def load_bridge_data():
    """Preload bridge damage data from external files."""

    global ClassificationDamageParams, EQCoefficients

    # check dictionaries - if empty, load from file
    if ClassificationDamageParams is None:
        eqrm_dir = determine_eqrm_path(__file__)
        path = os.path.join(eqrm_dir, DataFilePath,
                            ClassificationDamageParamsCSVFile)
        ClassificationDamageParams = csvi.csv2rowdict(path,
                                        columns=['CLASS', 'K3D', 'Ishape',
                                                 'Slight', 'Moderate',
                                                 'Extensive', 'Complete'],
                                        convert={'Ishape': int,
                                                 'Slight': float,
                                                 'Moderate': float,
                                                 'Extensive': float,
                                                 'Complete': float})
    if EQCoefficients is None:
        eqrm_dir = determine_eqrm_path(__file__)
        path = os.path.join(eqrm_dir, DataFilePath, EQCoefficientsCSVFile)
        EQCoefficients = csvi.csv2rowdict(path,
                                          columns=['Equation','A','B'],
                                          convert={'A': float, 'B': int})
Beispiel #2
0
def load_external_data(fp):
    """Load mean and sigma values from an external file.

    Data is placed in a numpy array where row number is the state
    number and the columns are the ppf() function for each pf value

    That is, if the source data file contains:
        State,StateIndex,Mean,Sigma
        none,0,0.0,0.00001
        slight,1,0.6,0.6
        moderate,2,2.5,2.7
        extensive,3,75.0,42.0
        complete,4,230.0,110.0
    and the fp value is [10, 20] then the resulting array will be:
           fp(10) fp(20)
            vvv   vvv
        [[    0     0    ]	<- state 0 (none)
         [    1     1    ]	<- state 1 (slight)
         [    1     2    ]	<- state 2 (moderate)
         [   40    53    ]	<- state 3 (extensive)
         [  138   173    ]]	<- state 4 (complete)

    All 'none' state days will be 0 days.  All other states have values
    computed with ceil() and if less than 1 changed to 1.
    """

    eqrm_dir = determine_eqrm_path(__file__)
    path = os.path.join(eqrm_dir,
                        eqrm_filesystem.Resources_Data_Path,
                        MeanSigmaValuesCSVFile)
    dict = csvi.csv2rowdict(path,
                            columns=['StateIndex', 'Mean', 'Sigma'],
                            convert={'StateIndex': int,
                                     'Mean': float,
                                     'Sigma': float })

    data = []
    for i in range(5):
        (mean, sigma) = dict[str(i)]
        data.append(scipy.stats.norm.ppf(fp, mean, sigma))
    data = numpy.array(data)


    # 'normalise' results
    # if value < 0, convert to 1
    # if value < 1 and > 0, convert to 1
    result = data.clip(1.0, 99999999999.0)
    result = numpy.ceil(numpy.array(result))
    result[0,:] = 0.0		# force all 'none' times to 0

    return result
def load_external_data(fp):
    """Load mean and sigma values from an external file.

    Data is placed in a numpy array where row number is the state
    number and the columns are the ppf() function for each pf value

    That is, if the source data file contains:
        State,StateIndex,Mean,Sigma
        none,0,0.0,0.00001
        slight,1,0.6,0.6
        moderate,2,2.5,2.7
        extensive,3,75.0,42.0
        complete,4,230.0,110.0
    and the fp value is [10, 20] then the resulting array will be:
           fp(10) fp(20)
            vvv   vvv
        [[    0     0    ]	<- state 0 (none)
         [    1     1    ]	<- state 1 (slight)
         [    1     2    ]	<- state 2 (moderate)
         [   40    53    ]	<- state 3 (extensive)
         [  138   173    ]]	<- state 4 (complete)

    All 'none' state days will be 0 days.  All other states have values
    computed with ceil() and if less than 1 changed to 1.
    """

    eqrm_dir = determine_eqrm_path(__file__)
    path = os.path.join(eqrm_dir, eqrm_filesystem.Resources_Data_Path,
                        MeanSigmaValuesCSVFile)
    dict = csvi.csv2rowdict(path,
                            columns=['StateIndex', 'Mean', 'Sigma'],
                            convert={
                                'StateIndex': int,
                                'Mean': float,
                                'Sigma': float
                            })

    data = []
    for i in range(5):
        (mean, sigma) = dict[str(i)]
        data.append(scipy.stats.norm.ppf(fp, mean, sigma))
    data = numpy.array(data)

    # 'normalise' results
    # if value < 0, convert to 1
    # if value < 1 and > 0, convert to 1
    result = data.clip(1.0, 99999999999.0)
    result = numpy.ceil(numpy.array(result))
    result[0, :] = 0.0  # force all 'none' times to 0

    return result