Beispiel #1
0
 def __init__(self, configFn, ctx, outFolder, threshold):
     os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
     config = importlib.import_module(
         configFn.replace('.py', '').replace('/', '.'))
     _, _, _, _, _, _, self.__pModel, _, self.__pTest, self.transform, _, _, _ = config.get_config(
         is_train=False)
     self.__pModel = patch_config_as_nothrow(self.__pModel)
     self.__pTest = patch_config_as_nothrow(self.__pTest)
     self.resizeParam = (800, 1200)
     if callable(self.__pTest.nms.type):
         self.__nms = self.__pTest.nms.type(self.__pTest.nms.thr)
     else:
         from operator_py.nms import py_nms_wrapper
         self.__nms = py_nms_wrapper(self.__pTest.nms.thr)
     arg_params, aux_params = load_checkpoint(self.__pTest.model.prefix,
                                              self.__pTest.model.epoch)
     sym = self.__pModel.test_symbol
     from utils.graph_optimize import merge_bn
     sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)
     self.__mod = DetModule(
         sym,
         data_names=['data', 'im_info', 'im_id', 'rec_id'],
         context=ctx)
     self.__mod.bind(data_shapes=[('data', (1, 3, self.resizeParam[0],
                                            self.resizeParam[1])),
                                  ('im_info', (1, 3)), ('im_id', (1, )),
                                  ('rec_id', (1, ))],
                     for_training=False)
     self.__mod.set_params(arg_params, aux_params, allow_extra=False)
     self.__saveSymbol(sym, outFolder,
                       self.__pTest.model.prefix.split('/')[-1])
     self.__threshold = threshold
     self.outFolder = outFolder
Beispiel #2
0
def create_teacher_module(pTeacherModel, worker_data_shape, input_batch_size,
                          ctx, rank, logger):
    t_prefix = pTeacherModel.prefix
    t_epoch = pTeacherModel.epoch
    t_endpoint = pTeacherModel.endpoint
    t_data_name = pTeacherModel.data_name
    t_label_name = pTeacherModel.label_name
    if rank == 0:
        logger.info(
            'Building teacher module with endpoint: {}'.format(t_endpoint))
    t_sym = pTeacherModel.prefix + '-symbol.json'
    t_sym = mx.sym.load(t_sym)
    t_sym = mx.sym.Group([t_sym.get_internals()[out] for out in t_endpoint])
    t_worker_data_shape = {key: worker_data_shape[key] for key in t_data_name}
    _, t_out_shape, _ = t_sym.infer_shape(**t_worker_data_shape)
    t_terminal_out_shape_dict = zip(t_sym.list_outputs(), t_out_shape)
    t_data_shape = []
    for idx, data_name in enumerate(t_data_name):
        data_shape = t_worker_data_shape[data_name]
        data_shape = (input_batch_size, ) + data_shape[1:]
        t_data_shape.append((data_name, data_shape))
    t_label_shape = []
    for idx, label_name in enumerate(t_label_name):
        label_shape = t_out_shape[idx]
        label_shape = (input_batch_size, ) + label_shape[1:]
        t_label_shape.append((label_name, label_shape))
    if rank == 0:
        logger.info('Teacher data_name: {}'.format(t_data_name))
        logger.info('Teacher data_shape: {}'.format(t_data_shape))
        logger.info('Teacher label_name: {}'.format(t_label_name))
        logger.info('Teacher label_shape: {}'.format(t_label_shape))

    if rank == 0:
        logger.info('Teacher terminal output shape')
        logger.info(pprint.pformat([i for i in t_terminal_out_shape_dict]))
    t_arg_params, t_aux_params = load_checkpoint(t_prefix, t_epoch)
    t_mod = DetModule(t_sym,
                      data_names=t_data_name,
                      label_names=None,
                      logger=logger,
                      context=ctx)
    t_mod.bind(data_shapes=t_data_shape, for_training=False, grad_req='null')
    t_mod.set_params(t_arg_params, t_aux_params)
    if rank == 0:
        logger.info('Finish teacher module build')
    return t_mod, t_label_name, t_label_shape
Beispiel #3
0
    def __init__(self, config, batch_size, gpu_id, thresh):
        self.config = config
        self.batch_size = batch_size
        self.thresh = thresh

