def optimal_portfolio(returns):
    n = len(returns)
    returns = np.asmatrix(returns)
    
    N = 100
    mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
    
    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))
    
    # Create constraint matrices
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    
    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] 
                  for mu in mus]
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks
Beispiel #2
0
def optimal_portfolio_frontier_conditioned(avg_returns_vec, covariance, n_points_frontier=100):
    # returns is a n_assets x k_returns_observations matrix
    # covariance is a n_assets x n_assets matrix, the covariance matrix of returns matrix
    # credits to https://plotly.com/python/v3/ipython-notebooks/markowitz-portfolio-optimization/
    n = len(avg_returns_vec)
    returns = np.asmatrix(avg_returns_vec)

    N = n_points_frontier
    mus = [10 ** (5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    # S = opt.matrix(np.cov(returns))
    S = opt.matrix(covariance)
    pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]

    # CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    # CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])

    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks
Beispiel #3
0
def optimal_portfolios(returns):
    n = len(returns)
    returns = np.asmatrix(returns)

    N = 100000

    # Creating a list of returns to optimize the risk for
    mus = [100**(5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]

    ## Calculate the risk and returns of the frontier
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    return returns, risks
Beispiel #4
0
def solve_mvo(Sig, R, bounds, G, resolution=2000, points=100):
    n = len(Sig)
    S = matrix(np.asarray(Sig))
    pbar = matrix(np.asarray(R))
    G = matrix(G)
    h = matrix(bounds.flatten())
    A = matrix(1.0, (1, n))
    b = matrix(1.0)

    N = resolution
    mus = [10**(10.0 * t / N - 1.0) for t in reversed(range(N))]
    options['show_progress'] = False
    xs = []
    risks = []
    returns = []
    last_insert = -999999999.9
    min_delta = 0.0001

    for mu in mus:
        x = qp(mu * S, -pbar, G, h, A, b)['x']
        risk = np.sqrt(dot(x, S * x))
        if abs(risk - last_insert) > min_delta:
            xs.append(np.array(x).flatten())
            returns.append(dot(pbar, x))
            risks.append(risk)
            last_insert = risk

    xs = np.array(xs)
    sigmas = np.linspace(min(risks), max(risks), points)
    er = np.interp(sigmas, risks, returns)
    f = interp1d(np.array(risks), xs.T)
    ports = f(sigmas).T

    return sigmas, er, ports
Beispiel #5
0
def optimal_portfolio(returns, N, covs):
    n = len(returns)
    returns = np.asmatrix(returns).astype(np.double)

    # N = 100
    mus = [10.**(5.0 * t/N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    cov = covs.numpy().astype(np.double)
    S = opt.matrix(cov)
    pbar = opt.matrix(returns.reshape(-1,1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    solvers.options['show_progress'] = False
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus]

    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    # print(m1[2])
    # print(m1[0])
    # x1 = np.sqrt(m1[2] / m1[0])
    x1=0

    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks
def optimal_portfolio(returns, risk_level):
    n = len(returns)
    returns = np.asmatrix(returns)
    
    N = 100
    mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
    
    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))
    
    # Create constraint matrices
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    
    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] 
                  for mu in mus]
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    
    risks_copy = risks

    return 
Beispiel #7
0
def optimal_portfolio(results):  
    n = len(results)  
    results = np.asmatrix(results)  
    N = 100  
    mus = [10**(5.0 * t/N - 1.0) for t in range(N)]  
     
    S = opt.matrix(np.cov(results))  
    pbar = opt.matrix(np.mean(results, axis=1))  
   
    G = -opt.matrix(np.eye(n))  
    h = opt.matrix(0.0, (n ,1))  
    A = opt.matrix(1.0, (1, n))  
    b = opt.matrix(1.0)  
    
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x']  
                  for mu in mus]  
   
    results = [blas.dot(pbar, x) for x in portfolios]  
    risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]  
    
    m1 = np.polyfit(results, risks, 2)  
    x1 = np.sqrt(m1[2] / m1[0])  
    
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']  
    return np.asarray(wt), results, risks
Beispiel #8
0
    def optimize(self, mu, syms=None):
        """Optimize porfolio allocation for given mu.

        http://abel.ee.ucla.edu/cvxopt/userguide/coneprog.html#quadratic-programming

        :mu: @todo
        :syms: symbols. default: self.top()
        :returns: @todo

        """
        if syms is None:
            syms = self.top()
        n = len(syms)
        mvals = [v for v in self.stats.ix[syms]['mean'].values]
        pbar = matrix(mvals)
        G = matrix(0.0, (n, n))
        G[::n + 1] = -1.0
        h = matrix(0.0, (n, 1))
        A = matrix(1.0, (1, n))
        b = matrix(1.0)
        C = matrix(self.panel.r[syms].cov().values)

        options['show_progress'] = False
        pf = qp(mu * C, -pbar, G, h, A, b)

        returns = dot(pbar, pf['x'])
        std = sqrt(dot(pf['x'], C * pf['x']))
        return (pf['x'], returns, std)
def optimal_portfolio(returns):
    ## the number of stock
    n = len(returns)
    returns = np.asmatrix(returns)
    
    
    ## different weights
    N = 100
    mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
    
    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))
    
    # Create constraint matrices
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    
    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] 
                  for mu in mus]
    ## calculate risks and returns for efficient frontier
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
   
    
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    
    ## calculate the optimal portfolio
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks
Beispiel #10
0
def covmean_portfolio(covariances, mean_returns):
    ''' returns an optimal portfolio given a covariance matrix and matrix of mean returns '''
    n = len(mean_returns)

    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    S = opt.matrix(covariances.values)
    pbar = opt.matrix(mean_returns)

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]
    port_list = convert_portfolios(portfolios)

    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    frontier_returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(frontier_returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])

    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']

    return np.asarray(wt), frontier_returns, risks, port_list
def EfficientFrontier(returns, pbar):

	n = len(returns)
	returns = np.asmatrix(returns)

	# Convert to cvxopt matrices
	S = opt.matrix(np.cov(returns))
	# Number of points to form efficient frontier (A greater N value requries more iterations and thus 
	# assumes a more accurate representation of the true curve)
	N=25
	mus_min=max(min(pbar),0)
	mus_max=max(pbar)
	mus_step=(mus_max - mus_min) / (N-1)
	mus = [mus_min + i*mus_step for i in range(N)]
	# cvxopt constraints: Gx <= h, Ax <= b
	G = opt.matrix(np.concatenate((-np.transpose(pbar),-np.identity(n)),0))
	A = opt.matrix(1.0, (1, n))
	b = opt.matrix(1.0)

	# Calculate efficient frontier weights using quadratic programming
	portfolios=[]
	for r_min in mus:
		h=opt.matrix(np.concatenate((-np.ones((1,1))*r_min,np.zeros((n,1))),0))
		sol = solvers.qp(S, -pbar, G, h, A, b)['x']
	   
		portfolios.append(sol)

	# Calculate risks and returns for the frontier
	returns = [blas.dot(pbar, x) for x in portfolios]
	risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]

	return risks, returns
Beispiel #12
0
def efficient_frontier_index(return_rate):

        solvers.options['show_progress'] = False
        
        n_asset    =     len(return_rate)

        asset_mean = np.mean(return_rate, axis = 1)
        #print asset_mean

        cov        =     np.cov(return_rate)
        S          =     matrix(cov)
        pbar       =     matrix(asset_mean)
        G          =     matrix(0.0, (n_asset, n_asset))
        G[::n_asset + 1]  =  -1.0
        h                 =  matrix(0.0, (n_asset, 1))
        A                 =  matrix(1.0, (1, n_asset))
        b                 =  matrix(1.0)

