Beispiel #1
0
def define_surf(ip=0,
                cpuxmin=0,
                cpuxmax=1,
                cpuymin=0,
                cpuymax=1,
                cpux=1,
                cpuy=1):
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    from utilities import get_v_h_list
    #
    from sets import Set

    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        # for compatibility with python2.5
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x + [y] for x in result for y in pool]
        return result

    absorbing_surf = []
    xmin = []
    xmax = []
    ymin = []
    ymax = []
    #
    top_surf = []
    bottom_surf = []
    list_vol = cubit.parse_cubit_list("volume", "all")
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    zmin_box = cubit.get_total_bounding_box(
        "volume", list_vol
    )[6]  #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")

    absorbing_surface_distance_tolerance = 0.001
    topographic_surface_distance_tolerance = 0.1
    topographic_surface_normal_tolerance = 0.4

    lv = []
    for k in list_surf:
        sbox = cubit.get_bounding_box('surface', k)
        if zmax_box == 0 and sbox[7] == 0:
            dzmax = 0
        elif zmax_box == 0 or sbox[7] == 0:
            dzmax = abs(sbox[7] - zmax_box)
        else:
            dzmax = abs(sbox[7] - zmax_box) / max(abs(sbox[7]), abs(zmax_box))
        if zmin_box == 0 and sbox[6] == 0:
            dzmin = 0
        elif zmin_box == 0 or sbox[6] == 0:
            dzmin = abs(sbox[6] - zmin_box)
        else:
            dzmin = abs(sbox[6] - zmin_box) / max(abs(sbox[6]), abs(zmin_box))
        normal = cubit.get_surface_normal(k)
        zn = normal[2]
        if dzmax <= topographic_surface_distance_tolerance and zn > topographic_surface_normal_tolerance:
            top_surf.append(k)
            list_vertex = cubit.get_relatives('surface', k, 'vertex')
            for v in list_vertex:
                valence = cubit.get_valence(v)
                if valence <= 4:  #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -1 + topographic_surface_normal_tolerance:
            bottom_surf.append(k)
    if len(top_surf) == 0:  #assuming that one topo surface need to be selected
        _, _, _, _, _, top_surf = get_v_h_list(list_vol, chktop=False)
    lp = []
    labelp = []
    combs = product(lv, lv)
    for comb in combs:
        v1 = comb[0]
        v2 = comb[1]
        c = Set(cubit.get_relatives("vertex", v1, "curve")) & Set(
            cubit.get_relatives("vertex", v2, "curve"))
        if len(c) == 1:
            p = cubit.get_center_point("curve", list(c)[0])
            labelp.append(list(c)[0])
    labelps = Set(labelp)
    for c in labelps:
        p = cubit.get_center_point("curve", c)
        lp.append(p)

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            try:
                if abs((center_point[0] - p[0]) /
                       p[0]) <= absorbing_surface_distance_tolerance and abs(
                           (center_point[1] - p[1]) /
                           p[1]) <= absorbing_surface_distance_tolerance:
                    absorbing_surf.append(k)
                    break
            except:
                if -1 <= center_point[0] <= 1 and -1 <= center_point[1] <= 1:
                    absorbing_surf.append(k)
                    break
    #
    four_side = True
    if four_side:
        xmintmp, ymintmp, xmaxtmp, ymaxtmp = define_4side_lateral_surfaces()
        xmin = list(Set(xmintmp) - Set(xmaxtmp))
        xmax = list(Set(xmaxtmp) - Set(xmintmp))
        ymin = list(Set(ymintmp) - Set(ymaxtmp))
        ymax = list(Set(ymaxtmp) - Set(ymintmp))
        abs_xmintmp, abs_xmaxtmp, abs_ymintmp, abs_ymaxtmp = lateral_boundary_are_absorbing(
            ip, cpuxmin, cpuxmax, cpuymin, cpuymax, cpux, cpuy)
        abs_xmin = list(Set(abs_xmintmp) - Set(abs_xmaxtmp))
        abs_xmax = list(Set(abs_xmaxtmp) - Set(abs_xmintmp))
        abs_ymin = list(Set(abs_ymintmp) - Set(abs_ymaxtmp))
        abs_ymax = list(Set(abs_ymaxtmp) - Set(abs_ymintmp))
    return absorbing_surf, abs_xmin, abs_xmax, abs_ymin, abs_ymax, top_surf, bottom_surf, xmin, ymin, xmax, ymax
def define_absorbing_surf_nopar():
    """
    define the absorbing surfaces for a layered topological box where boundary surfaces are not parallel to the axis.
    it returns absorbing_surf,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    from sets import Set

