_prediction_onlypred)
            # residual_graph.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode='append' )
            # print(test)
            # test.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode= 'append')
            # residual_graph_pandas = residual_graph.toPandas()
            # print("coefficient standard errors: \n" + str(training_summary.coefficientStandardErrors))
            # coefficient_error = str(training_summary.coefficientStandardErrors)
            # print(" Tvalues :\n" + str(training_summary.tValues))
            # T_values = str(training_summary.tValues)
            # print(" p values :\n" + str(training_summary.pValues))
            # P_values = str(training_summary.pValues)

            #######################################################################################################
            table_response = {
                "Intercept": intercept_t,
                "Coefficients": coefficient_t,
                "RMSE": RMSE,
                "MSE": MSE,
                "R_square": r_square,
                "Adj_R_square": adjsted_r_square
            }
            #######################################################################################################
            # residual  vs predicted value

            prediction_data = regressor.summary.predictions
            prediction_data.show()
            prediction_data.select(['prediction']).show()
            predicted = prediction_data.select(['prediction'])
            regressor.summary.residuals.show()
            residuals = regressor.summary.residuals
            pred_d = predicted.withColumn('row_index',
                                          f.monotonically_increasing_id())
            res_d = residuals.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_residuals = pred_d.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            pred_residuals.show()

            pred_residuals.write.parquet(
                'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',
                mode='overwrite')

            ####################################################################################
            # appending predicted value to the dataset
            target = dataset.select(label)
            pred = prediction_data.select(['prediction'])
            pred_d = pred.withColumn('row_index',
                                     f.monotonically_increasing_id())
            target_d = target.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_target = pred_d.join(target_d,
                                      on=['row_index']).drop('row_index')
            pred_target.show()

            dataset.show()

            pred_target_data_update = dataset.join(pred_target, on=[label])

            pred_target_data_update.show(100)

            ##########################################################################################

            # scale location plot

            # for scale location plot
            # from pyspark.sql.functions import udf
            #
            # def std_res(x):
            #     res_list = []
            #     res_list.append(x)
            #
            # std_residuals = udf(lambda y: std_res(y), FloatType())
            #
            # residuals_std = residuals.withColumn('residuals', std_residuals(col('residuals').cast(FloatType())))
            #
            # import statistics
            # import numpy as np
            # residuals_panda = residuals.toPandas()
            # # residuals_panda.residuals = range(residuals_panda.shape[1])
            # residuals_panda = residuals_panda.values
            # print(residuals_panda)
            # stdev_training = statistics.stdev(residuals_panda)
            # print(stdev_training)

            ############################################################################################################

            # creating the dictionary for storing the result

            # json_response = coefficient_t

            # print(json_response)

            # json_response = {"adjusted r**2 value" : training_summary.r2adj}

            # DATA VISUALIZATION PART

            # finding the quantile in the dataset(Q_Q plot)
            import matplotlib.pyplot as plt

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)
            #
            # for z in x:
            #     print ("~~~~~   ",z)
            #

            quantile_label = lr_prediction_quantile.approxQuantile(
                label, x, 0.01)
            # print quantile_label
            quantile_prediction = lr_prediction_quantile.approxQuantile(
                "prediction", x, 0.01)
            # print quantile_prediction
            #
            # Q_label_pred=''
            # print(len(quantile_label))
            # length = len(quantile_label)
            #
            # for i in range(0,len(quantile_label)):
            #     Q_label_pred += str(quantile_label[i]) + '|'  +  str(quantile_prediction[i]) + '\n'

            # writing it to the hdfs in parquet file
            #
            # quantile_label_tospark = spark.createDataFrame(quantile_label, FloatType())
            # quantile_label_tospark = quantile_label_tospark.withColumnRenamed("value", "Q_label")
            #
            # quantile_prediction_tospark = spark.createDataFrame(quantile_prediction, FloatType())
            # quantile_prediction_tospark = quantile_prediction_tospark.withColumnRenamed("value", "Q_prediction")
            #
            # quant_label = quantile_label_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # quant_predtiction = quantile_prediction_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_quantile = quant_label.join(quant_predtiction,on=['row_index']).sort('row_index').drop('row_index')
            #
            # final_quantile.show()
            #
            # final_quantile.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',mode='overwrite')
            #
            #

            # print(str(Q_label_pred[i]))

            # with open('Q_Q_plot.csv', 'w') as Q_Q:
            #     writer_Q_Q = csv.writer(Q_Q)
            #     writer_Q_Q.writerows((quantile_label, quantile_prediction))
            #
            # plt.scatter(quantile_label, quantile_prediction)
            # plt.show()

            ## finding the residual vs fitted graph data

            #
            #
            # prediction_val_pand_predict_tospark = spark.createDataFrame(prediction_val_pand_predict, FloatType())
            # prediction_val_pand_predict_tospark = prediction_val_pand_predict_tospark.withColumnRenamed("value", "prediction")
            #
            # prediction_val_pand_residual_tospark = spark.createDataFrame(prediction_val_pand_residual, FloatType())
            # prediction_val_pand_residual_tospark = prediction_val_pand_residual_tospark.withColumnRenamed("value", "residual")
            #
            # pred_spark = prediction_val_pand_predict_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # res_spark = prediction_val_pand_residual_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_res_fitted = pred_spark.join(res_spark, on=['row_index'])\
            #     .sort('row_index').drop('row_index')
            #
            # final_res_fitted.show()
            #
            # final_res_fitted.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/RESIDUAL_FITTED_PLOT.parquet',
            #                              mode='overwrite')
            #

            # plt.scatter(prediction_val_pand_predict, prediction_val_pand_residual)
            # plt.axhline(y=0.0, color="red")
            # plt.xlabel("prediction")
            # plt.ylabel("residual")
            # plt.title("residual vs fitted ")
            # plt.show()

            # creating the csv file and writitng into it

            fitted_residual = ''
            print(len(prediction_val_pand_residual))
            length = len(prediction_val_pand_residual)

            for i in range(0, len(prediction_val_pand_residual)):
                fitted_residual += str(
                    prediction_val_pand_predict[i]) + 't' + str(
                        prediction_val_pand_residual[i]) + 'n'

            with open('residual_vs_fitted.csv', 'w') as r_f:
                writer_r_f = csv.writer(r_f)
                writer_r_f.writerows((prediction_val_pand_predict,
                                      prediction_val_pand_residual))

            # parquet file writing

            ## residual vs leverage graph data

            prediction_val_pand_residual
            # extreme value in the predictor colm
            prediction_col_extremeval = lr_prediction_quantile.agg(
                {"prediction": "max"})
            # prediction_col_extremeval.show()

            # plt.plot(prediction_col_extremeval, prediction_val_pand_residual)
            # plt.show()

            ## scale location graph data

            prediction_val_pand_residual
            prediction_val_pand_predict
            prediction_val_pand_residual_abs = prediction_val_pand_residual.abs(
            )
            import math
            sqrt_residual = []
            for x in prediction_val_pand_residual_abs:
                sqrt_residual.append(math.sqrt(x))
                # print ("____________________  ",x)

            sqrt_residual

            # plt.scatter(sqrt_residual, prediction_val_pand_predict)
            ####################################################################################3

            # calculating std deviation
            import statistics

            print(statistics.stdev(prediction_val_pand_residual))
            stdev_pred = statistics.stdev(prediction_val_pand_residual)
            # mean = statistics.mean(prediction_val_pand_residual)

            # calcuate stnd residuals
            std_res = []
            for x in prediction_val_pand_residual:
                std_res.append(x / stdev_pred)
            print(std_res)

            # calculating the square root of std_res
            import math
            sqr_std_res = []
            for x in std_res:
                sqr_std_res.append(math.sqrt(abs(x)))
            print(sqr_std_res)
            #######################################################################################3
            # QUANTILE

            ## sort the list
            sorted_std_res = sorted(std_res)
            print(sorted_std_res)
            #
            mean = statistics.mean(sorted_std_res)
            stdev = statistics.stdev(sorted_std_res)
            print(mean)
            quantile = []
            n = len(sorted_std_res)
            print(n)
            for x in range(0, n):
                quantile.append((x - 0.5) / (n))

            print(quantile)
            #
            # z_score theoritical
            from scipy.stats import norm

            z_theory = []
            for x in quantile:
                z_theory.append((norm.ppf(abs(x))))
            print(z_theory)
            # z score for real val
            z_pract = []
            for x in sorted_std_res:
                z_pract.append((x - mean) / stdev)

            #

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)

            quantile_std_res = spark.createDataFrame(std_res, FloatType())
            quantile_std_res.show()
            quantile_std_res_t = quantile_std_res.approxQuantile(
                'value', x, 0.01)
            print(quantile_std_res_t)
            print(x)

            Q_label_pred = ''
            print(len(quantile_label))
            length = len(quantile_label)
            for quant, val in zip(z_theory, z_pract):
                Q_label_pred += str(val) + 't' + str(quant) + 'n'

            plt.scatter(z_theory, z_pract)
            plt.savefig('q_q')

            ####################################################

            # creating the std residuals

            # square root of label
            sqrt_label = []
            for x in prediction_val_pand_label:
                sqrt_label.append(math.sqrt(abs(x)))

            sqrt_label
            prediction_val_pand_residual
            std_residual = []
            for sqr, resid in zip(sqrt_label, prediction_val_pand_residual):
                std_residual.append(resid / sqr)
                # print(std_sqrt_residual)

            # creating the std sqr root

            sqrt_std_residuals = []
            for x in std_residual:
                # print(math.sqrt(abs(x)))
                sqrt_std_residuals.append(math.sqrt(abs(x)))
            print(sqrt_std_residuals)

            # print(std_sqrt_residual)

            scale_predict_residual = ''
            for pre, res in zip(prediction_val_pand_predict,
                                sqrt_std_residuals):
                scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            print(scale_predict_residual)

            ##########################################################################
            """
            pred_residuals.show()
            pred_residuals_pandas = pred_residuals.toPandas()
            print(pred_residuals_pandas)
            res_pandas = pred_residuals_pandas['residuals']
            pred_pandas = pred_residuals_pandas['prediction']
            label_list = []
            # for res, pred in zip(res_pandas, pred_pandas):
            #     label_list.append(res+pred)
            label_pand = prediction_data.select([label]).toPandas()
            labe_panda = label_pand[label]

            # sqrt of label column
            sqrt_lab = []
            for lab in labe_panda:
                sqrt_lab.append(math.sqrt(abs(lab)))

            print(res_pandas)
            stdev_res = statistics.stdev(res_pandas)
            std_res_list = []
            for valr, labe in zip(res_pandas,sqrt_lab):
                std_res_list.append(valr/labe)
            print(std_res_list)
            """

            ##########################################################################
            ##########################################################################
            # import math
            # sqrt_stdres = []
            # for x in std_sqrt_residual:
            #     sqrt_stdres.append(math.sqrt(x))
            #
            # scale_predict_residual = ''
            # for pre, res in zip(prediction_val_pand_predict, sqrt_stdres):
            #     scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            # print(scale_predict_residual)

            ###################################3

            # plt.show()

            # scale_predict_residual=''
            #
            # print(len(sqrt_residual))
            # length = len(sqrt_residual)
            #
            # for i in range(0, len(std_sqrt_residual)):
            #     scale_predict_residual += str(prediction_val_pand_predict[i]) + '|' + str(std_sqrt_residual[i]) + '\n'

            # with open('scale_location_plot.csv', 'w') as s_l:
            #     writer_s_l = csv.writer(s_l)
            #     writer_s_l.writerows((prediction_val_pand_predict, sqrt_residual))

            # writing to the parquet

            # prediction_val_pand_predict_tospark = spark.createDataFrame(prediction_val_pand_predict, FloatType())
            # prediction_val_pand_predict_tospark = prediction_val_pand_predict_tospark.withColumnRenamed("value",
            #                                                                                             "prediction")
            #
            # sqrt_residual_tospark= spark.createDataFrame(sqrt_residual, FloatType())
            # sqrt_residual_tospark = sqrt_residual_tospark.withColumnRenamed("value",
            #                                                                                               "sqrt_residual")
            #
            # pred_spark = prediction_val_pand_predict_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # res_spark = sqrt_residual_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_scale_fitted = pred_spark.join(res_spark,on=['row_index']) \
            #     .sort('row_index').drop('row_index')
            #
            # final_scale_fitted.show()
            #
            # final_scale_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/SCALE_LOCATION_PLOT.parquet',
            #     mode='overwrite')
            #

            # dumping the dictionary into json object

            # json_response = {'run_status': 'success', 'PredictiveResponse': resultdf}

            graph_response = {
                "Q_Q_plot": Q_label_pred,
                "residual_fitted": fitted_residual,
                "scale_location": scale_predict_residual
            }

            json_response = {
                'table_data': table_response,
                'graph_data': graph_response
            }

            return json_response

        except Exception as e:
            print('exception is =' + str(e))
    def linearReg(self, dataset_add, feature_colm, label_colm, relation_list, relation,userId):
        try:
            dataset = spark.read.csv(dataset_add, header=True, inferSchema=True)
            dataset.show()
            label = ''
            for val in label_colm:
                label = val
            Schema = dataset.schema
            stringFeatures = []
            numericalFeatures = []
            for x in Schema:
                if (str(x.dataType) == "StringType" or str(x.dataType) == 'TimestampType' or str(
                        x.dataType) == 'DateType' or str(x.dataType) == 'BooleanType' or str(x.dataType) == 'BinaryType'):
                    for y in feature_colm:
                        if x.name == y:
                            dataset = dataset.withColumn(y, dataset[y].cast(StringType()))
                            stringFeatures.append(x.name)
                else:
                    for y in feature_colm:
                        if x.name == y:
                            numericalFeatures.append(x.name)
            if relation == 'linear':
                print('linear relationship')
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)
            dataset.show()
            for x in Schema:
                if (str(x.dataType) == "StringType" and x.name == label):
                    for labelkey in label_colm:
                        label_indexer = StringIndexer(inputCol=label, outputCol='indexed_' + label, handleInvalid="skip").fit(dataset)
                        dataset = label_indexer.transform(dataset)
                        label = 'indexed_' + label
                else:
                    label = label
            indexed_features = []
            for colm in stringFeatures:
                indexer = StringIndexer(inputCol=colm, outputCol='indexed_' + colm, handleInvalid="skip").fit(dataset)
                indexed_features.append('indexed_' + colm)
                dataset = indexer.transform(dataset)
            featureAssembler = VectorAssembler(inputCols=indexed_features + numericalFeatures, outputCol='features', handleInvalid="skip")
            dataset = featureAssembler.transform(dataset)
            vectorIndexer = VectorIndexer(inputCol='features', outputCol='vectorIndexedFeatures', maxCategories=4, handleInvalid="skip").fit(
                dataset)
            dataset = vectorIndexer.transform(dataset)

            trainDataRatioTransformed = self.trainDataRatio
            testDataRatio = 1 - trainDataRatioTransformed
            trainingData, testData = dataset.randomSplit([trainDataRatioTransformed, testDataRatio], seed=40)