        N = 100
        mus = [ 10**(5.0*t/N-1.0) for t in range(N) ]
        portfolios = [ qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus ]
        returns = [ dot(pbar,x) for x in portfolios ]
        risks = [ sqrt(dot(x, S*x)) for x in portfolios ]


        return risks, returns, portfolios
Beispiel #13
0
def optimal_portfolio(returns, S):
    n = len(returns)
    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]
    # Convert to cvxopt matrices
    pbar = opt.matrix(returns)
    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    # Calculate efficient frontier weights using quadratic programming
    solvers.options['show_progress'] = False
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = []
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = []
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
    risks = [(sum(risks) / len(risks)) if math.isnan(x) else x for x in risks]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(abs(m1[2] / m1[0]))
    # CALCULATE THE OPTIMAL PORTFOLIO
    solvers.options['show_progress'] = False
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks, portfolios
Beispiel #14
0
def weight_opt(returns,benchmark, lower = 0, upper = 1, ph=2**7, cov_method='sample', seed = 123):
    np.random.seed(seed)
    n_asset, n_sample = returns.shape
    rets = np.asmatrix(returns)  
    #N = 10
    #phs = [2**(t-2) for t in range(N)]  
    # Convert to cvxopt matrices 
    if cov_method == 'sample':
        Cov = opt.matrix(np.cov(rets,benchmark))
    elif cov_method == 'lw':
        Cov = opt.matrix(LedoitWolf().fit(np.append(np.transpose(rets),benchmark.reshape(n_sample,1), axis=1)).covariance_)
    else:
        raise ValueError('cov_method should be in {}'.format({'sample', 'lw'}))
    S = Cov[:n_asset,:n_asset]
    r_mean = opt.matrix(np.nanmean(rets, axis=1)) # n*1
    Cb = Cov[:n_asset,n_asset]
    # Create constraint matrices  
    G = opt.matrix(np.append(np.eye(n_asset),-np.eye(n_asset),axis = 0))   # 2n x n identity matrix  
    h = opt.matrix(np.append(upper*np.ones((n_asset,1)),-lower*np.ones((n_asset,1)),axis = 0)) 
    A = opt.matrix(1.0, (1, n_asset))  
    b = opt.matrix(1.0)  
    # Calculate efficient frontier weights using quadratic programming  
    x = solvers.qp(ph*S, -ph*Cb-r_mean, G, h, A, b)['x']
    #portfolios = [solvers.qp(ph*S, -ph*Cb-r_mean, G, h, A, b)['x']  
    #              for ph in phs]  
    # CALCULATE RISKS AND RETURNS FOR FRONTIER  
    ret = blas.dot(r_mean, x)
    #[blas.dot(r_mean, x) for x in portfolios]  
    errors = blas.dot(x, S*x)+Cov[n_asset,n_asset]-2*blas.dot(Cb,x)
    #[blas.dot(x, S*x)+Cov[n_asset,n_asset]-2*blas.dot(Cb,x) for x in portfolios]  
    return np.transpose(np.array(x))[0], ret, errors#, ret_opt, risk_opt   
Beispiel #15
0
def optimal_portfolio(returns):
    n = len(returns)
    returns = np.asmatrix(returns)

    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    S = opt.matrix(
        np.cov(returns)
    )  #S is the covariance matrix. diagonal is the variance of each stock
    pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]

    port_list = convert_portfolios(portfolios)

    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    wt = solvers.qp(
        opt.matrix(x1 * S), -pbar, G, h, A,
        b)['x']  #Is this the tangency portfolio? X1 = slope from origin?
    return np.asarray(wt), returns, risks, port_list
Beispiel #16
0
def mean_variance(returns, cov=None, shrink_means=False):
    n = len(returns)
    returns = np.asmatrix(returns)

    N = 50
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    if cov is None:
        S = opt.matrix(np.cov(returns))
    else:
        S = opt.matrix(cov)

    if shrink_means:
        pbar = opt.matrix(np.ones(cov.shape[0]))
    else:
        pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt)
def optimal_portfolio(r):

    n = len(r)
    #    num = r.shape[1]
    num = 1
    ret = np.asmatrix(r)

    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    S = opt.matrix(
        np.cov(ret))  ## covariance , diagonal is the variance of each stock
    pbar = opt.matrix(np.mean(ret, axis=1))  #

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]

    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    ret = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(ret, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), num * np.array(ret), np.sqrt(
        1.0 * num) * np.array(risks), portfolios
Beispiel #18
0
def maximum_return_subject_to_target_risk():
    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    P = covs
    q = avg_ret
    G = matrix(-np.eye(n))
    h = matrix(-np.zeros((n, 1)))

    # equality constraint Ax = b; captures the constraint sum(x) == 1
    A = matrix(1.0, (1, n))
    b = matrix(1.0)

    xs = [solvers.qp(mu * covs, q, G, h, A, b)['x'] for mu in mus]
    returns = [dot(-q.T, x) for x in xs]
    risks = [np.sqrt(dot(x.T, covs * x)) for x in xs]
    try:
        import pylab
    except ImportError:
        pass
    else:
        pylab.figure(1, facecolor='w')
        pylab.plot(risks, returns)
        pylab.xlabel('standard deviation')
        pylab.ylabel('expected return')
        pylab.axis([0, 0.2, 0, 0.15])
        pylab.title('Risk-return trade-off curve')
        pylab.yticks([0.00, 0.05, 0.10, 0.15])
        #pylab.show()
    sol = solvers.qp(P, q, G, h, A, b)

    print(maximum_return_subject_to_target_risk.__name__)
    print(sol['x'])
    print(statistics(sol['x']))
Beispiel #19
0
def optimal_portfolio(daily_returns, N, r):
    # Frontier points
    #Packages
    import pandas as pd
    import sklearn.covariance as skcov
    import numpy as np
    import cvxopt as opt
    from cvxopt import blas, solvers
    import statsmodels.api as sm
    huber = sm.robust.scale.Huber()
    n = len(daily_returns.T)
    returns = np.asmatrix(daily_returns)
    mus = [(10**(5.0 * t / N - 1.0) - 10**(-1)) for t in range(N)]
    #cvxopt matrices
    S = opt.matrix(skcov.ShrunkCovariance().fit(returns).covariance_)
    returns_av, scale = huber(returns)
    pbar = opt.matrix(returns_av)
    # Constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]
    # Risk and returns
    returns = [252 * blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(252 * blas.dot(x, S * x)) for x in portfolios]
    portfolios = [np.eye(n).dot(portfolios[i])[:, 0] for i in range(N)]
    returns = np.asarray(returns)
    risks = np.asarray(risks)
    sharpe = np.divide((returns - r), risks)
    portfolios = np.asarray(portfolios)
    return pd.DataFrame(
        data=np.column_stack((returns, risks, sharpe, portfolios)),
        columns=(['Returns', 'SD', 'Sharpe'] + list(daily_returns.columns)))
Beispiel #20
0
def optimal_portfolio(returns):
    n = len(returns)
    returns = np.asmatrix(returns)

    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative identitity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    # We have linear component -pbar negative because we do not
    # want to account for return twice mu and -pbar
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)["x"] for mu in mus]

    ## CALCULATE RISK AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])

    ## CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    return np.asarray(wt), returns, risks, portfolios
Beispiel #21
0
def checksol(sol, A, B, C = None, d = None, G = None, h = None): 
    """
    Check optimality conditions

        C * x  + G' * z + A'(Z) + d = 0  
        G * x <= h 
        z >= 0,  || Z || < = 1
        z' * (h - G*x) = 0
        tr (Z' * (A(x) + B)) = || A(x) + B ||_*.

    """

    p, q = B.size
    n = A.size[1]
    if G is None: G = spmatrix([], [], [], (0, n))
    if h is None: h = matrix(0.0, (0, 1))
    m = h.size[0]
    if C is None: C = spmatrix(0.0, [], [], (n,n))
    if d is None: d = matrix(0.0, (n, 1))

    if sol['status'] is 'optimal':

        res = +d
        base.symv(C, sol['x'], res, beta = 1.0)
        base.gemv(G, sol['z'], res, beta = 1.0, trans = 'T')
        base.gemv(A, sol['Z'], res, beta = 1.0, trans = 'T')
        print "Dual residual: %e" %blas.nrm2(res)

        if m:
           print "Minimum primal slack (scalar inequalities): %e" \
               %min(h - G*sol['x'])
           print "Minimum dual slack (scalar inequalities): %e" \
               %min(sol['z'])

        if p:
            s = matrix(0.0, (p,1))
            X = matrix(A*sol['x'], (p, q)) + B
            lapack.gesvd(+X, s)
            nrmX = sum(s)
            lapack.gesvd(+sol['Z'], s)
            nrmZ = max(s)
            print "Norm of Z: %e" %nrmZ
            print "Nuclear norm of A(x) + B: %e" %nrmX
            print "Inner product of Z and A(x) + B: %e" \
                %blas.dot(sol['Z'], X)
        
    elif sol['status'] is 'primal infeasible':

        res = matrix(0.0, (n,1))
        base.gemv(G, sol['z'], res, beta = 1.0, trans = 'T')
        print "Dual residual: %e" %blas.nrm2(res)
        print "h' * z = %e" %blas.dot(h, sol['z'])
        print "Minimum dual slack (scalar inequalities): %e" \
            %min(sol['z'])


    else:
        pass
Beispiel #22
0
def checksol(sol, A, B, C=None, d=None, G=None, h=None):
    """
    Check optimality conditions

        C * x  + G' * z + A'(Z) + d = 0  
        G * x <= h 
        z >= 0,  || Z || < = 1
        z' * (h - G*x) = 0
        tr (Z' * (A(x) + B)) = || A(x) + B ||_*.