    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x + [y] for x in result for y in pool]
        return result

    absorbing_surf = []
    absorbing_surf_xmin = []
    absorbing_surf_xmax = []
    absorbing_surf_ymin = []
    absorbing_surf_ymax = []
    absorbing_surf_bottom = []
    top_surf = []
    list_vol = cubit.parse_cubit_list("volume", "all")
    init_n_vol = len(list_vol)
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    zmin_box = cubit.get_total_bounding_box(
        "volume", list_vol
    )[6]  #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")
    lv = []
    for k in list_surf:
        sbox = cubit.get_bounding_box('surface', k)
        dzmax = abs((sbox[7] - zmax_box) / zmax_box)
        dzmin = abs((sbox[6] - zmin_box) / zmin_box)
        normal = cubit.get_surface_normal(k)
        zn = normal[2]
        if dzmax <= 0.001 and zn > 0.7:
            top_surf.append(k)
            list_vertex = cubit.get_relatives('surface', k, 'vertex')
            for v in list_vertex:
                valence = cubit.get_valence(v)
                if valence <= 4:  #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -0.7:
            absorbing_surf.append(k)
    lp = []
    combs = product(lv, lv)
    for comb in combs:
        v1 = comb[0]
        v2 = comb[1]
        c = Set(cubit.get_relatives("vertex", v1, "curve")) & Set(
            cubit.get_relatives("vertex", v2, "curve"))
        if len(c) == 1:
            p = cubit.get_center_point("curve", list(c)[0])
            lp.append(p)
    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            if abs((center_point[0] - p[0]) / p[0]) <= 0.005 and abs(
                (center_point[1] - p[1]) / p[1]) <= 0.005:
                absorbing_surf.append(k)
                break
    return absorbing_surf, top_surf
def define_absorbing_surf_nopar():
    """
    define the absorbing surfaces for a layered topological box where boundary surfaces are not parallel to the axis.
    it returns absorbing_surf,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    from sets import Set
    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x+[y] for x in result for y in pool]
        return result
    absorbing_surf=[]
    absorbing_surf_xmin=[]
    absorbing_surf_xmax=[]
    absorbing_surf_ymin=[]
    absorbing_surf_ymax=[]
    absorbing_surf_bottom=[]
    top_surf=[]
    list_vol=cubit.parse_cubit_list("volume","all")
    init_n_vol=len(list_vol)
    zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")
    lv=[]
    for k in list_surf:
            sbox=cubit.get_bounding_box('surface',k)
            dzmax=abs((sbox[7] - zmax_box)/zmax_box)
            dzmin=abs((sbox[6] - zmin_box)/zmin_box)
            normal=cubit.get_surface_normal(k)
            zn=normal[2]
            if dzmax <= 0.001 and zn > 0.7:
                top_surf.append(k)
                list_vertex=cubit.get_relatives('surface',k,'vertex')
                for v in list_vertex:
                    valence=cubit.get_valence(v)
                    if valence <= 4: #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                        lv.append(v)
            elif dzmin <= 0.001 and zn < -0.7:
                absorbing_surf.append(k)
    lp=[]
    combs=product(lv,lv)
    for comb in combs:
        v1=comb[0]
        v2=comb[1]
        c=Set(cubit.get_relatives("vertex",v1,"curve")) & Set(cubit.get_relatives("vertex",v2,"curve"))
        if len(c) == 1:
            p=cubit.get_center_point("curve",list(c)[0])
            lp.append(p)
    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            if abs((center_point[0] - p[0])/p[0]) <= 0.005 and abs((center_point[1] - p[1])/p[1]) <= 0.005:
             absorbing_surf.append(k)
             break
    return absorbing_surf,top_surf
def define_surf(ip=0,cpuxmin=0,cpuxmax=1,cpuymin=0,cpuymax=1,cpux=1,cpuy=1):
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    from utilities import get_v_h_list
    #
    from sets import Set
    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        # for compatibility with python2.5
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x+[y] for x in result for y in pool]
        return result
    absorbing_surf=[]
    xmin=[]
    xmax=[]
    ymin=[]
    ymax=[]
    #
    top_surf=[]
    bottom_surf=[]
    list_vol=cubit.parse_cubit_list("volume","all")
    zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")