            # applying the model

            lr = LinearRegression(featuresCol="vectorIndexedFeatures", labelCol=label)
            regressor = lr.fit(trainingData)

            locationAddress = 'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/'
            modelPersist = 'linearRegressorModel.parquet'
            modelStorageLocation = locationAddress + userId + modelPersist
            regressor.write().overwrite().save(modelStorageLocation)

            # print regressor.featureImportances

            # print(dataset.orderBy(feature_colm, ascending=True))

            # pred = regressor.transform(testData)

            # coefficeint & intercept


            # saving the model and test dataset as csv file


            print("coefficient : " + str(regressor.coefficients))
            coefficient_t = str(regressor.coefficients)

            print("intercept : " + str(regressor.intercept))
            intercept_t = str(regressor.intercept)

            prediction = regressor.evaluate(testData)

            # VI_IMP = 2

            prediction_val = prediction.predictions
            prediction_val.show()

            prediction_val_pand = prediction_val.select(label, "prediction").toPandas()

            prediction_val_pand = prediction_val_pand.assign(
                residual_vall=prediction_val_pand[label] - prediction_val_pand["prediction"])

            prediction_val_pand_residual = prediction_val_pand["residual_vall"]

            prediction_val_pand_label = prediction_val_pand[label]

            # print prediction_val_pand_residual
            prediction_val_pand_predict = prediction_val_pand["prediction"]
            # print prediction_val_pand_predict

            # test_summary = prediction.summary

            # for test data

            lr_prediction = regressor.transform(testData)

            lr_prediction.groupBy(label, "prediction").count().show()

            lr_prediction_quantile = lr_prediction.select(label, "prediction")
            lr_prediction_onlypred = lr_prediction.select('prediction')
            # lr_prediction_quantile.show()

            training_summary = regressor.summary

            print("numof_Iterations...%d\n" % training_summary.totalIterations)
            print("ObjectiveHistory...%s\n" % str(training_summary.objectiveHistory))
            print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
            RMSE = training_summary.rootMeanSquaredError
            print("MSE....%f\n" % training_summary.meanSquaredError)
            MSE = training_summary.meanSquaredError
            print("r**2(r-square)....::%f\n" % training_summary.r2)
            r_square = training_summary.r2
            print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
            adjsted_r_square = training_summary.r2adj
            print("deviance residuals %s" % str(training_summary.devianceResiduals))
            training_summary.residuals.show()
            # residual_graph = training_summary.residuals
            # test = (residual_graph, lr_prediction_onlypred)
            # residual_graph.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode='append' )
            # print(test)
            # test.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode= 'append')
            # residual_graph_pandas = residual_graph.toPandas()
            print("coefficient standard errors: \n" + str(training_summary.coefficientStandardErrors))
            coefficientStdError = str(training_summary.coefficientStandardErrors)
            print(" Tvalues :\n" + str(training_summary.tValues))
            T_values = str(training_summary.tValues)
            tValuesList = training_summary.tValues
            print(" p values :\n" + str(training_summary.pValues))
            P_values = str(training_summary.pValues)

            # regression equation
            intercept_t = float(intercept_t)
            coefficientList = list(regressor.coefficients)
            equation = label, '=', intercept_t, '+'
            for feature, coeff in zip(feature_colm, coefficientList):
                coeffFeature = coeff, '*', feature, '+'
                equation += coeffFeature
            equation = equation[:-1]
            print(equation)
            st = list(equation)

            # significance value

            PValuesList = training_summary.pValues
            significanceObject = {}

            for pValue in PValuesList:
                if (0 <= pValue < 0.001):
                    significanceObject[pValue] = '***'
                if (0.001 <= pValue < 0.01):
                    significanceObject[pValue] = '**'
                if (0.01 <= pValue < 0.05):
                    significanceObject[pValue] = '*'
                if (0.05 <= pValue < 0.1):
                    significanceObject[pValue] = '.'
                if (0.1 <= pValue < 1):
                    significanceObject[pValue] = '-'
            print(significanceObject)



            #######################################################################################################
            # residual  vs predicted value

            prediction_data = regressor.summary.predictions
            prediction_data.show()
            prediction_data.select(['prediction']).show()
            predicted = prediction_data.select(['prediction'])
            regressor.summary.residuals.show()
            residuals = regressor.summary.residuals
            pred_d = predicted.withColumn('row_index', f.monotonically_increasing_id())
            res_d = residuals.withColumn('row_index', f.monotonically_increasing_id())

            pred_residuals = pred_d.join(res_d, on=['row_index']).sort('row_index').drop('row_index')
            pred_residuals.show()

            # pred_residuals.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',
            #                              mode='overwrite')

            '''
                        
            userId = 'sahil123'
            graphName = 'QQPlot.parquet'
            locationAddress = '/home/fidel/mltest/'
            
            finalLocation = locationAddress + userId + graphName
            print(finalLocation)
            pred_residuals.write.parquet(finalLocation,mode='overwrite')
    
            '''


            #################################################################################3
            # scale location plot
            from pyspark.sql.functions import abs as ab, sqrt, mean as meann, stddev as stdDev

            df_label = prediction_data.select(label, 'prediction',
                                              sqrt(ab(prediction_data[label])).alias("sqrt_label"))

            df_label.show()
            df_sqrt_label_index = df_label.withColumn('row_index', f.monotonically_increasing_id())
            df_sqrt_label_index.show()

            res_d.show()
            sqrt_label_residual_join = df_sqrt_label_index.join(res_d, on=['row_index']).sort('row_index').drop(
                'row_index')

            sqrt_label_residual_join.show()

            std_resid = sqrt_label_residual_join.select('sqrt_label', 'prediction', (
                    sqrt_label_residual_join['residuals'] / sqrt_label_residual_join['sqrt_label']).alias(
                'std_res'))

            std_resid.show()

            sqrt_std_res = std_resid.select("std_res", 'prediction',
                                            sqrt(ab(std_resid["std_res"])).alias("sqrt_std_resid"))

            sqrt_std_res.show()
            sqrt_std_res_fitted = sqrt_std_res.select('prediction', 'sqrt_std_resid')

            # sqrt_std_res_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/scale_location_train.parquet',
            #     mode='overwrite')

            ######################################################################################
            # QUANTILE

            from scipy.stats import norm
            import statistics
            import math


            res_d.show()
            sorted_res = res_d.sort('residuals')
            sorted_res.show()
            # stdev_ress = sorted_res.select(stdDev(col('residuals')).alias('std_dev'),
            #                                meann(col('residuals')).alias('mean'))
            # stdev_ress.show()
            # mean_residual = stdev_ress.select(['mean']).toPandas()
            # l = mean_residual.values.tolist()
            # print(l)
            # stddev_residual = stdev_ress.select(['std_dev']).toPandas()
            # length of the sorted std residuals
            count = sorted_res.groupBy().count().toPandas()
            countList = count.values.tolist()
            tuple1 = ()
            for k in countList:
                tuple1 = k
            for tu in tuple1:
                lengthResiduals = tu
            print(lengthResiduals)
            quantileList = []
            for x in range(0, lengthResiduals):
                quantileList.append((x - 0.5) / (lengthResiduals))

            print(quantileList)

            # Z-score on theoritical quantile

            zTheoriticalTrain = []
            for x in quantileList:
                zTheoriticalTrain.append(norm.ppf(abs(x)))
            print(zTheoriticalTrain)

            sortedResidualPDF = sorted_res.select('residuals').toPandas()
            sortedResidualPDF = sortedResidualPDF['residuals']
            stdevResidualTrain = statistics.stdev(sortedResidualPDF)
            meanResidualTrain = statistics.mean(sortedResidualPDF)

            zPracticalTrain = []
            for x in sortedResidualPDF:
                zPracticalTrain.append((x - meanResidualTrain) / stdevResidualTrain)

            # schema = StructType([StructField('zTheoriticalTrain', FloatType(), True),
            #                      StructField('zPracticalTrain', FloatType(), True)
            #                      ])
            # spark.createDataFrame(zPracticalTrain, FloatType()).show()

            ####################################################################################
            # appending predicted value to the dataset
            target = dataset.select(label)
            pred = prediction_data.select(['prediction'])
            pred_d = pred.withColumn('row_index', f.monotonically_increasing_id())
            target_d = target.withColumn('row_index', f.monotonically_increasing_id())

            pred_target = pred_d.join(target_d, on=['row_index']).drop('row_index')
            pred_target.show()

            dataset.show()

            pred_target_data_update = dataset.join(pred_target, on=[label])

            pred_target_data_update.show(100)
            '''
            prediction = regressor.evaluate(dataset)
            predictionTestData= prediction.predictions
            predictionTestData.show()
            #appending the predicted column into the dataset which is test dataset
            predictionLabelList = [label,'prediction']
            updatedFeatureColmList = feature_colm
            for val in predictionLabelList:
                updatedFeatureColmList.append(val)
            print(updatedFeatureColmList)
            predictionTestDatasetcolumn = predictionTestData.select(updatedFeatureColmList)
            predictionTestDatasetcolumn.show()

            '''

            ##########################################################################################

            # scale location plot

            # for scale location plotequationAsList
            # from pyspark.sql.functions import udf
            #
            # def std_res(x):
            #     res_list = []
            #     res_list.append(x)
            #
            # std_residuals = udf(lambda y: std_res(y), FloatType())
            #
            # residuals_std = residuals.withColumn('residuals', std_residuals(col('residuals').cast(FloatType())))
            #
            # import statistics
            # import numpy as np
            # residuals_panda = residuals.toPandas()
            # # residuals_panda.residuals = range(residuals_panda.shape[1])
            # residuals_panda = residuals_panda.values
            # print(residuals_panda)
            # stdev_training = statistics.stdev(residuals_panda)
            # print(stdev_training)

            ############################################################################################################

            # creating the dictionary for storing the result

            # json_response = coefficient_t

            # print(json_response)

            # json_response = {"adjusted r**2 value" : training_summary.r2adj}

            # DATA VISUALIZATION PART

            # finding the quantile in the dataset(Q_Q plot)
            import matplotlib.pyplot as plt

            # y = 0.1
            # x = []
            #
            # for i in range(0, 90):
            #     x.append(y)
            #     y = round(y + 0.01, 2)
            #
            # for z in x:
            #     print ("~~~~~   ",z)
            #

            # quantile_label = lr_prediction_quantile.approxQuantile(label, x, 0.01)
            # print quantile_label
            # quantile_prediction = lr_prediction_quantile.approxQuantile("prediction", x, 0.01)
            # print quantile_prediction
            #
            # Q_label_pred=''
            # print(len(quantile_label))
            # length = len(quantile_label)
            #
            # for i in range(0,len(quantile_label)):
            #     Q_label_pred += str(quantile_label[i]) + '|'  +  str(quantile_prediction[i]) + '\n'

            # writing it to the hdfs in parquet file
            #
            # quantile_label_tospark = spark.createDataFrame(quantile_label, FloatType())
            # quantile_label_tospark = quantile_label_tospark.withColumnRenamed("value", "Q_label")
            #
            # quantile_prediction_tospark = spark.createDataFrame(quantile_prediction, FloatType())
            # quantile_prediction_tospark = quantile_prediction_tospark.withColumnRenamed("value", "Q_prediction")
            #
            # quant_label = quantile_label_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # quant_predtiction = quantile_prediction_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_quantile = quant_label.join(quant_predtiction,on=['row_index']).sort('row_index').drop('row_index')
            #
            # final_quantile.show()
            #
            # final_quantile.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',mode='overwrite')
            #
            #

            # print(str(Q_label_pred[i]))

            # with open('Q_Q_plot.csv', 'w') as Q_Q:
            #     writer_Q_Q = csv.writer(Q_Q)
            #     writer_Q_Q.writerows((quantile_label, quantile_prediction))
            #
            # plt.scatter(quantile_label, quantile_prediction)
            # plt.show()

            ## finding the residual vs fitted graph data

            #
            #
            # prediction_val_pand_predict_tospark = spark.createDataFrame(prediction_val_pand_predict, FloatType())
            # prediction_val_pand_predict_tospark = prediction_val_pand_predict_tospark.withColumnRenamed("value", "prediction")
            #
            # prediction_val_pand_residual_tospark = spark.createDataFrame(prediction_val_pand_residual, FloatType())
            # prediction_val_pand_residual_tospark = prediction_val_pand_residual_tospark.withColumnRenamed("value", "residual")
            #
            # pred_spark = prediction_val_pand_predict_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # res_spark = prediction_val_pand_residual_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_res_fitted = pred_spark.join(res_spark, on=['row_index'])\
            #     .sort('row_index').drop('row_index')
            #
            # final_res_fitted.show()
            #
            # final_res_fitted.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/RESIDUAL_FITTED_PLOT.parquet',
            #                              mode='overwrite')
            #

            # plt.scatter(prediction_val_pand_predict, prediction_val_pand_residual)
            # plt.axhline(y=0.0, color="red")
            # plt.xlabel("prediction")
            # plt.ylabel("residual")
            # plt.title("residual vs fitted ")
            # plt.show()