    """

    p, q = B.size
    n = A.size[1]
    if G is None: G = spmatrix([], [], [], (0, n))
    if h is None: h = matrix(0.0, (0, 1))
    m = h.size[0]
    if C is None: C = spmatrix(0.0, [], [], (n, n))
    if d is None: d = matrix(0.0, (n, 1))

    if sol['status'] is 'optimal':

        res = +d
        base.symv(C, sol['x'], res, beta=1.0)
        base.gemv(G, sol['z'], res, beta=1.0, trans='T')
        base.gemv(A, sol['Z'], res, beta=1.0, trans='T')
        print "Dual residual: %e" % blas.nrm2(res)

        if m:
            print "Minimum primal slack (scalar inequalities): %e" \
                %min(h - G*sol['x'])
            print "Minimum dual slack (scalar inequalities): %e" \
                %min(sol['z'])

        if p:
            s = matrix(0.0, (p, 1))
            X = matrix(A * sol['x'], (p, q)) + B
            lapack.gesvd(+X, s)
            nrmX = sum(s)
            lapack.gesvd(+sol['Z'], s)
            nrmZ = max(s)
            print "Norm of Z: %e" % nrmZ
            print "Nuclear norm of A(x) + B: %e" % nrmX
            print "Inner product of Z and A(x) + B: %e" \
                %blas.dot(sol['Z'], X)

    elif sol['status'] is 'primal infeasible':

        res = matrix(0.0, (n, 1))
        base.gemv(G, sol['z'], res, beta=1.0, trans='T')
        print "Dual residual: %e" % blas.nrm2(res)
        print "h' * z = %e" % blas.dot(h, sol['z'])
        print "Minimum dual slack (scalar inequalities): %e" \
            %min(sol['z'])

    else:
        pass
Beispiel #23
0
    def optimize_portfolio(self):
        optimization = {}

        n = self.n
        S = matrix(2 * self.statistics["covariance"])
        expected_returns = matrix(self.statistics["expected_asset_returns"])
        G, h, A, b = self.optimization_constraint_matrices()

        mu_array = [10**(5.0 * t / 100 - 1.0) for t in range(100)]

        portfolio_weights = [
            solvers.qp(mu * S, -expected_returns, G, h, A, b)["x"]
            for mu in mu_array
        ]
        returns = [dot(expected_returns, w) for w in portfolio_weights]
        risk = [np.sqrt(dot(w, S * w)) for w in portfolio_weights]

        # Calculate the portfolio with the greatest "reward-to-risk" ratio, which
        # is Sharpe's ratio. Notice that it is not necessary to specify the risk
        # free rate in the calculation of Sharpe's ratio, as without loss of generality
        # it may be assumed to be zero. In either case, the same portfolio will
        # achieve the maximum. However, since the risk free asset defaults to a
        # Treasury bill, we take no action regarding this observation.
        mu_free = self.risk_free.statistics["expected_return"]
        sharpe_ratio = (returns - mu_free) / risk
        max_sharpe_index = sharpe_ratio == max(sharpe_ratio)
        min_variance_index = risk == min(risk)

        optimization["returns"] = returns
        optimization["risk"] = risk

        # If possible, try to decrease the number of for loops used to extract the
        # optimal weights of the portfolio. At the time of writing this, it seems
        # that the matrix data structure is somewhat bizarre. Therefore, in order to
        # generate the desired numpy array object, so many for loops turned out to
        # be necessary.
        max_sharpe_weights = [
            portfolio_weights[i] for i in range(len(portfolio_weights))
            if max_sharpe_index[i]
        ]
        min_variance_weights = [
            portfolio_weights[i] for i in range(len(portfolio_weights))
            if min_variance_index[i]
        ]
        optimization["max_sharpe_weights"] = np.zeros((n, 1))
        optimization["min_variance_weights"] = np.zeros((n, 1))

        for i in range(len(max_sharpe_weights[0])):
            optimization["max_sharpe_weights"][i] = max_sharpe_weights[0][i]
        for i in range(len(min_variance_weights[0])):
            optimization["min_variance_weights"][i] = min_variance_weights[0][
                i]

        return optimization
def optimalPortfolio(navReturn, nbr, pre, risk_free,
                     fit_frequency):  # harry markoviz optimizer
    # Convert to cvxopt matricess
    navReturn = np.asmatrix(navReturn.T.values)
    if isinstance(pre, pd.DataFrame):
        S = opt.matrix(np.asarray(pre))
    else:
        S = opt.matrix(np.cov(navReturn))  # S-> covariance matrix
    pbar = opt.matrix(np.mean(navReturn, axis=1))  # pbar -> expected returns

    # Create constraint matrices
    G = -opt.matrix(np.eye(nbr))  # negative nbr x nbr identity matrix
    h = opt.matrix(0.0, (nbr, 1))  # all weight >= 0
    A = opt.matrix(1.0, (1, nbr))
    b = opt.matrix(1.0)  # weights sum up to 1

    #  scale desired returns
    N = 100
    mus = [10**(4 * t / N - 2) for t in range(N)]  # desired portfolio returns

    # Calculate [efficient frontier] weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus
                  ]  # x-> weighted portfolios| solvers.qp(P,q,G,h,A,b)

    # CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
    r_r = pd.DataFrame({'risks': risks, 'returns': returns})

    # FIT THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)  # polyfit: x,y,degree

    # CALCULATE 3 OUTPUT:  MAXIMUM SHARPE RATIO/ DEFAULT/ MINIMUM RISK
    srp = sharpeRatio(r_r, None, risk_free, fit_frequency, False)
    srp_y = float(srp.loc[srp['sharpeRatio'] == srp['sharpeRatio'].max(),
                          'returns'])
    # srp_y = srp[0] if isinstance(srp_y,seri) else srp_y # TODO AVOID MULTIPLE RESULT
    min_y = -m1[1] / (2 * m1[0])  # -(b/2a)
    if (m1[2] / m1[0]) < 0:
        y1 = min_y
    else:
        y1 = np.sqrt(m1[2] / m1[0])
    port = []
    for i in [srp_y, y1, min_y]:
        op_wt = solvers.qp(
            opt.matrix(i * S), -pbar, G, h, A,
            b)['x']  # CALCULATE THE [OPTIMAL PORTFOLIO WEIGHT] with min risk
        op_return = blas.dot(pbar, op_wt)  # return under OPTIMAL PORTFOLIO
        op_risk = np.sqrt(blas.dot(op_wt,
                                   S * op_wt))  # risk under OPTIMAL PORTFOLIO
        port.append([np.asarray(op_wt), op_return, op_risk])
    return port
Beispiel #25
0
    def find_the_desired_optimum_portfolio(self):
        n = 4
        S = matrix(self.covariance_matrix)
        print(S)
        xxx
        pbar = matrix([.12, .10, .07, .03])

        G = matrix(0.0, (n, n))
        G[::n + 1] = -1.0
        h = matrix(0.0, (n, 1))
        A = matrix(1.0, (1, n))
        b = matrix(1.0)

        N = 100
        mus = [10**(5.0 * t / N - 1.0) for t in range(N)]
        options['show_progress'] = False
        xs = [qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]
        returns = [dot(pbar, x) for x in xs]
        risks = [sqrt(dot(x, S * x)) for x in xs]
        #        epsilon = 0.01 * (max(std_portfolio_points_list) - min(std_portfolio_points_list))
        #        number_of_portfolio_points = len(expected_return_portfolio_points_list)
        #        risk_tolerance = min(std_portfolio_points_list) + ((self.risk_tolerance_percentage / 100) * (max(std_portfolio_points_list) - min(std_portfolio_points_list)))
        #        need_more_search = True
        #        while need_more_search:  # to check whether there exists any point in the region close to risk tolerance
        #            portfolio_optimum_expected_return = -1 * np.inf
        #            for point_index in range(number_of_portfolio_points):
        #                if abs(std_portfolio_points_list[point_index] - (risk_tolerance - 0.5*epsilon)) <= epsilon/2:
        #                    # the point has the risk close to risk tolerance (between tolerance-epsilon and tolerance)
        #                    if expected_return_portfolio_points_list[point_index] > portfolio_optimum_expected_return:
        #                        portfolio_optimum_expected_return = expected_return_portfolio_points_list[point_index]
        #                        portfolio_optimum_std = std_portfolio_points_list[point_index]
        #                        portfolio_optimum_weights = weights_list[point_index]
        #                        need_more_search = False
        #            epsilon += 0.001
        #
        #        portfolio_optimum_expected_return_list, portfolio_optimum_std_list, portfolio_optimum_weights_list = [], [], []
        #        for point_index in range(number_of_portfolio_points):
        #            if (expected_return_portfolio_points_list[point_index] > portfolio_optimum_expected_return) and \
        #               (std_portfolio_points_list[point_index] < portfolio_optimum_std):
        #                portfolio_optimum_expected_return_temp = expected_return_portfolio_points_list[point_index]
        #                portfolio_optimum_std_temp = std_portfolio_points_list[point_index]
        #                portfolio_optimum_weights_temp = weights_list[point_index]
        #                portfolio_optimum_expected_return_list.append(portfolio_optimum_expected_return_temp)
        #                portfolio_optimum_std_list.append(portfolio_optimum_std_temp)
        #                portfolio_optimum_weights_list.append(portfolio_optimum_weights_temp)
        #        if not (not portfolio_optimum_expected_return_list): # If aa is not empty (If we do not have already the optimum point)
        #            optimum_index = np.argmax(np.array(portfolio_optimum_expected_return_list))
        #            portfolio_optimum_expected_return = portfolio_optimum_expected_return_list[optimum_index]
        #            portfolio_optimum_std = portfolio_optimum_std_list[optimum_index]
        #            portfolio_optimum_weights = portfolio_optimum_weights_list[optimum_index]

        return portfolio_optimum_expected_return, portfolio_optimum_std, portfolio_optimum_weights, risk_tolerance
Beispiel #26
0
    def markowitz_optimizer(self, target, plot_frontier):
        returns_df = self.daily_returns.copy()
        portfolio_sz = len(self.stockList)
        returns = np.asmatrix(returns_df)