        # Parse the parameter file of model
        pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
        transform, data_name, label_name, metric_list = config.get_config(is_train=False)

        self.data_name = data_name
        self.label_name = label_name
        self.p_long, self.p_short = transform[1].p.long, transform[1].p.short

        # Define NMS type
        if callable(pTest.nms.type):
            self.do_nms = pTest.nms.type(pTest.nms.thr)
        else:
            from operator_py.nms import py_nms_wrapper

            self.do_nms = py_nms_wrapper(pTest.nms.thr)

        sym = pModel.test_symbol
        sym.save(pTest.model.prefix + "_test.json")

        ctx = mx.gpu(gpu_id)
        data_shape = [
            ('data', (batch_size, 3, 800, 1200)),
            ("im_info", (1, 3)),
            ("im_id", (1, )),
            ("rec_id", (1, )),
        ]

        # Load network
        arg_params, aux_params = load_checkpoint(pTest.model.prefix,
                                                 pTest.model.epoch)
        self.mod = DetModule(sym, data_names=data_name, context=ctx)
        self.mod.bind(data_shapes=data_shape, for_training=False)
        self.mod.set_params(arg_params, aux_params, allow_extra=False)
Beispiel #4
0
            terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)
            print('parameter shape')
            print(
                pprint.pformat([
                    i for i in out_shape_dict if not i[0].endswith('output')
                ]))
            print('intermediate output shape')
            print(
                pprint.pformat(
                    [i for i in out_shape_dict if i[0].endswith('output')]))
            print('terminal output shape')
            print(pprint.pformat([i for i in terminal_out_shape_dict]))

            for i in pKv.gpus:
                ctx = mx.gpu(i)
                mod = DetModule(sym, data_names=data_names, context=ctx)
                mod.bind(data_shapes=loader.provide_data, for_training=False)
                mod.set_params(arg_params, aux_params, allow_extra=False)
                execs.append(mod)

        all_outputs = []

        if index_split == 0:

            def eval_worker(exe, data_queue, result_queue):
                while True:
                    batch = data_queue.get()
                    exe.forward(batch, is_train=False)
                    out = [x.asnumpy() for x in exe.get_outputs()]
                    result_queue.put(out)
def train_net(config):
    pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
    transform, data_name, label_name, metric_list = config.get_config(is_train=True)
    pGen = patch_config_as_nothrow(pGen)
    pKv = patch_config_as_nothrow(pKv)
    pRpn = patch_config_as_nothrow(pRpn)
    pRoi = patch_config_as_nothrow(pRoi)
    pBbox = patch_config_as_nothrow(pBbox)
    pDataset = patch_config_as_nothrow(pDataset)
    pModel = patch_config_as_nothrow(pModel)
    pOpt = patch_config_as_nothrow(pOpt)
    pTest = patch_config_as_nothrow(pTest)

    ctx = [mx.gpu(int(i)) for i in pKv.gpus]
    pretrain_prefix = pModel.pretrain.prefix
    pretrain_epoch = pModel.pretrain.epoch
    prefix = pGen.name
    save_path = os.path.join("experiments", prefix)
    begin_epoch = pOpt.schedule.begin_epoch
    end_epoch = pOpt.schedule.end_epoch
    lr_iter = pOpt.schedule.lr_iter

    # only rank==0 print all debug infos
    kvstore_type = "dist_sync" if os.environ.get(
        "DMLC_ROLE") == "worker" else pKv.kvstore
    kv = mx.kvstore.create(kvstore_type)
    rank = kv.rank

    # for distributed training using shared file system
    os.makedirs(save_path, exist_ok=True)

    from utils.logger import config_logger
    config_logger(os.path.join(save_path, "log.txt"))

    model_prefix = os.path.join(save_path, "checkpoint")