            # creating the csv file and writitng into it
            import math
            fitted_residual = ''
            print(len(prediction_val_pand_residual))
            length = len(prediction_val_pand_residual)

            for i in range(0, len(prediction_val_pand_residual)):
                fitted_residual += str(prediction_val_pand_predict[i]) + '|' + str(
                    prediction_val_pand_residual[i]) + '\n'

            with open('residual_vs_fitted.csv', 'w') as r_f:
                writer_r_f = csv.writer(r_f)
                writer_r_f.writerows((prediction_val_pand_predict, prediction_val_pand_residual))

            # parquet file writing

            ## residual vs leverage graph data

            prediction_val_pand_residual
            # extreme value in the predictor colm
            prediction_col_extremeval = lr_prediction_quantile.agg({"prediction": "max"})
            # prediction_col_extremeval.show()

            # plt.plot(prediction_col_extremeval, prediction_val_pand_residual)
            # plt.show()

            ## scale location graph data

            prediction_val_pand_residual
            prediction_val_pand_predict
            prediction_val_pand_residual_abs = prediction_val_pand_residual.abs()
            import math
            sqrt_residual = []
            for x in prediction_val_pand_residual_abs:
                sqrt_residual.append(math.sqrt(x))
                # print ("____________________  ",x)

            sqrt_residual

            # plt.scatter(sqrt_residual, prediction_val_pand_predict)
            ####################################################################################3

            # calculating std deviation
            import statistics

            print(statistics.stdev(prediction_val_pand_residual))
            stdev_pred = statistics.stdev(prediction_val_pand_residual)
            # mean = statistics.mean(prediction_val_pand_residual)

            # calcuate stnd residuals
            std_res = []
            for x in prediction_val_pand_residual:
                std_res.append(x / stdev_pred)
            print(std_res)

            # calculating the square root of std_res
            import math
            sqr_std_res = []
            for x in std_res:
                sqr_std_res.append(math.sqrt(abs(x)))
            print(sqr_std_res)
            #######################################################################################3
            # QUANTILE

            ## sort the list
            sorted_std_res = sorted(std_res)
            print(sorted_std_res)
            #
            mean = statistics.mean(sorted_std_res)
            stdev = statistics.stdev(sorted_std_res)
            print(mean)
            quantile = []
            n = len(sorted_std_res)
            print(n)
            for x in range(0, n):
                quantile.append((x - 0.5) / (n))

            print(quantile)
            #
            # z_score theoritical
            from scipy.stats import norm

            z_theory = []
            for x in quantile:
                z_theory.append((norm.ppf(abs(x))))
            print(z_theory)
            # z score for real val
            z_pract = []
            for x in sorted_std_res:
                z_pract.append((x - mean) / stdev)

            #

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)

            quantile_std_res = spark.createDataFrame(std_res, FloatType())
            quantile_std_res.show()
            quantile_std_res_t = quantile_std_res.approxQuantile('value', x, 0.01)
            print(quantile_std_res_t)
            print(x)

            Q_label_pred = ''
            # print(len(quantile_label))
            # length = len(quantile_label)
            for quant, val in zip(z_theory, z_pract):
                Q_label_pred += str(val) + 't' + str(quant) + 'n'

            plt.scatter(z_theory, z_pract)
            plt.savefig('q_q')

            ####################################################

            # creating the std residuals

            # square root of label
            sqrt_label = []
            for x in prediction_val_pand_label:
                sqrt_label.append(math.sqrt(abs(x)))

            sqrt_label
            prediction_val_pand_residual
            std_residual = []
            for sqr, resid in zip(sqrt_label, prediction_val_pand_residual):
                std_residual.append(resid / sqr)
                # print(std_sqrt_residual)

            # creating the std sqr root

            sqrt_std_residuals = []
            for x in std_residual:
                # print(math.sqrt(abs(x)))
                sqrt_std_residuals.append(math.sqrt(abs(x)))
            print(sqrt_std_residuals)

            # print(std_sqrt_residual)

            scale_predict_residual = ''
            for pre, res in zip(prediction_val_pand_predict, sqrt_std_residuals):
                scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            print(scale_predict_residual)

            ##########################################################################
            # import math
            # sqrt_stdres = []
            # for x in std_sqrt_residual:
            #     sqrt_stdres.append(math.sqrt(x))
            #
            # scale_predict_residual = ''
            # for pre, res in zip(prediction_val_pand_predict, sqrt_stdres):
            #     scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            # print(scale_predict_residual)

            ###################################3

            # plt.show()

            # scale_predict_residual=''
            #
            # print(len(sqrt_residual))
            # length = len(sqrt_residual)
            #
            # for i in range(0, len(std_sqrt_residual)):
            #     scale_predict_residual += str(prediction_val_pand_predict[i]) + '|' + str(std_sqrt_residual[i]) + '\n'

            # with open('scale_location_plot.csv', 'w') as s_l:
            #     writer_s_l = csv.writer(s_l)
            #     writer_s_l.writerows((prediction_val_pand_predict, sqrt_residual))



            # writing to the parquet

            # prediction_val_pand_predict_tospark = spark.createDataFrame(prediction_val_pand_predict, FloatType())
            # prediction_val_pand_predict_tospark = prediction_val_pand_predict_tospark.withColumnRenamed("value",
            #                                                                                             "prediction")
            #
            # sqrt_residual_tospark= spark.createDataFrame(sqrt_residual, FloatType())
            # sqrt_residual_tospark = sqrt_residual_tospark.withColumnRenamed("value",
            #                                                                                               "sqrt_residual")
            #
            # pred_spark = prediction_val_pand_predict_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # res_spark = sqrt_residual_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_scale_fitted = pred_spark.join(res_spark,on=['row_index']) \
            #     .sort('row_index').drop('row_index')
            #
            # final_scale_fitted.show()
            #
            # final_scale_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/SCALE_LOCATION_PLOT.parquet',
            #     mode='overwrite')
            #

            # dumping the dictionary into json object

            # json_response = {'run_status': 'success', 'PredictiveResponse': resultdf}

            tableContent = \
                {
                    'coefficientValuesKey': coefficientList,
                    'tValuesKey': tValuesList,
                    'pValuesKey': PValuesList,
                    'significanceValuesKey': significanceObject,
                    'interceptValuesKey': intercept_t,
                    "RMSE": RMSE,
                    "RSquare": r_square,
                    "AdjRSquare": adjsted_r_square,
                    "CoefficientStdError": coefficientStdError,

                }
            print(tableContent)

            json_response = {

                "Intercept": intercept_t,
                "Coefficients": coefficient_t,
                "RMSE": RMSE,
                "MSE": MSE,
                "R_square": r_square,
                "Adj_R_square": adjsted_r_square,
                "Coefficient_error": coefficientStdError,
                "T_value": T_values,
                "P_value": P_values,
                'Q_Q_plot': Q_label_pred,
                'residual_fitted': fitted_residual,
                'scale_location': scale_predict_residual

            }

            return json_response


        except Exception as e:
            print('exception is =' + str(e))
Beispiel #4
0
def randomClassifier(dataset_add, feature_colm, label_colm, relation_list,
                     relation):
    try:
        dataset = spark.read.parquet(dataset_add)
        label = ''
        for y in label_colm:
            label = y

        Schema = dataset.schema
        stringFeatures = []
        numericalFeatures = []
        for x in Schema:
            if (str(x.dataType) == "StringType"):
                for y in feature_colm:
                    if x.name == y:
                        stringFeatures.append(x.name)
            else:
                for y in feature_colm:
                    if x.name == y:
                        numericalFeatures.append(x.name)

        summaryList = ['mean', 'stddev', 'min', 'max']
        summaryDict = {}

        import pyspark.sql.functions as F
        import builtins
        round = getattr(builtins, 'round')
        for colm in numericalFeatures:
            summaryListTemp = []
            for value in summaryList:
                summ = list(
                    dataset.select(colm).summary(value).toPandas()[colm])
                summaryListSubTemp = []
                for val in summ:
                    summaryListSubTemp.append(round(float(val), 4))
                # print(summaryListSubTemp)
                summaryListTemp.append(summaryListSubTemp)
            # varianceListTemp = list(dataset.select(variance(col(colm)).alias(colm)).toPandas()[colm])
            # summaryListTemp.append(varianceListTemp)
            summaryDict[colm] = summaryListTemp
        # summaryList.append('variance')
        summaryDict['summaryName'] = summaryList
        summaryDict['categoricalColumn'] = stringFeatures
        skewnessList = []
        kurtosisList = []
        varianceList = []
        skewKurtVarDict = {}
        for colm in numericalFeatures:
            skewness = (dataset.select(F.skewness(dataset[colm])).toPandas())
            for i, row in skewness.iterrows():
                for j, column in row.iteritems():
                    skewnessList.append(round(column, 4))
            kurtosis = (dataset.select(F.kurtosis(dataset[colm])).toPandas())
            for i, row in kurtosis.iterrows():
                for j, column in row.iteritems():
                    kurtosisList.append(round(column, 4))
            variance = (dataset.select(F.variance(dataset[colm])).toPandas())
            for i, row in variance.iterrows():
                for j, column in row.iteritems():
                    varianceList.append(round(column, 4))

        for skew, kurt, var, colm in zip(skewnessList, kurtosisList,
                                         varianceList, numericalFeatures):
            print(skew, kurt, var)
            skewKurtVarList = []
            skewKurtVarList.append(skew)
            skewKurtVarList.append(kurt)
            skewKurtVarList.append(var)
            skewKurtVarDict[colm] = skewKurtVarList

        for (keyOne, valueOne), (keyTwo,
                                 valueTwo) in zip(summaryDict.items(),
                                                  skewKurtVarDict.items()):
            print(keyOne, valueOne, keyTwo, valueTwo)
            if keyOne == keyTwo:
                valueOne.extend(valueTwo)
                summaryDict[keyOne] = valueOne
        print(summaryDict)
        print(summaryList.extend(['skewness', 'kurtosis', 'variance']))
        print(summaryDict)
        # for colm in numericalFeatures:
        #     skewness = (dataset.select(F.skewness(dataset[colm])).alias('skewness_' + colm))
        #     kurtosis = (dataset.select(F.kurtosis(dataset[colm])).alias('kurtosis_' + colm))
        #     variance = (dataset.select(F.variance(dataset[colm]).alias('kurtosis_' + colm)))
        if relation == 'linear':
            dataset = dataset
        if relation == 'non_linear':
            dataset = Relationship(dataset, relation_list)

        dataset.show()
        for x in Schema:
            if (str(x.dataType) == "StringType" and x.name == label):
                for labelkey in label_colm:
                    label_indexer = StringIndexer(inputCol=label,
                                                  outputCol='indexed_' +
                                                  label).fit(dataset)
                    dataset = label_indexer.transform(dataset)
                    label = 'indexed_' + label
            else:
                label = label
        indexed_features = []
        for colm in stringFeatures:
            indexer = StringIndexer(inputCol=colm,
                                    outputCol='indexed_' + colm).fit(dataset)
            indexed_features.append('indexed_' + colm)
            dataset = indexer.transform(dataset)
        final_features = numericalFeatures + indexed_features
        response_chi_test = chi_square_test(dataset=dataset,
                                            features=indexed_features,
                                            label_col=label,
                                            stringFeatures=stringFeatures)

        featureassembler = VectorAssembler(inputCols=final_features,
                                           outputCol="features")
        dataset = featureassembler.transform(dataset)
        dataset.show()
        vec_indexer = VectorIndexer(inputCol='features',
                                    outputCol='vec_indexed_features',
                                    maxCategories=4).fit(dataset)
        categorical_features = vec_indexer.categoryMaps
        print("Choose %d categorical features: %s" %
              (len(categorical_features), ", ".join(
                  str(k) for k in categorical_features.keys())))
        vec_indexed = vec_indexer.transform(dataset)
        vec_indexed.show()
        finalized_data = vec_indexed.select(label, 'vec_indexed_features')
        train_data, test_data = finalized_data.randomSplit([0.75, 0.25],
                                                           seed=40)
        rf = RandomForestClassifier(labelCol=label,
                                    featuresCol='vec_indexed_features',
                                    numTrees=10)
        model = rf.fit(train_data)
        predictions = model.transform(test_data)
        print(model.featureImportances)
        feature_importance = model.featureImportances.toArray().tolist()
        print(feature_importance)
        import pyspark.sql.functions as F
        import builtins
        round = getattr(builtins, 'round')
        feature_importance = model.featureImportances.toArray().tolist()
        print(feature_importance)
        # feature_importance = [round(x,4) for x in feature_importance]
        featureImportance = []
        for x in feature_importance:
            featureImportance.append(round(x, 4))
        print(featureImportance)

        features_column_for_user = numericalFeatures + stringFeatures
        feature_imp = {
            'feature_importance': featureImportance,
            "feature_column": features_column_for_user
        }
        response_dict = {
            'feature_importance': feature_imp,
            'ChiSquareTestData': response_chi_test,
            'summaryDict': summaryDict
        }
        return response_dict
    except Exception as e:
        print("exception is  = " + str(e))
Beispiel #5
0
    def GradientBoostingClassification(self, dataset_add, feature_colm,
                                       label_colm, relation_list, relation):
        try:
            dataset = spark.read.csv(dataset_add,
                                     sep=';',
                                     header=True,
                                     inferSchema=True)
            dataset.show()
            stepSize = self.learningRate
            label = ''
            for val in label_colm:
                label = val
            #ETL part
            Schema = dataset.schema
            stringFeatures = []
            numericalFeatures = []
            for x in Schema:
                if (str(x.dataType) == "StringType"
                        or str(x.dataType) == 'TimestampType'
                        or str(x.dataType) == 'DateType'
                        or str(x.dataType) == 'BooleanType'
                        or str(x.dataType) == 'BinaryType'):
                    for y in feature_colm:
                        if x.name == y:
                            dataset = dataset.withColumn(
                                y, dataset[y].cast(StringType()))
                            stringFeatures.append(x.name)
                else:
                    for y in feature_colm:
                        if x.name == y:
                            numericalFeatures.append(x.name)

            if relation == 'linear':
                dataset = dataset
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)