        # Convert to cvxopt matrices
        S = opt.matrix(np.cov(returns.T))
        pbar = opt.matrix(np.mean(returns, axis=0)).T

        # Create constraint matrices
        G = -opt.matrix(np.eye(portfolio_sz))   # negative n x n identity matrix
        h = opt.matrix(0.0, (portfolio_sz ,1))
        A = opt.matrix(1.0, (1, portfolio_sz))
        b = opt.matrix(1.0)

        if plot_frontier:
            N = 100
            mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
            # Calculate efficient frontier weights using quadratic programming
            portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x']
                          for mu in mus]
            ## CALCULATE RISKS AND RETURNS FOR FRONTIER
            returns = [blas.dot(pbar, x) for x in portfolios]
            risks = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
            ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
            m1 = np.polyfit(returns, risks, 2)
            if m1[0] != 0:
                x1 = np.sqrt(m1[2] / m1[0])
            else:
                x1 = 0.
            # CALCULATE THE OPTIMAL PORTFOLIO
            wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
            print 'The Optimal Value:\n'
            print np.asarray(wt)
            print 'The Corresponding Return:%f\n' %(x1)
            globalStats = GlobalStats(returns_df)
            means = globalStats.get_mean()
            stds = globalStats.get_std()
            plt.figure()
            plt.plot(stds, means, 'o')
            plt.ylabel('mean')
            plt.xlabel('std')
            plt.plot(risks, returns, 'y-o')

        # get the target portfolio
        target_portfolio = solvers.qp(target * S, -pbar, G, h, A, b)['x']
        target_return = blas.dot(pbar,target_portfolio)
        target_risk = np.sqrt(blas.dot(target_portfolio, S * target_portfolio))

        target_portfolio = np.asarray(target_portfolio)
        self.optimalAllocation = np.array([x[0] for x in target_portfolio])
Beispiel #27
0
def optimal_portfolio(returns):
    n = len(returns)
    returns = np.asmatrix(returns)

    N = 100
    mus = [10**(5.0 * t / N - 1.0) for t in range(N)]

    # Convert to cvxopt matrices
    S = opt.matrix(np.cov(returns))
    pbar = opt.matrix(np.mean(returns, axis=1))

    # Create constraint matrices
    G = -opt.matrix(np.eye(n))  # negative n x n identity matrix
    h = opt.matrix(0.0, (n, 1))
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)

    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu * S, -pbar, G, h, A, b)['x'] for mu in mus]

    for x in portfolios:
        weight_list.append(
            [round(x[0], 3),
             round(x[1], 3),
             round(x[2], 3),
             round(x[3], 3)])
        opt_weight_list.append(
            [round(x[0], 3),
             round(x[1], 3),
             round(x[2], 3),
             round(x[3], 3)])
        #weight_list.append([round(x[0],3), round(x[1],3), round(x[2],3)])
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]

    for re in returns:
        mean_list.append(re)

    for ri in risks:
        sigma_list.append(ri)

    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = np.polyfit(returns, risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
    print "-------------------debug-------------------"
    print x1
    return np.asarray(wt), returns, risks
Beispiel #28
0
def markowitz(returns, bounds):
    """Return the optimal tuple (weights strategies, returns, volatilities) acording to Markowitz's portfolio theory.
    :param returns: List of list of returns for each strategies.
    :param bounds: List of tuple of the bounds of the weights strategies. For example : [(0,1), (0,1), (0.5,1)]."""
    n = len(returns)
    if (len(returns) != len(bounds)):
        raise TypeError(
            'The number of bounds does notmatch the number of strategy. Should have {} bounds'
            .format(n))
    returns = np.asmatrix(returns)
    N = 100
    mus = [10**(5.0 * t / N - 2.0) for t in range(N)]
    # Convert to cvxopt matrices.
    S = optz.matrix(np.cov(returns))
    pbar = optz.matrix(np.mean(returns, axis=1))
    # Create constraint matrices.
    sgn_bound = [(np.eye(1, n, k=ind)[0] * -1, np.eye(1, n, k=ind)[0] * 1)
                 for ind in range(n)]
    sgn_bound = [list(i) for j in sgn_bound for i in j]
    constraint = [
        np.sign(ind - 0.5) * bound for strategy in bounds
        for ind, bound in enumerate(strategy)
    ]
    G = optz.matrix(sgn_bound).T
    h = optz.matrix(constraint)
    A = optz.matrix(1.0, (1, n))
    b = optz.matrix(1.0)
    # Calculate efficient frontier weights using quadratic programming.
    portfolios = []
    for mu in mus:
        portfolios.append(solvers.qp(mu * S, -pbar, G, h, A, b)['x'])
        try:
            portfolios.append(solvers.qp(mu * S, -pbar, G, h, A, b)['x'])
        except:
            pass
    # CALCULATE RISKS AND RETURNS FOR FRONTIER.
    optimal_returns = [blas.dot(pbar, x) for x in portfolios]
    optimal_risks = [np.sqrt(blas.dot(x, S * x)) for x in portfolios]
    # CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE.
    m1 = np.polyfit(optimal_returns, optimal_risks, 2)
    x1 = np.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO.
    try:
        optimal_weights = solvers.qp(optz.matrix(x1 * S), -pbar, G, h, A,
                                     b)['x']
    except:
        optimal_weights = np.nan
    optimal_weights = np.asarray(optimal_weights)
    return optimal_weights, optimal_returns, optimal_risks
 def run(self):
     cvxopt.solvers.options['show_progress'] = self.show_progress
     self.portfolios = [
         qp(float(t) * self.S, -self.pbar, self.G, self.h, self.A,
            self.b)['x'] for t in self.mus
     ]
     self.returns = [dot(self.pbar, x) for x in self.portfolios]
     self.risks = [sqrt(dot(x, self.S * x)) for x in self.portfolios]
     self.sharpe = [
         (self.returns[i] - self.risk_free_rate) / (self.risks[i] + 1e-4)
         for i in range(len(self.returns))
     ]
     self.weights = [
         dict(zip(self.names, portfolio)) for portfolio in self.portfolios
     ]
def optimal_portfolio(returns):
   
   

    n = len(returns)
    returns = numpy.asmatrix(returns)
    
    N = 100
    mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
    # Convert to cvxopt matrices
    S = matrix(numpy.cov(returns))
    print S # extra print stmts
    print "I am opt related"
    #######FIXME ABOVE #########################


    pbar = matrix(numpy.mean(returns, axis=1))
    
    # Create constraint matrices
    m=[[-1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0],[0.0,-1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0],[0.0,0.0,-1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0],[0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.0,1.0,0.0],[0.0,0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.0,1.0]]
    G = matrix(m)
  
    ab=[0,0,0,0,0,0.3,0.3,0.3,0.3,0.3]
    h=matrix(ab)

    # G = -matrix(numpy.eye(n))   # negative n x n identity matrix
    # h = matrix(0.0, (n ,1))
    A = matrix(1.0, (1, n))
    b = matrix(1.0)
    
    # Calculate efficient frontier weights using quadratic programming
    portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] 
                  for mu in mus]
    ## CALCULATE RISKS AND RETURNS FOR FRONTIER
    returns = [blas.dot(pbar, x) for x in portfolios]
    risks = [numpy.sqrt(blas.dot(x, S*x)) for x in portfolios]
    ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
    m1 = numpy.polyfit(returns, risks, 2)
    x1 = numpy.sqrt(m1[2] / m1[0])
    # CALCULATE THE OPTIMAL PORTFOLIO
    wt = solvers.qp(matrix(x1 * S), -pbar, G, h, A, b)['x']

    weights = matrix(wt)
    printing.options['dformat'] = '%.1f' #rounding up weights to 1 decimal