    # set up logger
    logger = logging.getLogger()

    sym = pModel.train_symbol

    # setup multi-gpu
    input_batch_size = pKv.batch_image * len(ctx)

    # print config
    # if rank == 0:
    #     logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = pDataset.image_set
    roidbs = [
        pkl.load(open("data/cache/{}.roidb".format(i), "rb"),
                 encoding="latin1") for i in image_sets
    ]
    roidb = reduce(lambda x, y: x + y, roidbs)
    # filter empty image
    roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
    # add flip roi record
    flipped_roidb = []
    for rec in roidb:
        new_rec = rec.copy()
        new_rec["flipped"] = True
        flipped_roidb.append(new_rec)
    roidb = roidb + flipped_roidb

    from core.detection_input import AnchorLoader
    train_data = AnchorLoader(roidb=roidb,
                              transform=transform,
                              data_name=data_name,
                              label_name=label_name,
                              batch_size=input_batch_size,
                              shuffle=True,
                              kv=kv,
                              num_worker=pGen.loader_worker or 12,
                              num_collector=pGen.loader_collector or 1,
                              worker_queue_depth=2,
                              collector_queue_depth=2)

    # infer shape
    worker_data_shape = dict(train_data.provide_data +
                             train_data.provide_label)
    for key in worker_data_shape:
        worker_data_shape[key] = (
            pKv.batch_image, ) + worker_data_shape[key][1:]
    arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)

    _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
    out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))

    _, out_shape, _ = sym.infer_shape(**worker_data_shape)
    terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)

    if rank == 0:
        logger.info('parameter shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if not i[0].endswith('output')]))

        logger.info('intermediate output shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if i[0].endswith('output')]))

        logger.info('terminal output shape')
        logger.info(pprint.pformat([i for i in terminal_out_shape_dict]))

    # memonger
    if pModel.memonger:
        last_block = pModel.memonger_until or ""
        if rank == 0:
            logger.info("do memonger up to {}".format(last_block))

        type_dict = {k: np.float32 for k in worker_data_shape}
        sym = search_plan_to_layer(sym,
                                   last_block,
                                   1000,
                                   type_dict=type_dict,
                                   **worker_data_shape)

    # load and initialize params
    if pOpt.schedule.begin_epoch != 0:
        arg_params, aux_params = load_checkpoint(model_prefix, begin_epoch)
    elif pModel.from_scratch:
        arg_params, aux_params = dict(), dict()
    else:
        arg_params, aux_params = load_checkpoint(pretrain_prefix,
                                                 pretrain_epoch)

    if pModel.process_weight is not None:
        pModel.process_weight(sym, arg_params, aux_params)
    '''
    there are some conflicts between `mergebn` and `attach_quantized_node` in graph_optimize.py 
    when mergebn ahead of attach_quantized_node
    such as `Symbol.ComposeKeyword`
    '''
    if pModel.QuantizeTrainingParam is not None and pModel.QuantizeTrainingParam.quantize_flag:
        pQuant = pModel.QuantizeTrainingParam
        assert pGen.fp16 == False, "current quantize training only support fp32 mode."
        from utils.graph_optimize import attach_quantize_node
        _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
        out_shape_dictoinary = dict(
            zip(sym.get_internals().list_outputs(), out_shape))
        sym = attach_quantize_node(sym, out_shape_dictoinary,
                                   pQuant.WeightQuantizeParam,
                                   pQuant.ActQuantizeParam,
                                   pQuant.quantized_op)
    # merge batch normalization to save memory in fix bn training
    from utils.graph_optimize import merge_bn
    sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)

    if pModel.random:
        import time
        mx.random.seed(int(time.time()))
        np.random.seed(int(time.time()))

    init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
    init.set_verbosity(verbose=True)