            categoryColmList = []
            categoryColmListFinal = []
            categoryColmListDict = {}
            countOfCategoricalColmList = []
            for value in stringFeatures:
                categoryColm = value
                listValue = value
                listValue = []
                categoryColm = dataset.groupby(value).count()
                countOfCategoricalColmList.append(categoryColm.count())
                categoryColmJson = categoryColm.toJSON()
                for row in categoryColmJson.collect():
                    categoryColmSummary = json.loads(row)
                    listValue.append(categoryColmSummary)
                categoryColmListDict[value] = listValue

            if not stringFeatures:
                maxCategories = 5
            else:
                maxCategories = max(countOfCategoricalColmList)
            for x in Schema:
                if (str(x.dataType) == "StringType" and x.name == label):
                    for labelkey in label_colm:
                        label_indexer = StringIndexer(inputCol=label,
                                                      outputCol='indexed_' +
                                                      label).fit(dataset)
                        dataset = label_indexer.transform(dataset)
                        label = 'indexed_' + label
                else:
                    label = label
            indexed_features = []
            for colm in stringFeatures:
                indexer = StringIndexer(inputCol=colm,
                                        outputCol='indexed_' +
                                        colm).fit(dataset)
                indexed_features.append('indexed_' + colm)
                dataset = indexer.transform(dataset)
            final_features = numericalFeatures + indexed_features
            featureassembler = VectorAssembler(inputCols=final_features,
                                               outputCol="features")
            dataset = featureassembler.transform(dataset)
            vectorIndexer = VectorIndexer(
                inputCol='features',
                outputCol='vectorIndexedFeatures',
                maxCategories=maxCategories).fit(dataset)
            dataset = vectorIndexer.transform(dataset)
            trainDataRatioTransformed = self.trainDataRatio
            testDataRatio = 1 - trainDataRatioTransformed
            trainingData, testData = dataset.randomSplit(
                [trainDataRatioTransformed, testDataRatio], seed=0)

            gradientBoostingmodel = GBTClassifier(
                labelCol=label,
                featuresCol='vectorIndexedFeatures',
                maxIter=10,
                stepSize=stepSize)
            gradientBoostFittingTrainingData = gradientBoostingmodel.fit(
                trainingData)
            gBPredictionTrainData = gradientBoostFittingTrainingData.transform(
                trainingData)
            gBPredictionTestData = gradientBoostFittingTrainingData.transform(
                testData)
            gBPredictionTestData.select('prediction', label).show()
            # gbtModel = gradientBoostFittingTrainingData.stages
            featureImportance = gradientBoostFittingTrainingData.featureImportances.toArray(
            ).tolist()
            print(featureImportance)

            # prediction graph data
            from pyspark.sql.functions import col
            TrainPredictedTargetData = gBPredictionTrainData.select(
                label, 'prediction', 'probability', 'rawPrediction')
            residualsTrainData = TrainPredictedTargetData.withColumn(
                'residuals',
                col(label) - col('prediction'))
            residualsTrainData.show()

            TestPredictedTargetData = gBPredictionTestData.select(
                label, 'prediction', 'probability', 'rawPrediction')
            residualsTestData = TestPredictedTargetData.withColumn(
                'residuals',
                col(label) - col('prediction'))
            residualsTestData.show()

            # train Test data Metrics
            gBPredictionDataDict = {
                'gBPredictionTestData': gBPredictionTestData,
                'gBPredictionTrainData': gBPredictionTrainData
            }
            metricsList = [
                'f1', 'weightedPrecision', 'weightedRecall', 'accuracy'
            ]
            for key, value in gBPredictionDataDict.items():
                if key == 'gBPredictionTestData':
                    testDataMetrics = {}
                    for metric in metricsList:
                        evaluator = MulticlassClassificationEvaluator(
                            labelCol=label,
                            predictionCol="prediction",
                            metricName=metric)
                        metricValue = evaluator.evaluate(gBPredictionTestData)
                        testDataMetrics[metric] = metricValue
                    print('testDataMetrics :', testDataMetrics)

                if key == 'gBPredictionTrainData':
                    trainDataMetrics = {}
                    for metric in metricsList:
                        evaluator = MulticlassClassificationEvaluator(
                            labelCol=label,
                            predictionCol="prediction",
                            metricName=metric)
                        metricValue = evaluator.evaluate(gBPredictionTrainData)
                        trainDataMetrics[metric] = metricValue
                    print('trainDataMetrics :', trainDataMetrics)

            # while fitting the training data
            totalNumberTrees = gradientBoostFittingTrainingData.getNumTrees
            print('Total number of trees used is :', totalNumberTrees)
            totalNumberNodes = gradientBoostFittingTrainingData.totalNumNodes
            print('Total number of node is :', totalNumberNodes)
            treeWeight = gradientBoostFittingTrainingData.treeWeights
            print('Weights on each tree is :', treeWeight)
            treeInfo = gradientBoostFittingTrainingData.trees
            for eachTree in treeInfo:
                print('info of each tree is :', eachTree)

        except Exception as e:
            print('exception is --', e)
    def lassoRegression(self, dataset_add, feature_colm, label_colm,
                        relation_list, relation, userId):
        try:
            dataset = spark.read.parquet(dataset_add)
            dataset.show()
            Rsqr_list = []
            Rsqr_regPara = {}
            print(self.xt)
            # print(data_add)

            label = ''
            for val in label_colm:
                label = val
            #ETL part
            Schema = dataset.schema
            stringFeatures = []
            numericalFeatures = []
            for x in Schema:
                if (str(x.dataType) == "StringType"
                        or str(x.dataType) == 'TimestampType'
                        or str(x.dataType) == 'DateType'
                        or str(x.dataType) == 'BooleanType'
                        or str(x.dataType) == 'BinaryType'):
                    for y in feature_colm:
                        if x.name == y:
                            dataset = dataset.withColumn(
                                y, dataset[y].cast(StringType()))
                            stringFeatures.append(x.name)
                else:
                    for y in feature_colm:
                        if x.name == y:
                            numericalFeatures.append(x.name)

            if relation == 'linear':
                dataset = dataset
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)

            categoryColmList = []
            categoryColmListFinal = []
            categoryColmListDict = {}
            countOfCategoricalColmList = []
            for value in stringFeatures:
                categoryColm = value
                listValue = value
                listValue = []
                categoryColm = dataset.groupby(value).count()
                countOfCategoricalColmList.append(categoryColm.count())
                categoryColmJson = categoryColm.toJSON()
                for row in categoryColmJson.collect():
                    categoryColmSummary = json.loads(row)
                    listValue.append(categoryColmSummary)
                categoryColmListDict[value] = listValue

            if not stringFeatures:
                maxCategories = 5
            else:
                maxCategories = max(countOfCategoricalColmList)
            for x in Schema:
                if (str(x.dataType) == "StringType" and x.name == label):
                    for labelkey in label_colm:
                        label_indexer = StringIndexer(
                            inputCol=label,
                            outputCol='indexed_' + label,
                            handleInvalid="skip").fit(dataset)
                        dataset = label_indexer.transform(dataset)
                        label = 'indexed_' + label
                else:
                    label = label
            indexed_features = []
            encodedFeatures = []
            for colm in stringFeatures:
                indexer = StringIndexer(inputCol=colm,
                                        outputCol='indexed_' + colm,
                                        handleInvalid="skip").fit(dataset)
                indexed_features.append('indexed_' + colm)
                dataset = indexer.transform(dataset)
            featureAssembler = VectorAssembler(inputCols=indexed_features +
                                               numericalFeatures,
                                               outputCol='features',
                                               handleInvalid="skip")
            dataset = featureAssembler.transform(dataset)
            vectorIndexer = VectorIndexer(inputCol='features',
                                          outputCol='vectorIndexedFeatures',
                                          maxCategories=maxCategories,
                                          handleInvalid="skip").fit(dataset)
            dataset = vectorIndexer.transform(dataset)
            trainDataRatioTransformed = self.trainDataRatio
            testDataRatio = 1 - trainDataRatioTransformed
            train_data, test_data = dataset.randomSplit(
                [trainDataRatioTransformed, testDataRatio], seed=40)

            ######################################################################33
            # lasso final
            for t in self.xt:
                lr1 = LinearRegression(featuresCol="vectorIndexedFeatures",
                                       labelCol=label,
                                       elasticNetParam=1,
                                       regParam=t)
                regressor1 = lr1.fit(train_data)
                print(t)
                print("coefficient : " + str(regressor1.coefficients))
                reg_sum = regressor1.summary
                r2 = reg_sum.r2
                Rsqr_list.append(r2)
                Rsqr_regPara[r2] = t
                print(r2)

            print(Rsqr_list)
            print(max(Rsqr_list))
            maximum_rsqr = max(Rsqr_list)
            print(Rsqr_regPara)
            final_regPara = []

            for key, val in Rsqr_regPara.items():
                if (key == maximum_rsqr):
                    print(val)
                    final_regPara.append(val)

            for reg in final_regPara:
                lr_lasso = LinearRegression(
                    featuresCol="vectorIndexedFeatures",
                    labelCol=label,
                    elasticNetParam=1,
                    regParam=reg)
                regressor = lr_lasso.fit(train_data)
                training_summary = regressor.summary
                r2 = training_summary.r2
                print(r2)

            print("coefficient : " + str(regressor.coefficients))
            coefficient_t = str(regressor.coefficients)
            print("intercept : " + str(regressor.intercept))
            intercept_t = str(regressor.intercept)
            prediction = regressor.evaluate(test_data)
            prediction_val = prediction.predictions
            prediction_val.show()
            prediction_val_pand = prediction_val.select(
                label, "prediction").toPandas()
            prediction_val_pand = prediction_val_pand.assign(
                residual_vall=prediction_val_pand[label] -
                prediction_val_pand["prediction"])

            prediction_val_pand_residual = prediction_val_pand["residual_vall"]
            prediction_val_pand_label = prediction_val_pand[label]
            prediction_val_pand_predict = prediction_val_pand["prediction"]
            lr_prediction = regressor.transform(test_data)
            lr_prediction.groupBy(label, "prediction").count().show()
            lr_prediction_quantile = lr_prediction.select(label, "prediction")
            lr_prediction_onlypred = lr_prediction.select('prediction')
            # lr_prediction_quantile.show()

            # training_summary = regressor.summary

            print("numof_Iterations...%d\n" % training_summary.totalIterations)
            print("ObjectiveHistory...%s\n" %
                  str(training_summary.objectiveHistory))
            print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
            RMSE = training_summary.rootMeanSquaredError
            print("MSE....%f\n" % training_summary.meanSquaredError)
            MSE = training_summary.meanSquaredError
            print("r**2(r-square)....::%f\n" % training_summary.r2)
            r_square = training_summary.r2
            print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
            adjsted_r_square = training_summary.r2adj
            print("deviance residuals %s" %
                  str(training_summary.devianceResiduals))
            training_summary.residuals.show()
            # residual_graph = training_summary.residuals
            # test = (residual_graph, lr_prediction_onlypred)
            # residual_graph.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode='append' )
            # print(test)
            # test.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode= 'append')
            # residual_graph_pandas = residual_graph.toPandas()
            # print("coefficient standard errors: \n" + str(training_summary.coefficientStandardErrors))
            # coefficient_error = str(training_summary.coefficientStandardErrors)
            # print(" Tvalues :\n" + str(training_summary.tValues))
            # T_values = str(training_summary.tValues)
            # print(" p values :\n" + str(training_summary.pValues))
            # P_values = str(training_summary.pValues)

            #######################################################################################################
            table_response = {
                "Intercept": intercept_t,
                "Coefficients": coefficient_t,
                "RMSE": RMSE,
                "MSE": MSE,
                "R_square": r_square,
                "Adj_R_square": adjsted_r_square
            }
            #######################################################################################################
            # residual  vs predicted value

            prediction_data = regressor.summary.predictions
            prediction_data.show()
            prediction_data.select(['prediction']).show()
            predicted = prediction_data.select(['prediction'])
            regressor.summary.residuals.show()
            residuals = regressor.summary.residuals
            pred_d = predicted.withColumn('row_index',
                                          f.monotonically_increasing_id())
            res_d = residuals.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_residuals = pred_d.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            pred_residuals.show()

            QQPlot = 'QQPlot.parquet'
            locationAddress = 'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/'

            # userId = '6786103f-b49b-42f2-ba40-aa8168b65e67'

            QQPlotAddress = locationAddress + userId + QQPlot
            pred_residuals.write.parquet(QQPlotAddress, mode='overwrite')

            # pred_residuals.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',
            #                              mode='overwrite')

            #################################################################################3
            # scale location plot
            from pyspark.sql.functions import abs as ab, sqrt, mean as meann, stddev as stdDev

            df_label = prediction_data.select(
                label, 'prediction',
                sqrt(ab(prediction_data[label])).alias("sqrt_label"))

            df_label.show()
            df_sqrt_label_index = df_label.withColumn(
                'row_index', f.monotonically_increasing_id())
            df_sqrt_label_index.show()
            res_d.show()
            sqrt_label_residual_join = df_sqrt_label_index.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            sqrt_label_residual_join.show()
            std_resid = sqrt_label_residual_join.select(
                'sqrt_label', 'prediction',
                (sqrt_label_residual_join['residuals'] /
                 sqrt_label_residual_join['sqrt_label']).alias('std_res'))
            std_resid.show()
            sqrt_std_res = std_resid.select(
                "std_res", 'prediction',
                sqrt(ab(std_resid["std_res"])).alias("sqrt_std_resid"))
            sqrt_std_res.show()
            sqrt_std_res_fitted = sqrt_std_res.select('prediction',
                                                      'sqrt_std_resid')

            scaleLocationPlot = 'scaleLocation.parquet'

            scaleLocationPlotAddress = locationAddress + userId + scaleLocationPlot
            sqrt_std_res_fitted.write.parquet(scaleLocationPlotAddress,
                                              mode='overwrite')