    # return numpy.asarray(wt)
    return weights  #changed in matrix
    """result looks like the follwg- 
Beispiel #31
0
    def dot(X, Y):
        """
        Computes trace product of X and Y.
        """
        assert Y.symb == X.symb, "Symbolic factorization mismatch"
        assert X.is_factor is False, "cspmatrix factor object"
        assert Y.is_factor is False, "cspmatrix factor object"

        snptr = X.symb.snptr
        sncolptr = X.symb.sncolptr
        blkptr = X.symb.blkptr
        val = 0.0
        for k in range(X.symb.Nsn):
            offset = blkptr[k]
            nk = snptr[k + 1] - snptr[k]
            ck = sncolptr[k + 1] - sncolptr[k]
            for j in range(nk):
                val -= X.blkval[offset + ck * j + j] * Y.blkval[offset +
                                                                ck * j + j]
                val += 2.0 * blas.dot(X.blkval,
                                      Y.blkval,
                                      offsetx=offset + ck * j + j,
                                      offsety=offset + ck * j + j,
                                      n=ck - j)
        return val
Beispiel #32
0
        def f(x, y, z):

            # z := - W**-T * z
            z[:n] = -div(z[:n], d1)
            z[n:2 * n] = -div(z[n:2 * n], d2)
            z[2 * n:] -= 2.0 * v * (v[0] * z[2 * n] -
                                    blas.dot(v[1:], z[2 * n + 1:]))
            z[2 * n + 1:] *= -1.0
            z[2 * n:] /= beta

            # x := x - G' * W**-1 * z
            x[:n] -= div(z[:n], d1) - div(z[n:2 * n], d2) + As.T * z[-(m + 1):]
            x[n:] += div(z[:n], d1) + div(z[n:2 * n], d2)

            # Solve for x[:n]:
            #
            #    S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]

            x[:n] -= mul(div(d1**2 - d2**2, d1**2 + d2**2), x[n:])
            lapack.potrs(S, x)

            # Solve for x[n:]:
            #
            #    (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]

            x[n:] += mul(d1**-2 - d2**-2, x[:n])
            x[n:] = div(x[n:], d1**-2 + d2**-2)

            # z := z + W^-T * G*x
            z[:n] += div(x[:n] - x[n:2 * n], d1)
            z[n:2 * n] += div(-x[:n] - x[n:2 * n], d2)
            z[2 * n:] += As * x[:n]
Beispiel #33
0
        def f(x, y, z):

            # z := - W**-T * z 
            z[:n] = -div( z[:n], d1 )
            z[n:2*n] = -div( z[n:2*n], d2 )
            z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) ) 
            z[2*n+1:] *= -1.0
            z[2*n:] /= beta

            # x := x - G' * W**-1 * z
            x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
            x[n:] += div(z[:n], d1) + div(z[n:2*n], d2) 

            # Solve for x[:n]:
            #
            #    S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]
            
            x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:]) 
            lapack.potrs(S, x)
            
            # Solve for x[n:]:
            #
            #    (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]
             
            x[n:] += mul( d1**-2 - d2**-2, x[:n])
            x[n:] = div( x[n:], d1**-2 + d2**-2)

            # z := z + W^-T * G*x 
            z[:n] += div( x[:n] - x[n:2*n], d1) 
            z[n:2*n] += div( -x[:n] - x[n:2*n], d2) 
            z[2*n:] += As*x[:n]
Beispiel #34
0
def allocation(mu, opts={}):
    n = 4
    G = matrix(0.0, (n,n))
    G[::n+1] = -1.0
    h = matrix(0.0, (n,1))
    A = matrix(1.0, (1,n))
    b = matrix(1.0)
    if opts:
        options.update(opts)

    print "mu*S=\n", mu*S
    print "-pbar=\n", -pbar
    x = qp(mu*S, -pbar, G, h, A, b)['x']
    ret = dot(pbar,x)
    risk = sqrt(dot(x, S*x))
    return x, ret, risk
Beispiel #35
0
    def lnprob(theta, Deltam, nsne, xi, redshiftterm):
        A, M, sigma, pv = theta
        if (A <= 0 or sigma < 0 or pv < 0):
            return -numpy.inf
        C = A * numpy.array(xi)
        numpy.fill_diagonal(
            C,
            C.diagonal() + sigma**2 / nsne + (pv * redshiftterm)**2)
        mterm = Deltam - M

        C = matrix(C)
        W = matrix(mterm)
        try:
            lapack.posv(C, W, uplo='U')
        except ArithmeticError:
            return -np.inf
        logdetC = 2 * numpy.log(numpy.array(C).diagonal()).sum()

        lp = -0.5 * (logdetC + blas.dot(matrix(mterm), W)) + cauchy.logpdf(
            sigma, loc=0.08, scale=0.5) + cauchy.logpdf(
                pv, loc=0, scale=600 / 3e5)

        if not numpy.isfinite(lp):
            return -np.inf
        return lp
Beispiel #36
0
def F(x=None, z=None):
   if x is None: return 0, matrix(0.0, (n+1,1))
   w = exp(A*x)
   f = dot(c,x) + sum(log(1+w)) 
   grad = c + A.T * div(w, 1+w)  
   if z is None: return matrix(f), grad.T
   H = A.T * spdiag(div(w,(1+w)**2)) * A
   return matrix(f), grad.T, z[0]*H 
def OptimalWeights(returns, rmin, pbar):
	n = len(returns)
	returns = np.asmatrix(returns)
	# Convert to cvxopt matrices
	S = opt.matrix(np.cov(returns))
	# Input number of iterations for mu (the number of points forming the efficient frontier)
	N=2
	# Iterations of mu are based on historical data
	mus_min=max(min(pbar), 0)
	mus_max=max(pbar)
	mus_step=(mus_max - mus_min) / (N-1)
	mus = [mus_min + i*mus_step for i in range(N)]
	# The following is an alternative way of calculating mus
	# mus = [10**(5.0 * t/N - 1.0) for t in range(N)]
	
	# cvxopt parameters: Gx <= h, Ax <= b
	G = opt.matrix(np.concatenate((-np.transpose(pbar),-np.identity(n)),0)) 
	h=opt.matrix(np.concatenate((-np.ones((1,1))*rmin, np.zeros((n,1))),0))
	A = opt.matrix(1.0, (1, n))
	b = opt.matrix(1.0)

	# Calculate efficient frontier weights using quadratic programming
	portfolios = [solvers.qp(S, -pbar, G, h, A, b)['x'] for mu in mus]

	# Calculate risks and returns for the minimum return portfolio
	returns_rmin = [blas.dot(pbar, x) for x in portfolios]
	risks_rmin = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
	# Calculate the 2nd degree polynomial of the frontier curve at the minimum return portfolio
	m1 = np.polyfit(returns_rmin, risks_rmin, 2)
	x1 = np.sqrt(m1[2] / m1[0])
	
	# Calculate the Optimal Portfolio
	h_mod= opt.matrix(np.concatenate((-np.ones((1,1))*x1, np.zeros((n,1))),0))
	wt = solvers.qp(S, -pbar, G, h_mod, A, b)
	sol = opt.matrix(wt['x'])

	expected_return = [blas.dot(pbar, sol)]
	expected_std = np.sqrt(sum([blas.dot(sol, S*sol)]))
	print 'Weights'
	print list(sol)
	print 'Expected Vol'
	print expected_std
	print 'Expected Ret'
	print expected_return

	return list(sol), expected_return, expected_std
    def optimize_portfolio(self):
        optimization = {}

        n = self.n
        S = matrix(2 * self.statistics["covariance"])
        expected_returns = matrix(self.statistics["expected_asset_returns"])
        G, h, A, b = self.optimization_constraint_matrices()

        mu_array = [10**(5.0*t/100-1.0) for t in range(100)]

        portfolio_weights = [solvers.qp(mu*S,-expected_returns,G,h,A,b)["x"] for mu in mu_array]
        returns = [dot(expected_returns,w) for w in portfolio_weights]
        risk = [np.sqrt(dot(w,S*w)) for w in portfolio_weights]
        