    absorbing_surface_distance_tolerance=0.001
    topographic_surface_distance_tolerance=0.1
    topographic_surface_normal_tolerance=0.4

    lv=[]
    for k in list_surf:
        sbox=cubit.get_bounding_box('surface',k)
        if zmax_box == 0 and sbox[7] == 0:
             dzmax=0
        elif zmax_box == 0 or sbox[7] == 0:
            dzmax=abs(sbox[7] - zmax_box)
        else:
            dzmax=abs(sbox[7] - zmax_box)/max(abs(sbox[7]),abs(zmax_box))
        if zmin_box == 0 and sbox[6] == 0:
             dzmin=0
        elif zmin_box == 0 or sbox[6] == 0:
            dzmin=abs(sbox[6] - zmin_box)
        else:
            dzmin=abs(sbox[6] - zmin_box)/max(abs(sbox[6]),abs(zmin_box))
        normal=cubit.get_surface_normal(k)
        zn=normal[2]
        if dzmax <= topographic_surface_distance_tolerance and zn > topographic_surface_normal_tolerance:
            top_surf.append(k)
            list_vertex=cubit.get_relatives('surface',k,'vertex')
            for v in list_vertex:
                valence=cubit.get_valence(v)
                if valence <= 4: #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -1+topographic_surface_normal_tolerance:
            bottom_surf.append(k)
    if len(top_surf) ==0: #assuming that one topo surface need to be selected
            _,_,_,_,_,top_surf=get_v_h_list(list_vol,chktop=False)
    lp=[]
    labelp=[]
    combs=product(lv,lv)
    for comb in combs:
        v1=comb[0]
        v2=comb[1]
        c=Set(cubit.get_relatives("vertex",v1,"curve")) & Set(cubit.get_relatives("vertex",v2,"curve"))
        if len(c) == 1:
            p=cubit.get_center_point("curve",list(c)[0])
            labelp.append(list(c)[0])
    labelps=Set(labelp)
    for c in labelps:
        p=cubit.get_center_point("curve",c)
        lp.append(p)

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            try:
                if abs((center_point[0] - p[0])/p[0]) <= absorbing_surface_distance_tolerance and abs((center_point[1] - p[1])/p[1]) <= absorbing_surface_distance_tolerance:
                    absorbing_surf.append(k)
                    break
            except:
                if -1 <= center_point[0] <= 1 and -1 <= center_point[1] <= 1:
                    absorbing_surf.append(k)
                    break
    #
    four_side=True
    if four_side:
        xmintmp,ymintmp,xmaxtmp,ymaxtmp=define_4side_lateral_surfaces()
        xmin=list(Set(xmintmp)-Set(xmaxtmp))
        xmax=list(Set(xmaxtmp)-Set(xmintmp))
        ymin=list(Set(ymintmp)-Set(ymaxtmp))
        ymax=list(Set(ymaxtmp)-Set(ymintmp))
        abs_xmintmp,abs_xmaxtmp,abs_ymintmp,abs_ymaxtmp=lateral_boundary_are_absorbing(ip,cpuxmin,cpuxmax,cpuymin,cpuymax,cpux,cpuy)
        abs_xmin=list(Set(abs_xmintmp)-Set(abs_xmaxtmp))
        abs_xmax=list(Set(abs_xmaxtmp)-Set(abs_xmintmp))
        abs_ymin=list(Set(abs_ymintmp)-Set(abs_ymaxtmp))
        abs_ymax=list(Set(abs_ymaxtmp)-Set(abs_ymintmp))
    return absorbing_surf,abs_xmin,abs_xmax,abs_ymin,abs_ymax,top_surf,bottom_surf,xmin,ymin,xmax,ymax