            # sqrt_std_res_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/scale_location_train.parquet',
            #     mode='overwrite')
            ###########
            #QQplot
            # QUANTILE

            from scipy.stats import norm
            import statistics
            import math

            res_d.show()
            sorted_res = res_d.sort('residuals')
            sorted_res.show()
            # stdev_ress = sorted_res.select(stdDev(col('residuals')).alias('std_dev'),
            #                                meann(col('residuals')).alias('mean'))
            # stdev_ress.show()
            # mean_residual = stdev_ress.select(['mean']).toPandas()
            # l = mean_residual.values.tolist()
            # print(l)
            # stddev_residual = stdev_ress.select(['std_dev']).toPandas()
            # length of the sorted std residuals
            count = sorted_res.groupBy().count().toPandas()
            countList = count.values.tolist()
            tuple1 = ()
            for k in countList:
                tuple1 = k
            for tu in tuple1:
                lengthResiduals = tu
            print(lengthResiduals)
            quantileList = []
            for x in range(0, lengthResiduals):
                quantileList.append((x - 0.5) / (lengthResiduals))

            print(quantileList)

            # Z-score on theoritical quantile

            zTheoriticalTrain = []
            for x in quantileList:
                zTheoriticalTrain.append(norm.ppf(abs(x)))
            print(zTheoriticalTrain)

            sortedResidualPDF = sorted_res.select('residuals').toPandas()
            sortedResidualPDF = sortedResidualPDF['residuals']
            stdevResidualTrain = statistics.stdev(sortedResidualPDF)
            meanResidualTrain = statistics.mean(sortedResidualPDF)

            zPracticalTrain = []
            for x in sortedResidualPDF:
                zPracticalTrain.append(
                    (x - meanResidualTrain) / stdevResidualTrain)

            ##########
            target = dataset.select(label)
            pred = prediction_data.select(['prediction'])
            pred_d = pred.withColumn('row_index',
                                     f.monotonically_increasing_id())
            target_d = target.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_target = pred_d.join(target_d,
                                      on=['row_index']).drop('row_index')
            pred_target.show()

            dataset.show()

            pred_target_data_update = dataset.join(pred_target, on=[label])

            pred_target_data_update.show(100)

            ##########################################################################################

            # scale location plot

            # for scale location plot
            # from pyspark.sql.functions import udf
            #
            # def std_res(x):
            #     res_list = []
            #     res_list.append(x)
            #
            # std_residuals = udf(lambda y: std_res(y), FloatType())
            #
            # residuals_std = residuals.withColumn('residuals', std_residuals(col('residuals').cast(FloatType())))
            #
            # import statistics
            # import numpy as np
            # residuals_panda = residuals.toPandas()
            # # residuals_panda.residuals = range(residuals_panda.shape[1])
            # residuals_panda = residuals_panda.values
            # print(residuals_panda)
            # stdev_training = statistics.stdev(residuals_panda)
            # print(stdev_training)

            ############################################################################################################

            # creating the dictionary for storing the result

            # json_response = coefficient_t

            # print(json_response)

            # json_response = {"adjusted r**2 value" : training_summary.r2adj}

            # DATA VISUALIZATION PART

            # finding the quantile in the dataset(Q_Q plot)
            import matplotlib.pyplot as plt

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)
            quantile_label = lr_prediction_quantile.approxQuantile(
                label, x, 0.01)
            quantile_prediction = lr_prediction_quantile.approxQuantile(
                "prediction", x, 0.01)
            Q_label_pred = ''
            print(len(quantile_label))
            length = len(quantile_label)

            for i in range(0, len(quantile_label)):
                Q_label_pred += str(quantile_label[i]) + 't' + str(
                    quantile_prediction[i]) + 'n'
            import math

            fitted_residual = ''
            print(len(prediction_val_pand_residual))
            length = len(prediction_val_pand_residual)

            for i in range(0, len(prediction_val_pand_residual)):
                fitted_residual += str(
                    prediction_val_pand_predict[i]) + 't' + str(
                        prediction_val_pand_residual[i]) + 'n'
            ## scale location graph data

            prediction_val_pand_residual
            prediction_val_pand_predict
            prediction_val_pand_residual_abs = prediction_val_pand_residual.abs(
            )
            import math
            sqrt_residual = []
            for x in prediction_val_pand_residual_abs:
                sqrt_residual.append(math.sqrt(x))
                # print ("____________________  ",x)

            sqrt_residual
            # calculating std deviation
            import statistics

            print(statistics.stdev(prediction_val_pand_residual))
            stdev_ = statistics.stdev(prediction_val_pand_residual)

            # calcuate stnd residuals
            std_res = []
            for x in prediction_val_pand_residual:
                std_res.append(x / stdev_)
            print(std_res)

            # calculating the square root of std_res
            import math
            sqr_std_res = []
            for x in std_res:
                sqr_std_res.append(math.sqrt(abs(x)))
            print(sqr_std_res)

            scale_predict_residual = ''
            for pre, res in zip(prediction_val_pand_predict, sqr_std_res):
                scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            print(scale_predict_residual)
            # QUANTILE

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)

            quantile_std_res = spark.createDataFrame(std_res, FloatType())
            quantile_std_res.show()
            quantile_std_res_t = quantile_std_res.approxQuantile(
                'value', x, 0.01)
            print(quantile_std_res_t)
            print(x)
            # calculating the z_score
            from scipy.stats import norm

            ## sort the list
            sorted_std_res = sorted(std_res)

            mean = statistics.mean(sorted_std_res)
            stdev = statistics.stdev(sorted_std_res)
            # print(mean)
            quantile = []
            n = len(std_res)
            print(n)
            for x in range(0, n):
                quantile.append((x - 0.5) / (n))

            print(quantile)
            # z_score theoratical
            z_theory = []
            for x in quantile:
                z_theory.append(norm.ppf(abs(x)))
            # z score for real val
            z_pract = []
            for x in sorted_std_res:
                z_pract.append((x - mean) / stdev)
            Q_label_pred = ''
            for quant, val in zip(z_theory, z_pract):
                Q_label_pred += str(quant) + 't' + str(val) + 'n'
            graph_response = {
                "Q_Q_plot": Q_label_pred,
                "residual_fitted": fitted_residual,
                "scale_location": scale_predict_residual
            }

            json_response = {
                'table_data': table_response,
                'graph_data': graph_response
            }

            return json_response

        except Exception as e:
            print('exception is =' + str(e))
Beispiel #7
0
    def ridge(self, dataset_add, feature_colm, label_colm, relation_list,
              relation, userId):
        try:
            dataset = spark.read.csv(dataset_add,
                                     header=True,
                                     inferSchema=True)
            dataset.show()
            Rsqr_list = []
            Rsqr_regPara = {}
            print(self.xt)
            # print(data_add)
            # data = spark.read.csv('/home/fidel/mltest/BI.csv', header=True, inferSchema=True)
            # data.show()
            # f_data = data.select('Sub Total', 'Tax Amount', 'Freight', 'Profit')
            # f_data.show()

            # class A():
            #     def __init__(self, feature='sahil', label='fcuk'):
            #         self.feature = feature
            #         # feature = 'sahil'
            #         self.label = label
            #         # self.test
            #         self.name = 'bro'
            #
            #     def linear_c(self):
            #         print(self.feature, '\n', self.label)
            #         print(self.name)
            #
            # # a = A(feature='test', label='f_t')
            # A(feature='test', label='f_t').linear_c()

            # renaming the colm
            # print(label_colm)
            # dataset.withColumnRenamed(label_colm, "label")
            # print(label_colm)
            # dataset.show()

            label = ''
            for y in label_colm:
                label = y

            print(label)

            # relationship

            if relation == 'linear':
                print('linear relationship')
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)

            dataset.show()

            # implementing the vector assembler

            featureassembler = VectorAssembler(
                inputCols=feature_colm, outputCol="Independent_features")

            output = featureassembler.transform(dataset)

            output.show()
            output.select("Independent_features").show()

            finalized_data = output.select("Independent_features", label)

            finalized_data.show()

            # splitting the dataset into taining and testing

            train_data, test_data = finalized_data.randomSplit([0.75, 0.25],
                                                               seed=40)

            ######################################################################33
            # lasso final
            for t in self.xt:
                lr1 = LinearRegression(featuresCol="Independent_features",
                                       labelCol=label,
                                       elasticNetParam=0,
                                       regParam=t)
                regressor1 = lr1.fit(train_data)
                print(t)
                print("coefficient : " + str(regressor1.coefficients))
                reg_sum = regressor1.summary
                r2 = reg_sum.r2
                Rsqr_list.append(r2)
                Rsqr_regPara[r2] = t
                print(r2)

            print(Rsqr_list)
            print(max(Rsqr_list))
            maximum_rsqr = max(Rsqr_list)
            print(Rsqr_regPara)
            final_regPara = []

            for key, val in Rsqr_regPara.items():
                if (key == maximum_rsqr):
                    print(val)
                    final_regPara.append(val)

            for reg in final_regPara:
                lr_lasso = LinearRegression(featuresCol="Independent_features",
                                            labelCol=label,
                                            elasticNetParam=0,
                                            regParam=reg)
                regressor = lr_lasso.fit(train_data)
                training_summary = regressor.summary
                r2 = training_summary.r2
                print(r2)

            print("coefficient : " + str(regressor.coefficients))
            coefficient_t = str(regressor.coefficients)

            print("intercept : " + str(regressor.intercept))
            intercept_t = str(regressor.intercept)

            prediction = regressor.evaluate(test_data)

            prediction_val = prediction.predictions
            prediction_val.show()

            prediction_val_pand = prediction_val.select(
                label, "prediction").toPandas()

            prediction_val_pand = prediction_val_pand.assign(
                residual_vall=prediction_val_pand[label] -
                prediction_val_pand["prediction"])

            prediction_val_pand_residual = prediction_val_pand["residual_vall"]

            prediction_val_pand_label = prediction_val_pand[label]

            # print prediction_val_pand_residual
            prediction_val_pand_predict = prediction_val_pand["prediction"]
            # print prediction_val_pand_predict

            # test_summary = prediction.summary

            # for test data

            lr_prediction = regressor.transform(test_data)

            lr_prediction.groupBy(label, "prediction").count().show()

            lr_prediction_quantile = lr_prediction.select(label, "prediction")
            lr_prediction_onlypred = lr_prediction.select('prediction')
            # lr_prediction_quantile.show()

            # training_summary = regressor.summary

            print("numof_Iterations...%d\n" % training_summary.totalIterations)
            print("ObjectiveHistory...%s\n" %
                  str(training_summary.objectiveHistory))
            print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
            RMSE = training_summary.rootMeanSquaredError
            print("MSE....%f\n" % training_summary.meanSquaredError)
            MSE = training_summary.meanSquaredError
            print("r**2(r-square)....::%f\n" % training_summary.r2)
            r_square = training_summary.r2
            print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
            adjsted_r_square = training_summary.r2adj
            print("deviance residuals %s" %
                  str(training_summary.devianceResiduals))
            training_summary.residuals.show()
            # residual_graph = training_summary.residuals
            # test = (residual_graph, lr_prediction_onlypred)
            # residual_graph.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode='append' )
            # print(test)
            # test.write.csv('/home/fidel/PycharmProjects/predictive_analysis_git', header=True, mode= 'append')
            # residual_graph_pandas = residual_graph.toPandas()
            print("coefficient standard errors: \n" +
                  str(training_summary.coefficientStandardErrors))
            coefficient_error = str(training_summary.coefficientStandardErrors)
            print(" Tvalues :\n" + str(training_summary.tValues))
            T_values = str(training_summary.tValues)
            print(" p values :\n" + str(training_summary.pValues))
            P_values = str(training_summary.pValues)

            #######################################################################################################
            table_response = {
                "Intercept": intercept_t,
                "Coefficients": coefficient_t,
                "RMSE": RMSE,
                "MSE": MSE,
                "R_square": r_square,
                "Adj_R_square": adjsted_r_square,
                "Coefficient_error": coefficient_error,
                "T_value": T_values,
                "P_value": P_values
            }
            #######################################################################################################
            # residual  vs fitted graph

            prediction_data = regressor.summary.predictions
            prediction_data.show()
            prediction_data.select(['prediction']).show()
            predicted = prediction_data.select(['prediction'])
            regressor.summary.residuals.show()
            residuals = regressor.summary.residuals
            pred_d = predicted.withColumn('row_index',
                                          f.monotonically_increasing_id())
            res_d = residuals.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_residuals = pred_d.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            pred_residuals.show()

            pred_residuals.write.parquet(
                'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/residual_fitted_train.parquet',
                mode='overwrite')

            ######################################################################################
            # scale location plot training data

            from pyspark.sql.functions import sqrt

            from pyspark.sql.functions import abs as ab

            df_label = prediction_data.select(
                label, 'prediction',
                sqrt(ab(prediction_data[label])).alias("sqrt_label"))

            df_label.show()
            df_sqrt_label_index = df_label.withColumn(
                'row_index', f.monotonically_increasing_id())
            df_sqrt_label_index.show()
            # df_residual_index = df_residual.withColumn('row_index', f.monotonically_increasing_id())
            # df_residual_index.show()
            res_d.show()
            sqrt_label_residual_join = df_sqrt_label_index.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')

            sqrt_label_residual_join.show()

            std_resid = sqrt_label_residual_join.select(
                'sqrt_label', 'prediction',
                (sqrt_label_residual_join['residuals'] /
                 sqrt_label_residual_join['sqrt_label']).alias('std_res'))

            std_resid.show()
            # std_resid_std_res = std_resid.select("std_res")

            sqrt_std_res = std_resid.select(
                "std_res", 'prediction',
                sqrt(ab(std_resid["std_res"])).alias("sqrt_std_resid"))

            # sqrt_std_res = sqrt(abs(std_resid_std_res["std_res"]))
            sqrt_std_res.show()
            sqrt_std_res_fitted = sqrt_std_res.select('prediction',
                                                      'sqrt_std_resid')

            sqrt_std_res_fitted.write.parquet(
                'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/scale_location_train.parquet',
                mode='overwrite')

            ######################################################################################
            # QUANTILE
            '''
            from pyspark.sql.functions import *
            
            res_d.show()
            sorted_res = res_d.sort('residuals')
            sorted_res.show()
            stdev_ress = sorted_res.select(stddev(col('residuals')).alias('std_dev'),mean(col('residuals')).alias('mean'))
            stdev_ress.show()
            mean_residual = stdev_ress.select(['mean']).toPandas()
            stddev_residual = stdev_ress.select(['std_dev']).toPandas()
            
            for x in range(0, 5):
                print(x/mean_residual)
            