        # Calculate the portfolio with the greatest "reward-to-risk" ratio, which
        # is Sharpe's ratio. Notice that it is not necessary to specify the risk
        # free rate in the calculation of Sharpe's ratio, as without loss of generality
        # it may be assumed to be zero. In either case, the same portfolio will
        # achieve the maximum. However, since the risk free asset defaults to a 
        # Treasury bill, we take no action regarding this observation.
        mu_free = self.risk_free.statistics["expected_return"]
        sharpe_ratio = (returns - mu_free) / risk
        max_sharpe_index = sharpe_ratio == max(sharpe_ratio)
        min_variance_index = risk == min(risk)

        optimization["returns"] = returns
        optimization["risk"] = risk

        # If possible, try to decrease the number of for loops used to extract the
        # optimal weights of the portfolio. At the time of writing this, it seems
        # that the matrix data structure is somewhat bizarre. Therefore, in order to
        # generate the desired numpy array object, so many for loops turned out to
        # be necessary.
        max_sharpe_weights = [portfolio_weights[i] for i in range(len(portfolio_weights)) if max_sharpe_index[i]]
        min_variance_weights = [portfolio_weights[i] for i in range(len(portfolio_weights)) if min_variance_index[i]]
        optimization["max_sharpe_weights"] = np.zeros((n,1))
        optimization["min_variance_weights"] = np.zeros((n,1))

        for i in range(len(max_sharpe_weights[0])):
            optimization["max_sharpe_weights"][i] = max_sharpe_weights[0][i]
        for i in range(len(min_variance_weights[0])):
            optimization["min_variance_weights"][i] = min_variance_weights[0][i]

        return optimization
Beispiel #39
0
 def qscal(u, beta, v, inv = False):
     """
     Transforms the vector u as
        u := beta * (2*v*v' - J) * u
     if 'inv' is False and as
        u := (1/beta) * (2*J*v*v'*J - J) * u
     if 'inv' is True.
     """
     if not inv:
         tmp = blas.dot(u,v)
         u[0] *= -1
         u += 2 * v * tmp
         u *= beta
     else:
         u[0] *= -1.0
         tmp = blas.dot(v,u)
         u[0] -= 2*v[0] * tmp 
         u[1:] += 2*v[1:] * tmp
         u /= beta
    def _hedge_with_zeroone_constraint(self, normalize=True):
        ### common set up
        n = len(self.meanList)
        PP = matrix(self.covMat)
        P = self.covMat.copy()
        UU, ss, VV = np.linalg.svd(P)
        lamb = min(ss) * 0.99
        print lamb
        P[::n+1] -= lamb
        P = matrix(P)
        pbar = matrix(self.meanList)
        G = matrix(0.0, (n, n))
        G[::n+1] = -1.0
        key = self.fixedPosition.keys()
        A = matrix(0.0, (len(key), n))
        b = matrix(0.0, (len(key), 1))
        for ii in range(len(key)):
            A[ii, key[ii]] = 1.0
            b[ii, 0] = self.fixedPosition[ii]
        
        def sum_or_1(x):
            valu = sum(x)
            if valu == 0.0:
                return 1.0
            else :
                return valu

        
        NN = 100
        mus = [ 10 ** (10.0 * t/NN - 1.0) for t in range(NN)]
        if normalize:
            #portfolios = [matrix(np.round(solvers.qp(mu * P, -pbar, G, h, A, matrix(nn*1.0))['x'] * nn) * 1.0 / nn) for mu in mus for nn in range(1, n+1)]
            portfolios = [matrix(1.0 * (np.round(solvers.qp(mu * P, -pbar + lamb, G, h, A, matrix(nn*1.0))['x']) > 0)) for mu in mus for nn in range(1, n+1)]
            portfolios = [x / sum_or_1(x) for x in portfolios]
        else :
            portfolios = [matrix(1.0 * (np.round(solvers.qp(mu * P, -pbar + lamb, G, h, A, matrix(nn*1.0))['x']) > 0)) for mu in mus for nn in range(1, n+1)]
            
        returns = [ dot(pbar, x) for x in portfolios ]
        risks = [np.sqrt(dot(x, PP * x)) for x in portfolios]
        idx = np.argmin(np.abs(np.array(risks) - self.targetRisk))
        self.optimizedWeights = np.array(portfolios[idx]).T.tolist()[0]
        self.optimizedMean = returns[idx]
        self.optimizedRisk = risks[idx]
 def _optimize_with_no_constraint(self):
     ### common set up
     n = len(self.meanList)
     P = matrix(self.covMat)
     pbar = matrix(self.meanList)
     G = matrix(0.0, (n, n))
     h = matrix(0.0, (n, 1))
     A = matrix(1.0, (1, n))
     b = matrix(1.0)
     
     NN = 100
     mus = [ 10 ** (10.0 * t/NN - 1.0) for t in range(NN)]
     portfolios = [solvers.qp(mu * P, -pbar, G, h, A, b)['x'] for mu in mus]
     returns = [ dot(pbar, x) for x in portfolios ]
     risks = [np.sqrt(dot(x, P * x)) for x in portfolios]
     idx = np.argmin(np.abs(np.array(risks) - self.targetRisk))
     self.optimizedWeights = np.array(portfolios[idx]).T.tolist()[0]
     self.optimizedMean = returns[idx]
     self.optimizedRisk = risks[idx]
def efficient_frontier(mu, Sigma):
    (row, col) = Sigma.size
    (dim, one) = mu.size
    if row != col or dim != col or one != 1:
        print "portfolio dim error: %d %d %d %d" % (row, col, dim, one)
    n = row
    # we don't need to change the below setting
    G = matrix(0.0, (n,n))
    G[::n+1] = -1.0
    h = matrix(0.0, (n,1))  # G and h: -x <= 0 i.e. x >= 0
    A = matrix(1.0, (1,n))
    b = matrix(1.0)  # A and b: sum(x) = 1

    # Compute trade-off.
    N = 200
    alphas = [ 10**(5.0*t/N-1.0) for t in range(N) ]
    portfolios = [ qp(alpha * Sigma, -mu, G, h, A, b)['x'] for alpha in alphas ]
    returns = [ dot(mu, x) for x in portfolios ]
    risks = [ sqrt(dot(x, Sigma * x)) for x in portfolios ]
    return (returns, risks)
Beispiel #43
0
    def optimize1(self, mu):
        """Optimize for a given level of risk

        :returns: [[Allocations], returns, stddev]
        """
        options['show_progress'] = False

        try:
            pf = qp(mu * self.C, -self.pbar, self.G, self.h, self.A, self.b)
        except Exception as e:
            print e
            return None

        if pf['status'] is "unknown":
            return None
            #raise RuntimeError("optimization status unknown")

        returns = dot(self.pbar, pf['x'])
        std = sqrt(dot(pf['x'], self.C * pf['x']))
        return [pf['x'].T, returns, std]
Beispiel #44
0
        def f(x, y, z):

            minor = 0
            if not helpers.sp_minor_empty():
                minor = helpers.sp_minor_top()
            else:
                global loopf
                loopf += 1
                minor = loopf
            helpers.sp_create("00-f", minor)

            # z := - W**-T * z 
            z[:n] = -div( z[:n], d1 )
            z[n:2*n] = -div( z[n:2*n], d2 )

            z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) ) 
            z[2*n+1:] *= -1.0
            z[2*n:] /= beta

            # x := x - G' * W**-1 * z
            x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
            x[n:] += div(z[:n], d1) + div(z[n:2*n], d2) 
            helpers.sp_create("15-f", minor)
  
            # Solve for x[:n]:
            #
            #    S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]
            
            x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:]) 
            helpers.sp_create("25-f", minor)

            lapack.potrs(S, x)
            helpers.sp_create("30-f", minor)
            
            # Solve for x[n:]:
            #
            #    (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]
             
            x[n:] += mul( d1**-2 - d2**-2, x[:n])
            helpers.sp_create("35-f", minor)

            x[n:] = div( x[n:], d1**-2 + d2**-2)
            helpers.sp_create("40-f", minor)

            # z := z + W^-T * G*x 
            z[:n] += div( x[:n] - x[n:2*n], d1) 
            helpers.sp_create("44-f", minor)

            z[n:2*n] += div( -x[:n] - x[n:2*n], d2) 
            helpers.sp_create("48-f", minor)

            z[2*n:] += As*x[:n]
            helpers.sp_create("50-f", minor)
def optimal_portfolio_cvxopt(C, R=None, EF=False):
    n = C.shape[0]    # num of assets in the port
    if R is None:
        R = np.ones(n)   # min. variance setting
        
    # Convert to cvxopt matrices
    # minimize: w  * mu*S * w + mean_rets *x
    S = opt.matrix(C) 
    pbar = opt.matrix(R)    
    
    # Create constraint matrices
    # Gx < h: Every weights is positive
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))
    # Ax = b: sum of all weights equal to 1
    A = opt.matrix(1.0, (1, n))
    b = opt.matrix(1.0)
    
    if EF:
        effr_mean, effr_var, effr_weights = [], [], []
        N = 50
        mus = [10**(5.0 * t/N - 1.0) for t in range(N)]

        # Calculate efficient frontier weights using quadratic programming
        portfolios = [solvers.qp(mu*S, -pbar, G, h, A, b)['x'] 
                      for mu in mus]
        ## CALCULATE RISKS AND RETURNS FOR FRONTIER
        effr_mean = [blas.dot(pbar, x) for x in portfolios]
        effr_var = [np.sqrt(blas.dot(x, S*x)) for x in portfolios]
        effr_weights = [np.asarray(x).ravel() for x in portfolios]
        
        ## CALCULATE THE 2ND DEGREE POLYNOMIAL OF THE FRONTIER CURVE
        m1 = np.polyfit(returns, risks, 2)
        x1 = np.sqrt(m1[2] / m1[0])
        # CALCULATE THE OPTIMAL PORTFOLIO
        wt = solvers.qp(opt.matrix(x1 * S), -pbar, G, h, A, b)['x']
        return effr_mean, effr_var, effr_weights
    else:
        wt = solvers.qp(opt.matrix(S), -pbar, G, h, A, b)['x']
        return np.asarray(wt).ravel()
Beispiel #46
0
    def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):
        """
        Implements the linear operator

               [ -DX    E   -d   -I ]  
               [  0     0    0   -I ]  
               [  0   -e_1'  0    0 ]
          G =  [ -P_1'  0    0    0 ]     
               [  .     .    .    . ]    
               [  0   -e_k'  0    0 ]        
               [ -P_k'  0    0    0 ]       

        and its adjoint G'.