    # create solver
    fixed_param = pModel.pretrain.fixed_param
    excluded_param = pModel.pretrain.excluded_param
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]

    if pModel.teacher_param:
        from models.KD.utils import create_teacher_module
        from models.KD.detection_module import KDDetModule
        t_mod, t_label_name, t_label_shape = create_teacher_module(
            pModel.teacher_param, worker_data_shape, input_batch_size, ctx,
            rank, logger)
        mod = KDDetModule(sym,
                          teacher_module=t_mod,
                          teacher_label_names=t_label_name,
                          teacher_label_shapes=t_label_shape,
                          data_names=data_names,
                          label_names=label_names,
                          logger=logger,
                          context=ctx,
                          fixed_param=fixed_param,
                          excluded_param=excluded_param)
    else:
        mod = DetModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        fixed_param=fixed_param,
                        excluded_param=excluded_param)

    eval_metrics = mx.metric.CompositeEvalMetric(metric_list)

    # callback
    batch_end_callback = [
        callback.Speedometer(train_data.batch_size,
                             frequent=pGen.log_frequency)
    ]
    batch_end_callback += pModel.batch_end_callbacks or []
    epoch_end_callback = callback.do_checkpoint(model_prefix)
    sym.save(model_prefix + ".json")

    # decide learning rate
    lr_mode = pOpt.optimizer.lr_mode or 'step'
    base_lr = pOpt.optimizer.lr * kv.num_workers
    lr_factor = pOpt.schedule.lr_factor or 0.1

    iter_per_epoch = len(train_data) // input_batch_size
    total_iter = iter_per_epoch * (end_epoch - begin_epoch)
    lr_iter = [total_iter + it if it < 0 else it for it in lr_iter]
    lr_iter = [it // kv.num_workers for it in lr_iter]
    lr_iter = [it - iter_per_epoch * begin_epoch for it in lr_iter]
    lr_iter_discount = [it for it in lr_iter if it > 0]
    current_lr = base_lr * (lr_factor**(len(lr_iter) - len(lr_iter_discount)))
    if rank == 0:
        logging.info('total iter {}'.format(total_iter))
        logging.info('lr {}, lr_iters {}'.format(current_lr, lr_iter_discount))
        logging.info('lr mode: {}'.format(lr_mode))

    if pOpt.warmup and pOpt.schedule.begin_epoch == 0:
        if rank == 0:
            logging.info('warmup lr {}, warmup step {}'.format(
                pOpt.warmup.lr, pOpt.warmup.iter))
        if lr_mode == 'step':
            lr_scheduler = WarmupMultiFactorScheduler(
                step=lr_iter_discount,
                factor=lr_factor,
                warmup=True,
                warmup_type=pOpt.warmup.type,
                warmup_lr=pOpt.warmup.lr,
                warmup_step=pOpt.warmup.iter)
        elif lr_mode == 'cosine':
            warmup_lr_scheduler = AdvancedLRScheduler(mode='linear',
                                                      base_lr=pOpt.warmup.lr,
                                                      target_lr=base_lr,
                                                      niters=pOpt.warmup.iter)
            cosine_lr_scheduler = AdvancedLRScheduler(
                mode='cosine',
                base_lr=base_lr,
                target_lr=0,
                niters=(iter_per_epoch *
                        (end_epoch - begin_epoch)) - pOpt.warmup.iter)
            lr_scheduler = LRSequential(
                [warmup_lr_scheduler, cosine_lr_scheduler])
        else:
            raise NotImplementedError
    else:
        if lr_mode == 'step':
            lr_scheduler = WarmupMultiFactorScheduler(step=lr_iter_discount,
                                                      factor=lr_factor)
        elif lr_mode == 'cosine':
            lr_scheduler = AdvancedLRScheduler(mode='cosine',
                                               base_lr=base_lr,
                                               target_lr=0,
                                               niters=iter_per_epoch *
                                               (end_epoch - begin_epoch))
        else:
            lr_scheduler = None

    # optimizer
    optimizer_params = dict(momentum=pOpt.optimizer.momentum,
                            wd=pOpt.optimizer.wd,
                            learning_rate=current_lr,
                            lr_scheduler=lr_scheduler,
                            rescale_grad=1.0 / (len(ctx) * kv.num_workers),
                            clip_gradient=pOpt.optimizer.clip_gradient)

    if pKv.fp16:
        optimizer_params['multi_precision'] = True
        optimizer_params['rescale_grad'] /= 128.0

    profile = pGen.profile or False
    if profile:
        mx.profiler.set_config(profile_all=True,
                               filename=os.path.join(save_path,
                                                     "profile.json"))