            
            '''
            ####################################################################################
            # appending predicted value to the dataset
            target = dataset.select(label)
            pred = prediction_data.select(['prediction'])
            pred_d = pred.withColumn('row_index',
                                     f.monotonically_increasing_id())
            target_d = target.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_target = pred_d.join(target_d,
                                      on=['row_index']).drop('row_index')
            pred_target.show()

            dataset.show()

            pred_target_data_update = dataset.join(pred_target, on=[label])

            pred_target_data_update.show(100)

            ###########################################################

            import matplotlib.pyplot as plt

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)
            #
            # for z in x:
            #     print ("~~~~~   ",z)
            #

            quantile_label = lr_prediction_quantile.approxQuantile(
                label, x, 0.01)
            # print quantile_label
            quantile_prediction = lr_prediction_quantile.approxQuantile(
                "prediction", x, 0.01)

            # creating the csv file and writitng into it

            fitted_residual = ''
            print(len(prediction_val_pand_residual))
            length = len(prediction_val_pand_residual)

            for i in range(0, len(prediction_val_pand_residual)):
                fitted_residual += str(
                    prediction_val_pand_predict[i]) + 't' + str(
                        prediction_val_pand_residual[i]) + 'n'

            with open('residual_vs_fitted.csv', 'w') as r_f:
                writer_r_f = csv.writer(r_f)
                writer_r_f.writerows((prediction_val_pand_predict,
                                      prediction_val_pand_residual))

            # parquet file writing

            ## residual vs leverage graph data

            prediction_val_pand_residual
            # extreme value in the predictor colm
            prediction_col_extremeval = lr_prediction_quantile.agg(
                {"prediction": "max"})
            # prediction_col_extremeval.show()

            # plt.plot(prediction_col_extremeval, prediction_val_pand_residual)
            # plt.show()

            ## scale location graph data
            import math

            prediction_val_pand_residual
            prediction_val_pand_predict
            prediction_val_pand_residual_abs = prediction_val_pand_residual.abs(
            )
            sqrt_residual = []
            for x in prediction_val_pand_residual_abs:
                sqrt_residual.append(math.sqrt(x))
                # print ("____________________  ",x)

            sqrt_residual

            # plt.scatter(sqrt_residual, prediction_val_pand_predict)
            ####################################################################################3

            # calculating std deviation
            import statistics
            print(statistics.stdev(prediction_val_pand_residual))
            stdev_pred = statistics.stdev(prediction_val_pand_residual)
            # mean = statistics.mean(prediction_val_pand_residual)

            # calcuate stnd residuals
            std_res = []
            for x in prediction_val_pand_residual:
                std_res.append(x / stdev_pred)
            print(std_res)

            # calculating the square root of std_res
            import math
            sqr_std_res = []
            for x in std_res:
                sqr_std_res.append(math.sqrt(abs(x)))
            print(sqr_std_res)
            #######################################################################################3
            # QUANTILE

            ## sort the list
            sorted_std_res = sorted(std_res)
            print(sorted_std_res)
            #
            mean = statistics.mean(sorted_std_res)
            stdev = statistics.stdev(sorted_std_res)
            print(mean)
            quantile = []
            n = len(sorted_std_res)
            print(n)
            for x in range(0, n):
                quantile.append((x - 0.5) / (n))

            print(quantile)
            #
            # z_score theoritical
            from scipy.stats import norm

            z_theory = []
            for x in quantile:
                z_theory.append((norm.ppf(abs(x))))
            print(z_theory)
            # z score for real val
            z_pract = []
            for x in sorted_std_res:
                z_pract.append((x - mean) / stdev)

            #

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)

            quantile_std_res = spark.createDataFrame(std_res, FloatType())
            quantile_std_res.show()
            quantile_std_res_t = quantile_std_res.approxQuantile(
                'value', x, 0.01)
            print(quantile_std_res_t)
            print(x)

            Q_label_pred = ''
            print(len(quantile_label))
            length = len(quantile_label)
            for quant, val in zip(z_theory, z_pract):
                Q_label_pred += str(val) + 't' + str(quant) + 'n'

            plt.scatter(z_theory, z_pract)
            plt.savefig('q_q')

            ####################################################

            # creating the std residuals

            # square root of label
            sqrt_label = []
            for x in prediction_val_pand_label:
                sqrt_label.append(math.sqrt(abs(x)))

            sqrt_label
            prediction_val_pand_residual
            std_residual = []
            for sqr, resid in zip(sqrt_label, prediction_val_pand_residual):
                std_residual.append(resid / sqr)
                # print(std_sqrt_residual)

            # creating the std sqr root

            sqrt_std_residuals = []
            for x in std_residual:
                # print(math.sqrt(abs(x)))
                sqrt_std_residuals.append(math.sqrt(abs(x)))
            print(sqrt_std_residuals)

            # print(std_sqrt_residual)

            scale_predict_residual = ''
            for pre, res in zip(prediction_val_pand_predict,
                                sqrt_std_residuals):
                scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            print(scale_predict_residual)

            ##########################################################################
            """
            pred_residuals.show()
            pred_residuals_pandas = pred_residuals.toPandas()
            print(pred_residuals_pandas)
            res_pandas = pred_residuals_pandas['residuals']
            pred_pandas = pred_residuals_pandas['prediction']
            label_list = []
            # for res, pred in zip(res_pandas, pred_pandas):
            #     label_list.append(res+pred)
            label_pand = prediction_data.select([label]).toPandas()
            labe_panda = label_pand[label]

            # sqrt of label column
            sqrt_lab = []
            for lab in labe_panda:
                sqrt_lab.append(math.sqrt(abs(lab)))

            print(res_pandas)
            stdev_res = statistics.stdev(res_pandas)
            std_res_list = []
            for valr, labe in zip(res_pandas,sqrt_lab):
                std_res_list.append(valr/labe)
            print(std_res_list)
            """

            ##########################################################################
            ##########################################################################
            # import math
            # sqrt_stdres = []
            # for x in std_sqrt_residual:
            #     sqrt_stdres.append(math.sqrt(x))
            #
            # scale_predict_residual = ''
            # for pre, res in zip(prediction_val_pand_predict, sqrt_stdres):
            #     scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            # print(scale_predict_residual)

            ###################################3

            # plt.show()

            # scale_predict_residual=''
            #
            # print(len(sqrt_residual))
            # length = len(sqrt_residual)
            #
            # for i in range(0, len(std_sqrt_residual)):
            #     scale_predict_residual += str(prediction_val_pand_predict[i]) + '|' + str(std_sqrt_residual[i]) + '\n'

            # with open('scale_location_plot.csv', 'w') as s_l:
            #     writer_s_l = csv.writer(s_l)
            #     writer_s_l.writerows((prediction_val_pand_predict, sqrt_residual))

            # writing to the parquet

            # prediction_val_pand_predict_tospark = spark.createDataFrame(prediction_val_pand_predict, FloatType())
            # prediction_val_pand_predict_tospark = prediction_val_pand_predict_tospark.withColumnRenamed("value",
            #                                                                                             "prediction")
            #
            # sqrt_residual_tospark= spark.createDataFrame(sqrt_residual, FloatType())
            # sqrt_residual_tospark = sqrt_residual_tospark.withColumnRenamed("value",
            #                                                                                               "sqrt_residual")
            #
            # pred_spark = prediction_val_pand_predict_tospark.withColumn('row_index', f.monotonically_increasing_id())
            # res_spark = sqrt_residual_tospark.withColumn('row_index', f.monotonically_increasing_id())
            #
            # final_scale_fitted = pred_spark.join(res_spark,on=['row_index']) \
            #     .sort('row_index').drop('row_index')
            #
            # final_scale_fitted.show()
            #
            # final_scale_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/SCALE_LOCATION_PLOT.parquet',
            #     mode='overwrite')
            #

            # dumping the dictionary into json object

            # json_response = {'run_status': 'success', 'PredictiveResponse': resultdf}

            graph_response = {
                "Q_Q_plot": Q_label_pred,
                "residual_fitted": fitted_residual,
                "scale_location": scale_predict_residual
            }

            json_response = {
                'table_data': table_response,
                'graph_data': graph_response
            }

            return json_response

        except Exception as e:
            print('exception is =' + str(e))
Beispiel #8
0
def loadModel(dataset_add, feature_colm, label_colm, relation_list, relation):
    try:
        # dataset = spark.read.csv('/home/fidel/mltest/testData.csv', header=True, inferSchema=True)
        # testDataFetched =  testDataFetched.select('Independent_features', 'MPG')
        # testDataFetched.show()
        # testDataFetched.printSchema()

        dataset = spark.read.csv(dataset_add, header=True, inferSchema=True)
        dataset.show()

        # renaming the colm
        # print(label_colm)
        # dataset.withColumnRenamed(label_colm, "label")
        # print(label_colm)
        # dataset.show()

        label = ''
        for y in label_colm:
            label = y

        print(label)

        dictionary_list = {
            'log_list': ["CYLINDERS"],
            'sqrt_list': ["WEIGHT"],
            'cubic_list': ["ACCELERATION"]
        }

        relationship_val = 'linear_reg'

        if relationship_val == 'linear_reg':
            print('linear relationship')
        else:
            dataset = Relationship(dataset, dictionary_list)

        dataset.show()

        # implementing the vector assembler

        featureassembler = VectorAssembler(inputCols=feature_colm,
                                           outputCol="Independent_features")

        output = featureassembler.transform(dataset)

        output.show()
        output = output.select("Independent_features")

        # finalized_data = output.select("Independent_features", label)

        # finalized_data.show()

        regressorTest = LinearRegressionModel.load(
            '/home/fidel/mltest/linearRegressorFitModel')
        predictedData = regressorTest.transform(output)

        predictedData.show()

    except Exception as e:
        print('exception ' + str(e))


#
# if __name__== '__main__':
#     loadModel()
    def linearReg(self, dataset_add, feature_colm, label_colm, relation_list,
                  relation, userId, locationAddress):
        try:
            dataset = spark.read.parquet(dataset_add)
            dataset.show()

            label = ''
            for val in label_colm:
                label = val
            #ETL part
            Schema = dataset.schema
            stringFeatures = []
            numericalFeatures = []
            for x in Schema:
                if (str(x.dataType) == "StringType"
                        or str(x.dataType) == 'TimestampType'
                        or str(x.dataType) == 'DateType'
                        or str(x.dataType) == 'BooleanType'
                        or str(x.dataType) == 'BinaryType'):
                    for y in feature_colm:
                        if x.name == y:
                            dataset = dataset.withColumn(
                                y, dataset[y].cast(StringType()))
                            stringFeatures.append(x.name)
                else:
                    for y in feature_colm:
                        if x.name == y:
                            numericalFeatures.append(x.name)

            if relation == 'linear':
                dataset = dataset
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)

            categoryColmList = []
            categoryColmListFinal = []
            categoryColmListDict = {}
            countOfCategoricalColmList = []
            for value in stringFeatures:
                categoryColm = value
                listValue = value
                listValue = []
                categoryColm = dataset.groupby(value).count()
                countOfCategoricalColmList.append(categoryColm.count())
                categoryColmJson = categoryColm.toJSON()
                for row in categoryColmJson.collect():
                    categoryColmSummary = json.loads(row)
                    listValue.append(categoryColmSummary)
                categoryColmListDict[value] = listValue

            if not stringFeatures:
                maxCategories = 5
            else:
                maxCategories = max(countOfCategoricalColmList)
            for x in Schema:
                if (str(x.dataType) == "StringType" and x.name == label):
                    for labelkey in label_colm:
                        label_indexer = StringIndexer(
                            inputCol=label,
                            outputCol='indexed_' + label,
                            handleInvalid="skip").fit(dataset)
                        dataset = label_indexer.transform(dataset)
                        label = 'indexed_' + label
                else:
                    label = label
            indexed_features = []
            # encodedFeatures = []
            for colm in stringFeatures:
                indexer = StringIndexer(inputCol=colm,
                                        outputCol='indexed_' + colm,
                                        handleInvalid="skip").fit(dataset)
                indexed_features.append('indexed_' + colm)
                dataset = indexer.transform(dataset)
            '''from pyspark.ml.feature import OneHotEncoderEstimator
                oneHotEncodedFeaturesList = []
                for colm in stringFeatures:
                        indexer = StringIndexer(inputCol=colm, outputCol='indexed_' + colm, handleInvalid="skip").fit(dataset)
                        indexed_features.append('indexed_' + colm)
                        dataset = indexer.transform(dataset)
                        oneHotEncodedFeaturesList.append('OneHotEncoded_' + colm)
                oneHotEncoder=OneHotEncoderEstimator(inputCols=indexed_features,
                                                     outputCols=oneHotEncodedFeaturesList)
                oneHotEncoderFit=oneHotEncoder.fit(dataset)
                oneHotEncoderFeaturesDataset=oneHotEncoderFit.transform(dataset)'''
            featureAssembler = VectorAssembler(inputCols=indexed_features +
                                               numericalFeatures,
                                               outputCol='features',
                                               handleInvalid="skip")
            dataset = featureAssembler.transform(dataset)
            vectorIndexer = VectorIndexer(inputCol='features',
                                          outputCol='vectorIndexedFeatures',
                                          maxCategories=maxCategories,
                                          handleInvalid="skip").fit(dataset)
            dataset = vectorIndexer.transform(dataset)
            trainDataRatioTransformed = self.trainDataRatio
            testDataRatio = 1 - trainDataRatioTransformed
            train_data, test_data = dataset.randomSplit(
                [trainDataRatioTransformed, testDataRatio], seed=40)

            lr = LinearRegression(featuresCol="vectorIndexedFeatures",
                                  labelCol=label)
            regressor = lr.fit(train_data)
            # locationAddress = 'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/'

            print("coefficient : " + str(regressor.coefficients))
            coefficient_t = str(regressor.coefficients)
            print("intercept : " + str(regressor.intercept))
            intercept_t = str(regressor.intercept)
            featurePredictedLabel = feature_colm
            featurePredictedLabel.append('prediction')
            featurePredictedLabel.append(label)
            # testDataEvaluation = regressor.evaluate(test_data)
            # testDataPrediction = testDataEvaluation.predictions
            # testDataPrediction.select(featurePredictedLabel).show()

            prediction = regressor.evaluate(test_data)
            prediction_val = prediction.predictions
            testDataPrediction = prediction_val.select(featurePredictedLabel)