        """
        if trans == 'N':
            tmp = +y[:m]
            # y[:m] = alpha*(-DXw + Et - d*b - v) + beta*y[:m]
            base.gemv(E, x[n:n+k], tmp, alpha = alpha, beta = beta)
            blas.axpy(x[n+k+1:], tmp, alpha = -alpha)
            blas.axpy(d, tmp, alpha = -alpha*x[n+k])
            y[:m] = tmp

            base.gemv(X, x[:n], tmp, alpha = alpha, beta = 0.0)
            tmp = mul(d,tmp)
            y[:m] -= tmp
            
            # y[m:2*m] = -v
            y[m:2*m] = -alpha * x[n+k+1:] + beta * y[m:2*m]

            # SOC 1,...,k
            for i in range(k):
                l = 2*m+i*(n+1)
                y[l] = -alpha * x[n+i] + beta * y[l]
                y[l+1:l+1+n] = -alpha * P[i] * x[:n] + beta * y[l+1:l+1+n];

        else:
            tmp1 = mul(d,x[:m])
            tmp2 = y[:n]
            blas.gemv(X, tmp1, tmp2, trans = 'T', alpha = -alpha, beta = beta)
            for i in range(k):
                l = 2*m+1+i*(n+1)
                blas.gemv(P[i], x[l:l+n], tmp2, trans = 'T', alpha = -alpha, beta = 1.0)
            y[:n] = tmp2

            tmp2 = y[n:n+k]
            base.gemv(E, x[:m], tmp2, trans = 'T', alpha = alpha, beta = beta)
            blas.axpy(x[2*m:2*m+k*(1+n):n+1], tmp2, alpha = -alpha)
            y[n:n+k] = tmp2

            y[n+k] = -alpha * blas.dot(d,x[:m]) + beta * y[n+k]
            y[n+k+1:] = -alpha * (x[:m] + x[m:2*m]) + beta * y[n+k+1:]
Beispiel #47
0
    def getlowerexpectation(self,obj):
        """Compute the lower expectation of the given function
        
        :param obj: values of the function whose lower expectation is to be computed
        :param type: :class:`~numpy.array`
        :return: the lower expectation value
        :rtype: float
        """

        if(CredalSet.issubsetmask(obj)):
            return self.getlowerprobability(obj)
        else:
            solution=self.solvelowerexpectation(obj)
            return dot(solution['x'],matrix(obj))
    def _hedge_with_positive_constraint(self):
        ### common set up
        n = len(self.meanList)
        P = matrix(self.covMat)
        pbar = matrix(self.meanList)
        G = matrix(0.0, (n, n))
        G[::n+1] = -1.0
        h = matrix(0.0, (n, 1))
        key = self.fixedPosition.keys()
        A = matrix(0.0, (len(key), n))
        b = matrix(0.0, (len(key), 1))
        for ii in range(len(key)):
            A[ii, key[ii]] = 1.0
            b[ii, 0] = self.fixedPosition[ii]

        NN = 100
        mus = [ 10 ** (10.0 * t/NN - 1.0) for t in range(NN)]
        portfolios = [solvers.qp(mu * P, -pbar, G, h, A, b)['x'] for mu in mus]
        returns = [ dot(pbar, x) for x in portfolios ]
        risks = [np.sqrt(dot(x, P * x)) for x in portfolios]
        idx = np.argmin(np.abs(np.array(risks) - self.targetRisk))
        self.optimizedWeights = np.array(portfolios[idx]).T.tolist()[0]
        self.optimizedMean = returns[idx]
        self.optimizedRisk = risks[idx]
Beispiel #49
0
def acent(A, b):
    """  
    Computes analytic center of A*x <= b with A m by n of rank n. 
    We assume that b > 0 and the feasible set is bounded.
    """

    MAXITERS = 100
    ALPHA = 0.01
    BETA = 0.5
    TOL = 1e-8

    ntdecrs = []
    m, n = A.size
    x = matrix(0.0, (n, 1))
    H = matrix(0.0, (n, n))

    for iter in range(MAXITERS):

        # Gradient is g = A^T * (1./(b-A*x)).
        d = (b - A * x) ** -1
        g = A.T * d

        # Hessian is H = A^T * diag(1./(b-A*x))^2 * A.
        Asc = mul(d[:, n * [0]], A)
        blas.syrk(Asc, H, trans="T")

        # Newton step is v = H^-1 * g.
        v = -g
        lapack.posv(H, v)

        # Directional derivative and Newton decrement.
        lam = blas.dot(g, v)
        ntdecrs += [sqrt(-lam)]
        print("%2d.  Newton decr. = %3.3e" % (iter, ntdecrs[-1]))
        if ntdecrs[-1] < TOL:
            return x, ntdecrs

        # Backtracking line search.
        y = mul(A * v, d)
        step = 1.0
        while 1 - step * max(y) < 0:
            step *= BETA
        while True:
            if -sum(log(1 - step * y)) < ALPHA * step * lam:
                break
            step *= BETA
        x += step * v
Beispiel #50
0
    def dot(X,Y):
        """
        Computes trace product of X and Y.
        """
        assert Y.symb == X.symb, "Symbolic factorization mismatch"
        assert X.is_factor is False, "cspmatrix factor object"
        assert Y.is_factor is False, "cspmatrix factor object"

        snptr = X.symb.snptr
        sncolptr = X.symb.sncolptr
        blkptr = X.symb.blkptr
        val = 0.0
        for k in range(X.symb.Nsn):
            offset = blkptr[k]
            nk = snptr[k+1]-snptr[k]
            ck = sncolptr[k+1]-sncolptr[k]
            for j in range(nk):
                val -= X.blkval[offset+ck*j+j]*Y.blkval[offset+ck*j+j]
                val += 2.0*blas.dot(X.blkval,Y.blkval,offsetx=offset+ck*j+j,offsety=offset+ck*j+j,n=ck-j)
        return val
Beispiel #51
0
 def getupperprobability(self,subset):
     """Compute upper probability of an event expressed in binary code. 
     
     :param subset: the event of interest (a 1xn vector containing 1 for elements
         in the event, 0 otherwise.)
     :param type: np.array
     :returns: upper probability value
     :rtype: float
     
     """    
     if subset.__class__.__name__!='ndarray':
         raise Exception('Expecting a numpy array as argument')
     if subset.size != self.nbDecision:
         raise Exception('Subset incompatible with the frame size')
     if not CredalSet.issubsetmask(subset):
         raise Exception('Array is not 1/0 elements')
     solution = self.solvelowerexpectation(-subset)
     if solution['status']!='optimal':
         return "NA"
     else:
         return dot(solution['x'],matrix(subset))
def solve_portfolio_with_cam_correlation(cam_mu, cam_sigma, cam_cor, alpha):
    n = len(cam_mu)
    cams = []
    cam_idx = {}
    idx_cam = {}
    idx = 0
    for cam in sorted(cam_mu):
        cams.append(cam)
        cam_idx[cam] = idx
        idx_cam[idx] = cam
        idx += 1
    mu = matrix(0.0, (n, 1))
    for cam in cams:
        mu[cam_idx[cam]] = cam_mu[cam]
    Sigma = matrix(0.0, (n, n))
    for cam1 in cams:
        idx1 = cam_idx[cam1]
        for cam2 in cams:
            idx2 = cam_idx[cam2]
            idx = idx1 * n + idx2
            cor = 0.0
            if (cam1, cam2) in cam_cor:
                cor = cam_cor[(cam1, cam2)]
            elif (cam2, cam1) in cam_cor:
                cor = cam_cor[(cam2, cam1)]
            Sigma[idx] = cor * cam_sigma[cam1] * cam_sigma[cam2]
    v = solve_portfolio(mu, Sigma, alpha)
    cam_v = {}
    for cam in cams:
        cam_v[cam] = v[cam_idx[cam]]

