Beispiel #1
0
FSpi3   = np.ones(npts+1)
FSm3    = M3sup*np.ones(npts+1)

plt.subplot(311)
plt.plot(FSalpha, FSpi3, '-', color='#ff0000')
plt.subplot(312)
plt.plot(FSalpha, FSpi4, '-', color='#ff0000')
plt.subplot(313)
plt.plot(FSalpha, FSm3, '-', color='#ff0000')

# --- (CW) conventional working state

# M8 is sonic so M4 is known
CWm4 = mf.Mach_Sigma(A3A2/A8A2, .1, gam)  # look for subsonic value

CWm3low  = sw.downstream_Mn(M3sup, gam)
alphamin = ray.Ti_Ticri(CWm4, gam)/ray.Ti_Ticri(CWm3low, gam)
CWm3high = mf.Mach_Sigma(A3A2*mf.Sigma_Mach(sw.downstream_Mn(M2, gam), gam), .1, gam)
alphamax = ray.Ti_Ticri(CWm4, gam)/ray.Ti_Ticri(CWm3high, gam)
print "           unstart of inlet throat for Ti4/Ti0 = %6.3f"%(alphamax)
print "             fully supersonic flow for Ti4/Ti0 = %6.3f"%(alphamin)

CWalpha = np.log10(np.logspace(alphamin, alphamax, npts+1))
CWm3    = ray.SubMach_TiTicri(ray.Ti_Ticri(CWm4, gam)/CWalpha, gam)
CWpi3   = mf.Sigma_Mach(CWm3, gam)/mf.Sigma_Mach(M2, gam)/A3A2
CWpi4   = CWpi3*ray.Pi_Picri(CWm4, gam)/ray.Pi_Picri(CWm3, gam)
CWm4    = np.ones(npts+1)*CWm4

plt.subplot(311)
plt.plot(CWalpha, CWpi3, '-', color='#bb0000')
plt.subplot(312)
Beispiel #2
0
import aero.ShockWave        as aerosw
import numpy                 as np
import matplotlib.pyplot     as plt

npoints = 100
gam     = 1.4

fig=plt.figure(1, figsize=(10,8))
fig.suptitle('Polar of isentropic compression and Shock-Waves, $\gamma = %.1f$'%gam, fontsize=12, y=0.93)

macharray = [ 1.2, 1.5, 2., 3., 5.]
rdev      = np.linspace(0., 50., npoints+1)

for m in macharray:
    sig  = np.linspace(deg.asin(1./m), 90., npoints+1)
    dev  = aerosw.deflection_Mach_sigma(m, sig, gam)
    kpsw = aerosw.Ps_ratio(m*deg.sin(sig), gam)     # pressure ratio only depends on normal Mach number
    rdev = np.linspace(0., .99*aerof.PrandtlMeyer_Mach(m, gam), npoints+1)
    kpis = aerof.IsentropicPsratio_Mach_deflection(m, rdev, gam) 
    plt.plot(dev,  kpsw, 'k-')
    plt.plot(rdev, kpis, 'k--', alpha=0.6)
    plt.plot(rdev[-1], kpis[-1], 'ro', alpha=0.5)
    plt.text(rdev[-1], kpis[-1], 'M=1', fontsize=7, clip_on='true', horizontalalignment='right') 
    plt.text(dev[npoints/3], kpsw[npoints/3], '%.3g'%m, horizontalalignment='left', verticalalignment='top',
             fontsize=8, bbox=dict(facecolor='white', alpha=0.8),
             rotation='0')
             
    #labels.append(legends[i]+", t=%.1f"%results[i][t].time)
#legend(labels, loc='upper left',prop={'size':10})  
plt.xlim(0., 50.)
plt.ylim(1., 50.)
Beispiel #3
0
import aero.CompressibleFlow as aerof
import aero.ShockWave        as aerosw
import numpy                 as np
import matplotlib.pyplot     as plt

npoints = 100
gam     = 1.4

fig=plt.figure(1, figsize=(10,8))
fig.suptitle('Polar of Shock-Waves, $\gamma = %.1f$'%gam, fontsize=12, y=0.93)

macharray = [ 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2., 2.2, 2.5, 3., 3.5, 4., 5., 10., 100. ]

for m in macharray:
    sig = np.linspace(deg.asin(1./m), 90., npoints+1)
    dev = aerosw.deflection_Mach_sigma(m, sig, gam)
    plt.plot(dev, sig, 'k-')
    plt.text(dev[npoints/2], sig[npoints/2], '%.3g'%m, horizontalalignment='center', verticalalignment='top',
             fontsize=8, bbox=dict(facecolor='white', alpha=0.8),
             rotation='60')
             
    #labels.append(legends[i]+", t=%.1f"%results[i][t].time)
#legend(labels, loc='upper left',prop={'size':10})  
plt.axis([0., 50., 0., 90.])
plt.xlabel('deviation $\Delta\\theta$', fontsize=10)
plt.ylabel('shock angle $\sigma$', fontsize=10)
plt.minorticks_on()
plt.grid(which='major', linestyle='-', alpha=0.8)
plt.grid(which='minor', linestyle=':', alpha=0.5)
fig.savefig('polar.png', bbox_inches='tight')
#show()