            # storing test predicted value to the dataset

            prediction_val_pand = prediction_val.select(
                label, "prediction").toPandas()
            prediction_val_pand = prediction_val_pand.assign(
                residual_vall=prediction_val_pand[label] -
                prediction_val_pand["prediction"])

            prediction_val_pand_residual = prediction_val_pand["residual_vall"]
            prediction_val_pand_label = prediction_val_pand[label]
            prediction_val_pand_predict = prediction_val_pand["prediction"]
            lr_prediction = regressor.transform(test_data)
            lr_prediction.groupBy(label, "prediction").count().show()
            lr_prediction_quantile = lr_prediction.select(label, "prediction")
            training_summary = regressor.summary

            print("numof_Iterations...%d\n" % training_summary.totalIterations)
            print("ObjectiveHistory...%s\n" %
                  str(training_summary.objectiveHistory))
            print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
            RMSE = training_summary.rootMeanSquaredError
            print("MSE....%f\n" % training_summary.meanSquaredError)
            MSE = training_summary.meanSquaredError
            print("r**2(r-square)....::%f\n" % training_summary.r2)
            r_square = training_summary.r2
            print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
            adjsted_r_square = training_summary.r2adj
            print("deviance residuals %s" %
                  str(training_summary.devianceResiduals))
            training_summary.residuals.show()
            residual_graph = training_summary.residuals
            residual_graph_pandas = residual_graph.toPandas()
            print("coefficient standard errors: \n" +
                  str(training_summary.coefficientStandardErrors))
            coefficientStdError = str(
                training_summary.coefficientStandardErrors)
            print(" Tvalues :\n" + str(training_summary.tValues))
            T_values = str(training_summary.tValues)
            tValuesList = training_summary.tValues
            print(" p values :\n" + str(training_summary.pValues))
            P_values = str(training_summary.pValues)
            coefficientList = list(regressor.coefficients)

            #summaryData
            import pyspark.sql.functions as F
            import builtins
            round = getattr(builtins, 'round')
            print(coefficientList)
            coefficientListRounded = []
            for value in coefficientList:
                coefficientListRounded.append(round(value, 4))
            # print(coefficientListRounded)
            # print(intercept_t)
            interceptRounded = round(float(intercept_t), 4)
            # print(interceptRounded)
            # print(RMSE)
            RMSERounded = round(RMSE, 4)
            # print(RMSERounded)
            MSERounded = round(MSE, 4)
            rSquareRounded = round(r_square, 4)
            adjustedrSquareRounded = round(adjsted_r_square, 4)
            coefficientStdError = training_summary.coefficientStandardErrors
            coefficientStdErrorRounded = []
            for value in coefficientStdError:
                coefficientStdErrorRounded.append(round(float(value), 4))
            print(coefficientStdErrorRounded)
            tValuesListRounded = []
            for value in tValuesList:
                tValuesListRounded.append(round(value, 4))
            print(tValuesListRounded)
            pValuesListRounded = []
            PValuesList = training_summary.pValues

            for value in PValuesList:
                pValuesListRounded.append(round(value, 4))
            print(pValuesListRounded)

            # regression equation
            intercept_t = float(intercept_t)
            coefficientList = list(regressor.coefficients)
            equation = label, '=', interceptRounded, '+'
            for feature, coeff in zip(feature_colm, coefficientListRounded):
                coeffFeature = coeff, '*', feature, '+'
                equation += coeffFeature
            equation = equation[:-1]
            print(equation)
            equationAsList = list(equation)
            '''# statTable function
            def summaryTable(self,featuresName,featuresStat):
                statTable={}
                for name, stat in zip(featuresName.values(),
                                      featuresStat.values()):
                    print(name, ": ", stat)
                    statTable[name]=stat
                return statTable
            '''

            # significance value

            PValuesList = training_summary.pValues
            significanceObject = {}

            for pValue in pValuesListRounded:
                if (0 <= pValue < 0.001):
                    significanceObject[pValue] = '***'
                if (0.001 <= pValue < 0.01):
                    significanceObject[pValue] = '**'
                if (0.01 <= pValue < 0.05):
                    significanceObject[pValue] = '*'
                if (0.05 <= pValue < 0.1):
                    significanceObject[pValue] = '.'
                if (0.1 <= pValue < 1):
                    significanceObject[pValue] = '-'
            print(significanceObject)

            # storing test predicted value to the dataset

            predictionData = 'prediction.parquet'

            predictionDataStoring = locationAddress + userId + predictionData
            testDataPrediction.write.parquet(predictionDataStoring,
                                             mode='overwrite')

            # residual  vs predicted value

            prediction_data = regressor.summary.predictions
            prediction_data.show()
            prediction_data.select(['prediction']).show()
            predicted = prediction_data.select(['prediction'])
            regressor.summary.residuals.show()
            residuals = regressor.summary.residuals
            pred_d = predicted.withColumn('row_index',
                                          f.monotonically_increasing_id())
            res_d = residuals.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_residuals = pred_d.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            pred_residuals.show()

            QQPlot = 'QQPlot.parquet'
            # locationAddress = 'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/'

            # userId = '6786103f-b49b-42f2-ba40-aa8168b65e67'

            QQPlotAddress = locationAddress + userId + QQPlot
            pred_residuals.write.parquet(QQPlotAddress, mode='overwrite')

            # pred_residuals.write.parquet('hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/Q_Q_PLOT.parquet',
            #                              mode='overwrite')

            #################################################################################3
            # scale location plot
            from pyspark.sql.functions import abs as ab, sqrt, mean as meann, stddev as stdDev

            df_label = prediction_data.select(
                label, 'prediction',
                sqrt(ab(prediction_data[label])).alias("sqrt_label"))

            df_label.show()
            df_sqrt_label_index = df_label.withColumn(
                'row_index', f.monotonically_increasing_id())
            df_sqrt_label_index.show()
            res_d.show()
            sqrt_label_residual_join = df_sqrt_label_index.join(
                res_d, on=['row_index']).sort('row_index').drop('row_index')
            sqrt_label_residual_join.show()
            std_resid = sqrt_label_residual_join.select(
                'sqrt_label', 'prediction',
                (sqrt_label_residual_join['residuals'] /
                 sqrt_label_residual_join['sqrt_label']).alias('std_res'))
            std_resid.show()
            sqrt_std_res = std_resid.select(
                "std_res", 'prediction',
                sqrt(ab(std_resid["std_res"])).alias("sqrt_std_resid"))
            sqrt_std_res.show()
            sqrt_std_res_fitted = sqrt_std_res.select('prediction',
                                                      'sqrt_std_resid')

            scaleLocationPlot = 'scaleLocation.parquet'

            scaleLocationPlotAddress = locationAddress + userId + scaleLocationPlot
            sqrt_std_res_fitted.write.parquet(scaleLocationPlotAddress,
                                              mode='overwrite')

            # sqrt_std_res_fitted.write.parquet(
            #     'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/scale_location_train.parquet',
            #     mode='overwrite')
            ###########
            #QQplot
            # QUANTILE

            from scipy.stats import norm
            import statistics
            import math

            res_d.show()
            sorted_res = res_d.sort('residuals')
            sorted_res.show()
            # stdev_ress = sorted_res.select(stdDev(col('residuals')).alias('std_dev'),
            #                                meann(col('residuals')).alias('mean'))
            # stdev_ress.show()
            # mean_residual = stdev_ress.select(['mean']).toPandas()
            # l = mean_residual.values.tolist()
            # print(l)
            # stddev_residual = stdev_ress.select(['std_dev']).toPandas()
            # length of the sorted std residuals
            count = sorted_res.groupBy().count().toPandas()
            countList = count.values.tolist()
            tuple1 = ()
            for k in countList:
                tuple1 = k
            for tu in tuple1:
                lengthResiduals = tu
            print(lengthResiduals)
            quantileList = []
            for x in range(0, lengthResiduals):
                quantileList.append((x - 0.5) / (lengthResiduals))

            print(quantileList)

            # Z-score on theoritical quantile

            zTheoriticalTrain = []
            for x in quantileList:
                zTheoriticalTrain.append(norm.ppf(abs(x)))
            print(zTheoriticalTrain)

            sortedResidualPDF = sorted_res.select('residuals').toPandas()
            sortedResidualPDF = sortedResidualPDF['residuals']
            stdevResidualTrain = statistics.stdev(sortedResidualPDF)
            meanResidualTrain = statistics.mean(sortedResidualPDF)

            zPracticalTrain = []
            for x in sortedResidualPDF:
                zPracticalTrain.append(
                    (x - meanResidualTrain) / stdevResidualTrain)

            ##########
            target = dataset.select(label)
            pred = prediction_data.select(['prediction'])
            pred_d = pred.withColumn('row_index',
                                     f.monotonically_increasing_id())
            target_d = target.withColumn('row_index',
                                         f.monotonically_increasing_id())

            pred_target = pred_d.join(target_d,
                                      on=['row_index']).drop('row_index')
            pred_target.show()

            dataset.show()

            pred_target_data_update = dataset.join(pred_target, on=[label])

            pred_target_data_update.show(100)

            ##########3
            # table_response = {
            #
            #     "Intercept": intercept_t,
            #     "Coefficients": coefficient_t,
            #     "RMSE": RMSE,
            #     "MSE": MSE,
            #     "R_square": r_square,
            #     "Adj_R_square": adjsted_r_square,
            #     "coefficientStdError": coefficientStdError,
            #     "T_value": T_values,
            #     "P_value": P_values
            #
            # }
            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)
            quantile_label = lr_prediction_quantile.approxQuantile(
                label, x, 0.01)
            quantile_prediction = lr_prediction_quantile.approxQuantile(
                "prediction", x, 0.01)
            Q_label_pred = ''
            print(len(quantile_label))
            length = len(quantile_label)

            for i in range(0, len(quantile_label)):
                Q_label_pred += str(quantile_label[i]) + 't' + str(
                    quantile_prediction[i]) + 'n'
            import math

            fitted_residual = ''
            print(len(prediction_val_pand_residual))
            length = len(prediction_val_pand_residual)

            for i in range(0, len(prediction_val_pand_residual)):
                fitted_residual += str(
                    prediction_val_pand_predict[i]) + 't' + str(
                        prediction_val_pand_residual[i]) + 'n'
            ## scale location graph data

            prediction_val_pand_residual
            prediction_val_pand_predict
            prediction_val_pand_residual_abs = prediction_val_pand_residual.abs(
            )
            import math
            sqrt_residual = []
            for x in prediction_val_pand_residual_abs:
                sqrt_residual.append(math.sqrt(x))
                # print ("____________________  ",x)

            sqrt_residual
            # calculating std deviation
            import statistics

            print(statistics.stdev(prediction_val_pand_residual))
            stdev_ = statistics.stdev(prediction_val_pand_residual)

            # calcuate stnd residuals
            std_res = []
            for x in prediction_val_pand_residual:
                std_res.append(x / stdev_)
            print(std_res)

            # calculating the square root of std_res
            import math
            sqr_std_res = []
            for x in std_res:
                sqr_std_res.append(math.sqrt(abs(x)))
            print(sqr_std_res)

            scale_predict_residual = ''
            for pre, res in zip(prediction_val_pand_predict, sqr_std_res):
                scale_predict_residual += str(pre) + 't' + str(res) + 'n'
            print(scale_predict_residual)
            # QUANTILE

            y = 0.1
            x = []

            for i in range(0, 90):
                x.append(y)
                y = round(y + 0.01, 2)

            quantile_std_res = spark.createDataFrame(std_res, FloatType())
            quantile_std_res.show()
            quantile_std_res_t = quantile_std_res.approxQuantile(
                'value', x, 0.01)
            print(quantile_std_res_t)
            print(x)
            # calculating the z_score
            from scipy.stats import norm

            ## sort the list
            sorted_std_res = sorted(std_res)

            mean = statistics.mean(sorted_std_res)
            stdev = statistics.stdev(sorted_std_res)
            # print(mean)
            quantile = []
            n = len(std_res)
            print(n)
            for x in range(0, n):
                quantile.append((x - 0.5) / (n))

            print(quantile)
            # z_score theoratical
            z_theory = []
            for x in quantile:
                z_theory.append(norm.ppf(abs(x)))
            # z score for real val
            z_pract = []
            for x in sorted_std_res:
                z_pract.append((x - mean) / stdev)
            Q_label_pred = ''
            for quant, val in zip(z_theory, z_pract):
                Q_label_pred += str(quant) + 't' + str(val) + 'n'
            graph_response = {
                "Q_Q_plot": Q_label_pred,
                "residual_fitted": fitted_residual,
                "scale_location": scale_predict_residual
            }

            tableContent = \
                {
                    'coefficientValuesKey': coefficientListRounded,
                    'tValuesKey': tValuesListRounded,
                    'pValuesKey': pValuesListRounded,
                    'significanceValuesKey': significanceObject,
                    'interceptValuesKey': interceptRounded,
                    "RMSE": RMSERounded,
                    "RSquare": rSquareRounded,
                    "AdjRSquare": adjustedrSquareRounded,
                    "CoefficientStdError": coefficientStdErrorRounded,
                    'equationKey': equation
                }

            json_response = {
                'table_data': tableContent,
                'graph_data': graph_response
            }
            print(json_response)
            return (json_response)
        except Exception as e:
            print('exception is =' + str(e))
def Linear_reg(dataset_add, feature_colm, label_colm, relation_list, relation):
    try:
        dataset = spark.read.parquet(dataset_add)
        dataset.show()

        label = ''
        for y in label_colm:
            label = y

        print(label)

        # relationship

        if relation == 'linear':
            print('linear relationship')
        if relation == 'non_linear':
            dataset = Relationship(dataset, relation_list)

        dataset.show()