    config.cached_mu = mu
    config.cached_Sigma = Sigma
    config.cached_idx_cam = idx_cam.copy()
    config.cached_portfolio_sigma = sqrt(dot(v, Sigma * v))
    config.cached_cam_v = cam_v.copy()

    return cam_v
Beispiel #53
0
        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0    0          ] * [ uy   [ = [ by        ]
            #     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # On entry, x, y, z contain bx, by, bz.  On exit, they contain
            # the solution ux, uy, W*uz.
            blas.scal(0.0, sltn)
            blas.copy(x, u)
            blas.copy(y, u, offsety = n)
            scale(z, W, trans = 'T', inverse = 'I') 
            pack(z, u, dims, mnl, offsety = n + p)
            blas.copy(u, r)
            # Iterative refinement algorithm:
            # Init: sltn = 0, r_0 = [bx; by; W^{-T}*bz]
            # 1. u_k = Ktilde^-1 * r_k
            # 2. sltn += u_k
            # 3. r_k+1 = r - K*sltn
            # Repeat until exceed MAX_ITER iterations or ||r|| <= ERROR_BOUND
            iteration = 0
            resid_norm = 1
            while iteration <= MAX_ITER and resid_norm > ERROR_BOUND:
                lapack.sytrs(Ktilde, ipiv, u)
                blas.axpy(u, sltn, alpha = 1.0)
                blas.copy(r, u)
                blas.symv(K, sltn, u, alpha = -1.0, beta = 1.0)
                resid_norm = math.sqrt(blas.dot(u, u))
                iteration += 1
            blas.copy(sltn, x, n = n)
            blas.copy(sltn, y, offsetx = n, n = p)
            unpack(sltn, z, dims, mnl, offsetx = n + p)
def markowitzReturns( returns, tickers, explain = False):
    n = len(returns)
    returns_df = returns
    returns = np.asmatrix(returns)
    mus = [10**(5.0 * t/50 - 1.0) for t in range(50)]
    # Convert to cvxopt matrices
    Sigma = opt.matrix(np.cov(returns))
    q = opt.matrix(np.mean(returns, axis=1))
    # Create constraint matrices
    G = -opt.matrix(np.eye(n))   # negative n x n identity matrix
    h = opt.matrix(0.0, (n ,1))  # -I*w < 0 i.e. no shorts
    A = opt.matrix(1.0, (1, n))  # A is all ones so A*w = w
    b = opt.matrix(1.0)          # Dot product sums to 1 
    # Calculate efficient frontier weights using quadratic programming
    ports = [solvers.qp(mu*Sigma, -q, G, h, A, b)['x'] for mu in mus]
    # Calculate risks and returns of frontier 
    returns = [blas.dot(q, x) for x in ports]
    risks = [np.sqrt(blas.dot(x, Sigma*x)) for x in ports]
    # Fit polynomial to frontier curve 
    m = np.polyfit(returns, risks, 2)
    x = np.sqrt(m[2]/m[0])
    # Calculate optimal portfolio weights
    optimal_weights = solvers.qp(opt.matrix(x * Sigma), -q, G, h, A, b)['x']
    optimal_return = blas.dot(q, optimal_weights)
    optimal_risk = np.sqrt(blas.dot(optimal_weights, Sigma*optimal_weights))
    # Method to justify this portfolio distribution if asked for 
    if( explain ):
        date_text = """
--------------------------------------------------------------------------------------------------

Using returns data from {0} to {1} a careful mean - variance analysis was performed. 
The analysis found a number of portfolios lying on the markowitz efficient frontier and they are 
found below. The analysis indicates that the optimal portfolio for the next trading day will have 
the following distribution:
"""
        print date_text.format(returns_df.columns[0],returns_df.columns[len(returns_df.columns)-1])
        # Print optimal weights 
        weights = np.asarray(optimal_weights)
        weights = [float(weights[i]) for i in range(len(weights))]
        wts = dict(zip(tickers,weights))
        for k in wts:
            weight_text = "\t{0} : {1:.4f}%"
            print weight_text.format(str(k),float(wts[k])*100)
        returns_text = """
This portfolio distribution has an expected return of:
        {0:.4f}%"""
        print returns_text.format(float(optimal_return)*100)
        risk_text = """
And the associated risk (standard deviation) is:
        {0:.4f}"""
        print risk_text.format(float(optimal_risk))
        break_text="""
--------------------------------------------------------------------------------------------------
        """
        print break_text
        plt.plot(risks, returns, 'b-o')
        plt.title('Efficient Portfolios on {}'.format(returns_df.columns[len(returns_df.columns)-1]))
        plt.ylabel('Returns (%)')
        plt.xlabel('Risk (STD)')
        plt.show()
    return np.asarray(optimal_weights), returns, risks 
Beispiel #55
0
 def test_dot(self):
     A = cp.cspmatrix(self.symb) + self.A
     B = cp.cspmatrix(self.symb) - 2*self.A
     self.assertAlmostEqual(2.0*blas.dot(A.blkval, B.blkval) - blas.dot(A.diag(),B.diag()), cp.dot(A,B))
Beispiel #56
0
 def xdot(u,v):
     return blas.dot(u[0], v[0]) + misc.sdot2(u[1], v[1]) + \
         misc.sdot2(u[2], v[2])
Beispiel #57
0
n = 4
S = matrix( [[ 4e-2,  6e-3, -4e-3,   0.0 ],
             [ 6e-3,  1e-2,  0.0,    0.0 ],
             [-4e-3,  0.0,   2.5e-3, 0.0 ],
             [ 0.0,   0.0,   0.0,    0.0 ]] )
pbar = matrix([.12, .10, .07, .03])

G = matrix(0.0, (n,n))
G[::n+1] = -1.0
h = matrix(0.0, (n,1))
A = matrix(1.0, (1,n))
b = matrix(1.0)

N = 100
mus = [ 10**(5.0*t/N-1.0) for t in range(N) ]
options['show_progress'] = False
xs = [ qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus ]
returns = [ dot(pbar,x) for x in xs ]
risks = [ sqrt(dot(x, S*x)) for x in xs ]
print returns
print risks

import pylab

c1 = [ x[0] for x in xs ]
c2 = [ x[0] + x[1] for x in xs ]
c3 = [ x[0] + x[1] + x[2] for x in xs ]
c4 = [ x[0] + x[1] + x[2] + x[3] for x in xs ]

Beispiel #58
0
# with n variables, and matrices A(x), B of size p x q.

setseed(0)

p, q, n = 100, 100, 100
A = normal(p*q, n)
B = normal(p, q)


# options['feastol'] = 1e-6
# options['refinement'] = 3

sol = nucnrm.nrmapp(A, B)

x = sol['x']
Z = sol['Z']

s = matrix(0.0, (p,1))
X = matrix(A *x, (p, q)) + B
lapack.gesvd(+X, s)
nrmX = sum(s)
lapack.gesvd(+Z, s)
nrmZ = max(s)
res = matrix(0.0, (n, 1))
blas.gemv(A, Z, res, beta = 1.0, trans = 'T')

print "\nNuclear norm of A(x) + B: %e" %nrmX
print "Inner product of B and Z: %e" %blas.dot(B, Z)
print "Maximum singular value of Z: %e" %nrmZ
print "Euclidean norm of A'(Z): %e" %blas.nrm2(res)
Beispiel #59
0
# Two variables (t, u).

G = matrix(0.0, ((n+1)**2, 2)) 
G[-1, 0] = -1.0    # coefficient of t
G[: (n+1)**2-1 : n+2, 1] = -1.0    # coefficient of u
h = matrix( [ [ A.T * A,  b.T * A ], [ A.T * b, b.T * b ] ] ) 
c = matrix(1.0, (2,1))

nopts = 40
alpha1 = [2.0/(nopts//2-1) * alpha for alpha in range(nopts//2) ] + \
    [ 2.0 + (15.0 - 2.0)/(nopts//2) * alpha for alpha in 
        range(1,nopts//2+1) ]
lbnds = [ blas.nrm2(b)**2 ]
for alpha in alpha1[1:]:  
    c[1:] = alpha
    lbnds += [ -blas.dot(c, solvers.sdp(c, Gs=[G], hs=[h])['x']) ]

nopts = 10
alpha2 = [ 1.0/(nopts-1) * alpha for alpha in range(nopts) ] 
ubnds = [ blas.nrm2(b)**2 ]
for alpha in alpha2[1:]:  
    c[1:] = alpha
    ubnds += [ blas.dot(c, solvers.sdp(c, Gs=[G], hs=[-h])['x']) ]

try: import pylab
except ImportError: pass
else:
    pylab.figure(1, facecolor='w')
    pylab.plot(lbnds, alpha1, 'b-', ubnds, alpha2, 'b-')
    kmax = max([ k for k in range(len(alpha1)) if alpha1[k] < 
        blas.nrm2(xls)**2 ])