    # train
    mod.fit(train_data=train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kv,
            optimizer=pOpt.optimizer.type,
            optimizer_params=optimizer_params,
            initializer=init,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch,
            profile=profile)

    logging.info("Training has done")
    time.sleep(10)
    logging.info("Exiting")
if __name__ == "__main__":
    # os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"

    args, config = parse_args()

    pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
    transform, data_name, label_name, metric_list = config.get_config(is_train=False)

    nms = py_nms_wrapper(pTest.nms.thr)
    sym = pModel.test_symbol
    pshort = 800
    plong = 2000

    arg_params, aux_params = load_checkpoint(pTest.model.prefix, args.epoch)
    mod = DetModule(sym,
                    data_names=["data", "im_info", "im_id", "rec_id"],
                    context=mx.gpu(args.gpu_id))
    provide_data = [("data", (1, 3, pshort, plong)), ("im_info", (1, 3)),
                    ("im_id", (1, )), ("rec_id", (1, ))]
    mod.bind(data_shapes=provide_data, for_training=False)
    mod.set_params(arg_params, aux_params, allow_extra=False)

    image_list = []
    if os.path.isfile(args.path):
        if ".txt" in args.path:
            list_file = open(args.path, 'r')
            list_lines = list_file.readlines()
            list_file.close()
            (fpath, fname) = os.path.split(args.path)
            for aline in list_lines:
                uints = aline.split(' ')
Beispiel #7
0
def train_net(config):
    pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
    transform, data_name, label_name, metric_list = config.get_config(is_train=True)

    ctx = [mx.gpu(int(i)) for i in pKv.gpus]
    pretrain_prefix = pModel.pretrain.prefix
    pretrain_epoch = pModel.pretrain.epoch
    prefix = pGen.name
    save_path = os.path.join("experiments", prefix)
    begin_epoch = pOpt.schedule.begin_epoch
    end_epoch = pOpt.schedule.end_epoch
    lr_iter = pOpt.schedule.lr_iter

    # only rank==0 print all debug infos
    kvstore_type = "dist_sync" if os.environ.get(
        "DMLC_ROLE") == "worker" else pKv.kvstore
    kv = mx.kvstore.create(kvstore_type)
    rank = kv.rank

    # for distributed training using shared file system
    if rank == 0:
        if not os.path.exists(save_path):
            os.makedirs(save_path)

    from utils.logger import config_logger
    config_logger(os.path.join(save_path, "log.txt"))

    model_prefix = os.path.join(save_path, "checkpoint")

    # set up logger
    logger = logging.getLogger()

    sym = pModel.train_symbol

    # setup multi-gpu
    input_batch_size = pKv.batch_image * len(ctx)

    # print config
    # if rank == 0:
    #     logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = pDataset.image_set
    roidbs = [
        pkl.load(open("data/cache/{}.roidb".format(i), "rb"),
                 encoding="latin1") for i in image_sets
    ]
    roidb = reduce(lambda x, y: x + y, roidbs)
    # filter empty image
    roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
    # add flip roi record
    flipped_roidb = []
    for rec in roidb:
        new_rec = rec.copy()
        new_rec["flipped"] = True
        flipped_roidb.append(new_rec)
    roidb = roidb + flipped_roidb

    from core.detection_input import AnchorLoader
    train_data = AnchorLoader(roidb=roidb,
                              transform=transform,
                              data_name=data_name,
                              label_name=label_name,
                              batch_size=input_batch_size,
                              shuffle=True,
                              kv=kv)

    # infer shape
    worker_data_shape = dict(train_data.provide_data +
                             train_data.provide_label)
    for key in worker_data_shape:
        worker_data_shape[key] = (
            pKv.batch_image, ) + worker_data_shape[key][1:]
    arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)

    _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
    out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))