        # renaming the colm
        # print (label)
        # dataset.withColumnRenamed(label,"label")
        # print (label)
        # dataset.show()

        featureassembler = VectorAssembler(inputCols=feature_colm,
                                           outputCol="Independent_features")

        output = featureassembler.transform(dataset)

        output.show()
        output.select("Independent_features").show()

        finalized_data = output.select("Independent_features", label)

        finalized_data.show()

        # splitting the dataset into taining and testing

        train_data, test_data = finalized_data.randomSplit([0.75, 0.25],
                                                           seed=40)

        # applying the model

        lr = LinearRegression(featuresCol="Independent_features",
                              labelCol=label)
        regressor = lr.fit(train_data)

        # print regressor.featureImportances

        # print(dataset.orderBy(feature_colm, ascending=True))

        # pred = regressor.transform(test_data)

        # coefficeint & intercept

        print("coefficient : " + str(regressor.coefficients))
        coefficient_t = str(regressor.coefficients)

        print("intercept : " + str(regressor.intercept))
        intercept_t = str(regressor.intercept)

        prediction = regressor.evaluate(test_data)

        VI_IMP = 2

        prediction_val = prediction.predictions
        prediction_val.show()

        prediction_val_pand = prediction_val.select(label,
                                                    "prediction").toPandas()

        prediction_val_pand = prediction_val_pand.assign(
            residual_vall=prediction_val_pand[label] -
            prediction_val_pand["prediction"])

        prediction_val_pand_residual = prediction_val_pand["residual_vall"]

        prediction_val_pand_label = prediction_val_pand[label]

        # print prediction_val_pand_residual
        prediction_val_pand_predict = prediction_val_pand["prediction"]
        # print prediction_val_pand_predict

        # test_summary = prediction.summary

        # for test data

        lr_prediction = regressor.transform(test_data)

        lr_prediction.groupBy(label, "prediction").count().show()

        lr_prediction_quantile = lr_prediction.select(label, "prediction")
        # lr_prediction_quantile.show()

        training_summary = regressor.summary

        print("numof_Iterations...%d\n" % training_summary.totalIterations)
        print("ObjectiveHistory...%s\n" %
              str(training_summary.objectiveHistory))
        print("RMSE...%f\n" % training_summary.rootMeanSquaredError)
        RMSE = training_summary.rootMeanSquaredError
        print("MSE....%f\n" % training_summary.meanSquaredError)
        MSE = training_summary.meanSquaredError
        print("r**2(r-square)....::%f\n" % training_summary.r2)
        r_square = training_summary.r2
        print("r**2(r-square adjusted)....%f\n" % training_summary.r2adj)
        adjsted_r_square = training_summary.r2adj
        print("deviance residuals %s" %
              str(training_summary.devianceResiduals))
        training_summary.residuals.show()
        residual_graph = training_summary.residuals
        residual_graph_pandas = residual_graph.toPandas()
        print("coefficient standard errors: \n" +
              str(training_summary.coefficientStandardErrors))
        coefficient_error = str(training_summary.coefficientStandardErrors)
        print(" Tvalues :\n" + str(training_summary.tValues))
        T_values = str(training_summary.tValues)
        print(" p values :\n" + str(training_summary.pValues))
        P_values = str(training_summary.pValues)
        #######################################################################################################
        # residual  vs predicted value

        prediction_data = regressor.summary.predictions
        prediction_data.show()
        prediction_data.select(['prediction']).show()
        predicted = prediction_data.select(['prediction'])
        regressor.summary.residuals.show()
        residuals = regressor.summary.residuals
        pred_d = predicted.withColumn('row_index',
                                      f.monotonically_increasing_id())
        res_d = residuals.withColumn('row_index',
                                     f.monotonically_increasing_id())

        pred_residuals = pred_d.join(res_d,
                                     on=['row_index'
                                         ]).sort('row_index').drop('row_index')
        pred_residuals.show()

        pred_residuals.write.parquet(
            'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/residual_fitted_plot.parquet',
            mode='overwrite')

        # scale location plot

        ############################################################################################################

        ####################################################################################
        # appending predicted value to the dataset
        target = dataset.select(label)
        pred = prediction_data.select(['prediction'])
        pred_d = pred.withColumn('row_index', f.monotonically_increasing_id())
        target_d = target.withColumn('row_index',
                                     f.monotonically_increasing_id())

        pred_target = pred_d.join(target_d, on=['row_index']).drop('row_index')
        pred_target.show()

        dataset.show()

        pred_target_data_update = dataset.join(pred_target, on=[label])

        pred_target_data_update.show(100)

        ##########################################################################################

        # creating the dictionary for storing the result

        table_response = {
            "Intercept": intercept_t,
            "Coefficients": coefficient_t,
            "RMSE": RMSE,
            "MSE": MSE,
            "R_square": r_square,
            "Adj_R_square": adjsted_r_square,
            "Coefficient_error": coefficient_error,
            "T_value": T_values,
            "P_value": P_values
        }

        # json_response = coefficient_t

        # json_response = {"adjusted r**2 value" : training_summary.r2adj}

        # DATA VISUALIZATION PART

        # finding the quantile in the dataset(Q_Q plot)

        y = 0.1
        x = []

        for i in range(0, 90):
            x.append(y)
            y = round(y + 0.01, 2)
        #
        # for z in x:
        #     print ("~~~~~   ",z)
        #

        quantile_label = lr_prediction_quantile.approxQuantile(label, x, 0.01)
        # print quantile_label
        quantile_prediction = lr_prediction_quantile.approxQuantile(
            "prediction", x, 0.01)
        # print quantile_prediction

        Q_label_pred = ''
        print(len(quantile_label))
        length = len(quantile_label)

        for i in range(0, len(quantile_label)):
            Q_label_pred += str(quantile_label[i]) + 't' + str(
                quantile_prediction[i]) + 'n'

        #
        #
        # with open('Q_Q_plot.csv', 'w') as Q_Q:
        #     writer_Q_Q = csv.writer(Q_Q)
        #     writer_Q_Q.writerows((quantile_label, quantile_prediction))

        # plt.scatter(quantile_label, quantile_prediction)
        # plt.show()

        ## finding the residual vs fitted graph data

        # plt.scatter(prediction_val_pand_predict, prediction_val_pand_residual)
        # plt.axhline(y=0.0, color="red")
        # plt.xlabel("prediction")
        # plt.ylabel("residual")
        # plt.title("residual vs fitted ")
        # # plt.show()

        # creating the csv file and writitng into it

        fitted_residual = ''
        print(len(prediction_val_pand_residual))
        length = len(prediction_val_pand_residual)

        for i in range(0, len(prediction_val_pand_residual)):
            fitted_residual += str(prediction_val_pand_predict[i]) + 't' + str(
                prediction_val_pand_residual[i]) + 'n'

        #
        # with open('residual_vs_fitted.csv', 'w') as r_f:
        #     writer_r_f = csv.writer(r_f)
        #     writer_r_f.writerows((prediction_val_pand_predict, prediction_val_pand_residual))

        ## residual vs leverage graph data

        # prediction_val_pand_residual
        # extreme value in the predictor colm
        # prediction_col_extremeval = lr_prediction_quantile.agg({"prediction": "max"})
        # prediction_col_extremeval.show()

        # plt.plot(prediction_col_extremeval, prediction_val_pand_residual)
        # plt.show()

        ## scale location graph data

        prediction_val_pand_residual
        prediction_val_pand_predict
        prediction_val_pand_residual_abs = prediction_val_pand_residual.abs()
        sqrt_residual = []
        for x in prediction_val_pand_residual_abs:
            sqrt_residual.append(math.sqrt(x))
            # print ("____________________  ",x)

        sqrt_residual

        ########################################

        # calculating std deviation

        print(statistics.stdev(prediction_val_pand_residual))
        stdev_ = statistics.stdev(prediction_val_pand_residual)

        # calcuate stnd residuals
        std_res = []
        for x in prediction_val_pand_residual:
            std_res.append(x / stdev_)
        print(std_res)

        # calculating the square root of std_res

        sqr_std_res = []
        for x in std_res:
            sqr_std_res.append(math.sqrt(abs(x)))
        print(sqr_std_res)

        #######################################

        #
        # # square root of label
        # sqrt_label = []
        # for x in prediction_val_pand_label:
        #     sqrt_label.append(math.sqrt(abs(x)))
        #
        # sqrt_label
        # prediction_val_pand_residual
        # std_residual = []
        # for sqr, resid in zip(sqrt_label, prediction_val_pand_residual):
        #     std_residual.append(resid / sqr)
        #     # print(std_sqrt_residual)
        #
        # # creating the std sqr root
        #
        # sqrt_std_residuals = []
        # for x in std_residual:
        #     # print(math.sqrt(abs(x)))
        #     sqrt_std_residuals.append(math.sqrt(abs(x)))
        # print(sqrt_std_residuals)
        #
        #
        #
        # t_sqrt_std_residuals = []
        # for x in sqrt_std_residuals:
        #     # print(math.sqrt(abs(x)))
        #     t_sqrt_std_residuals.append(math.sqrt(abs(x)))
        # # print(sqrt_std_residuals)
        #

        # print(std_sqrt_residual)

        scale_predict_residual = ''
        for pre, res in zip(prediction_val_pand_predict, sqr_std_res):
            scale_predict_residual += str(pre) + 't' + str(res) + 'n'
        print(scale_predict_residual)

        #######################################################################################3
        # QUANTILE

        y = 0.1
        x = []

        for i in range(0, 90):
            x.append(y)
            y = round(y + 0.01, 2)

        quantile_std_res = spark.createDataFrame(std_res, FloatType())
        quantile_std_res.show()
        quantile_std_res_t = quantile_std_res.approxQuantile('value', x, 0.01)
        print(quantile_std_res_t)
        print(x)

        # calculating the z_score

        ## sort the list
        sorted_std_res = sorted(std_res)

        mean = statistics.mean(sorted_std_res)
        stdev = statistics.stdev(sorted_std_res)
        # print(mean)
        quantile = []
        n = len(std_res)
        print(n)
        for x in range(0, n):
            quantile.append((x - 0.5) / (n))

        print(quantile)

        # z_score theoratical
        z_theory = []
        for x in quantile:
            z_theory.append(norm.ppf(abs(x)))

        # z score for real val
        z_pract = []
        for x in sorted_std_res:
            z_pract.append((x - mean) / stdev)

        Q_label_pred = ''
        # print(len(quantile_label))
        # length = len(quantile_label)

        # z=[-2.0,-1.5,-1.0,-0.5,0, 0.5,1.0,1.5,2.0,2.5]

        for quant, val in zip(z_theory, z_pract):
            Q_label_pred += str(quant) + 't' + str(val) + 'n'

        # plt.scatter(z_pract,z_theory)
        # plt.savefig()

        #
        # plt.scatter(z_theory,z_pract)
        # plt.show()

        ####################################################

        ##########################################################################################
        # # plt.scatter(sqrt_residual, prediction_val_pand_predict)
        # # plt.show()
        #
        #
        #
        #
        # scale_predict_residual=''
        #
        # print(len(sqrt_residual))
        # length = len(sqrt_residual)
        #
        # for i in range(0, len(sqrt_residual)):
        #     scale_predict_residual += str(prediction_val_pand_predict[i]) + 't' + str(sqrt_residual[i]) + 'n'
        # #
        # with open('scale_location_plot.csv', 'w') as s_l:
        #     writer_s_l = csv.writer(s_l)
        #     writer_s_l.writerows((prediction_val_pand_predict, sqrt_residual))

        # dumping the dictionary into json object

        graph_response = {
            "Q_Q_plot": Q_label_pred,
            "residual_fitted": fitted_residual,
            "scale_location": scale_predict_residual
        }

        json_response = {
            'table_data': table_response,
            'graph_data': graph_response
        }

        # json_response = coefficient_t

        print(json_response)

        # json_response = {'run_status': 'success', 'PredictiveResponse': resultdf}
        return (json_response)
    except Exception as e:
        print('exception is =' + str(e))
    def linearRegPersist(self, dataset_add, feature_colm, label_colm,
                         relation_list, relation, userId):
        try:
            dataset = spark.read.csv(dataset_add,
                                     header=True,
                                     inferSchema=True)
            dataset.show()
            label = ''
            for val in label_colm:
                label = val
            Schema = dataset.schema
            stringFeatures = []
            numericalFeatures = []
            for x in Schema:
                if (str(x.dataType) == "StringType"):
                    for y in feature_colm:
                        if x.name == y:
                            stringFeatures.append(x.name)
                else:
                    for y in feature_colm:
                        if x.name == y:
                            numericalFeatures.append(x.name)
            if relation == 'linear':
                print('linear relationship')
            if relation == 'non_linear':
                dataset = Relationship(dataset, relation_list)
            dataset.show()
            for x in Schema:
                if (str(x.dataType) == "StringType" and x.name == label):
                    for labelkey in label_colm:
                        label_indexer = StringIndexer(inputCol=label,
                                                      outputCol='indexed_' +
                                                      label).fit(dataset)
                        dataset = label_indexer.transform(dataset)
                        label = 'indexed_' + label
                else:
                    label = label
            indexed_features = []
            for colm in stringFeatures:
                indexer = StringIndexer(inputCol=colm,
                                        outputCol='indexed_' +
                                        colm).fit(dataset)
                indexed_features.append('indexed_' + colm)
                dataset = indexer.transform(dataset)
            final_features = numericalFeatures + indexed_features
            featureassembler = VectorAssembler(inputCols=final_features,
                                               outputCol="features")
            dataset = featureassembler.transform(dataset)
            vectorIndexer = VectorIndexer(inputCol='features',
                                          outputCol='vectorIndexedFeatures',
                                          maxCategories=4).fit(dataset)
            dataset = vectorIndexer.transform(dataset)
            # Loading the persisted model
            locationAddress = 'hdfs://10.171.0.181:9000/dev/dmxdeepinsight/datasets/'
            modelPersist = 'linearRegressorModel.parquet'
            persistedModelLocation = locationAddress + userId + modelPersist
            regressorTest = LinearRegressionModel.load(persistedModelLocation)
            predictedData = regressorTest.transform(dataset)

            predictedData.show()

        except Exception as e:
            print('exception is :', e)