    _, out_shape, _ = sym.infer_shape(**worker_data_shape)
    terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)

    if rank == 0:
        logger.info('parameter shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if not i[0].endswith('output')]))

        logger.info('intermediate output shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if i[0].endswith('output')]))

        logger.info('terminal output shape')
        logger.info(pprint.pformat([i for i in terminal_out_shape_dict]))

    # memonger
    if pModel.memonger:
        last_block = pModel.memonger_until or ""
        if rank == 0:
            logger.info("do memonger up to {}".format(last_block))

        type_dict = {k: np.float32 for k in worker_data_shape}
        sym = search_plan_to_layer(sym,
                                   last_block,
                                   1000,
                                   type_dict=type_dict,
                                   **worker_data_shape)

    # load and initialize params
    if pOpt.schedule.begin_epoch != 0:
        arg_params, aux_params = load_checkpoint(model_prefix, begin_epoch)
    elif pModel.from_scratch:
        arg_params, aux_params = dict(), dict()
    else:
        arg_params, aux_params = load_checkpoint(pretrain_prefix,
                                                 pretrain_epoch)

    try:
        pModel.process_weight(sym, arg_params, aux_params)
    except AttributeError:
        pass

    if pModel.random:
        import time
        mx.random.seed(int(time.time()))
        np.random.seed(int(time.time()))

    init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
    init.set_verbosity(verbose=True)

    # create solver
    fixed_param_prefix = pModel.pretrain.fixed_param
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]

    mod = DetModule(sym,
                    data_names=data_names,
                    label_names=label_names,
                    logger=logger,
                    context=ctx,
                    fixed_param_prefix=fixed_param_prefix)

    eval_metrics = mx.metric.CompositeEvalMetric(metric_list)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=pGen.log_frequency)
    epoch_end_callback = callback.do_checkpoint(model_prefix)
    sym.save(model_prefix + ".json")

    # decide learning rate
    base_lr = pOpt.optimizer.lr * kv.num_workers
    lr_factor = 0.1

    iter_per_epoch = len(train_data) // input_batch_size
    lr_iter = [it // kv.num_workers for it in lr_iter]
    lr_iter = [it - iter_per_epoch * begin_epoch for it in lr_iter]
    lr_iter_discount = [it for it in lr_iter if it > 0]
    current_lr = base_lr * (lr_factor**(len(lr_iter) - len(lr_iter_discount)))
    if rank == 0:
        logging.info('total iter {}'.format(iter_per_epoch *
                                            (end_epoch - begin_epoch)))
        logging.info('lr {}, lr_iters {}'.format(current_lr, lr_iter_discount))
    if pOpt.warmup is not None and pOpt.schedule.begin_epoch == 0:
        if rank == 0:
            logging.info('warmup lr {}, warmup step {}'.format(
                pOpt.warmup.lr, pOpt.warmup.iter))

        lr_scheduler = WarmupMultiFactorScheduler(step=lr_iter_discount,
                                                  factor=lr_factor,
                                                  warmup=True,
                                                  warmup_type=pOpt.warmup.type,
                                                  warmup_lr=pOpt.warmup.lr,
                                                  warmup_step=pOpt.warmup.iter)
    else:
        if len(lr_iter_discount) > 0:
            lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(
                lr_iter_discount, lr_factor)
        else:
            lr_scheduler = None

    # optimizer
    optimizer_params = dict(momentum=pOpt.optimizer.momentum,
                            wd=pOpt.optimizer.wd,
                            learning_rate=current_lr,
                            lr_scheduler=lr_scheduler,
                            rescale_grad=1.0 /
                            (len(pKv.gpus) * kv.num_workers),
                            clip_gradient=pOpt.optimizer.clip_gradient)

    if pKv.fp16:
        optimizer_params['multi_precision'] = True
        optimizer_params['rescale_grad'] /= 128.0

    # train
    mod.fit(train_data=train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kv,
            optimizer=pOpt.optimizer.type,
            optimizer_params=optimizer_params,
            initializer=init,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)

    logging.info("Training has done")