Beispiel #1
0
 def testLoadDataset(self):
     ''' test universal dataset loading function '''
     from datasets.common import loadDataset, loadClim, loadStnTS
     # test climtology
     ds = loadClim(name='PCIC', grid='arb2_d02', varlist=['precip'])
     assert isinstance(ds, Dataset)
     assert ds.name == 'PCIC'
     assert 'precip' in ds
     assert ds.gdal and ds.isProjected
     # test CVDP
     ds = loadDataset(name='HadISST',
                      period=None,
                      varlist=None,
                      mode='CVDP')
     assert isinstance(ds, Dataset)
     assert ds.name == 'HadISST'
     assert 'PDO' in ds
     assert ds.gdal and not ds.isProjected
     # test CVDP with WRF
     ds = loadDataset(name='phys-ens-2100',
                      period=None,
                      varlist=None,
                      mode='CVDP')
     assert isinstance(ds, Dataset)
     assert ds.name == 'phys-ens-2100'
     assert 'PDO' in ds
     assert ds.gdal and not ds.isProjected
     # test WRF station time-series
     ds = loadStnTS(name='ctrl-1_d02',
                    varlist=['MaxPrecip_1d'],
                    station='ecprecip',
                    filetypes='hydro')
     assert isinstance(ds, Dataset)
     assert ds.name == 'ctrl-1_d02'
     assert 'MaxPrecip_1d' in ds
     # test example with list expansion
     # test EC station time-series
     dss = loadStnTS(name=['EC', 'ctrl-1'],
                     varlist=['MaxPrecip_1d', 'precip'],
                     station='ecprecip',
                     filetypes='hydro',
                     load_list=['name', 'varlist'],
                     lproduct='outer')
     assert len(dss) == 4
     assert isinstance(ds, Dataset)
     assert dss[1].name == 'EC' and dss[2].name == 'ctrl-1'
     assert 'MaxPrecip_1d' in dss[0] and 'precip' in dss[1]
     assert 'MaxPrecip_1d' not in dss[3] and 'precip' not in dss[2]
Beispiel #2
0
def loadShapeObservations(obs=None, seasons=None, basins=None, provs=None, shapes=None, varlist=None, slices=None,
                          aggregation='mean', shapetype=None, period=None, variable_list=None, **kwargs):
  ''' convenience function to load shape observations; the main function is to select sensible defaults 
      based on 'varlist', if no 'obs' are specified '''
  # prepare arguments
  if shapetype is None: shapetype = 'shpavg' # really only one in use  
  # resolve variable list (no need to maintain order)
  if isinstance(varlist,basestring): varlist = [varlist]
  variables = set(shp_params)
  for name in varlist: 
    if name in variable_list: variables.update(variable_list[name].vars)
    else: variables.add(name)
  variables = list(variables)
  # figure out default datasets
  if obs is None: obs = 'Observations'
  lUnity = lCRU = lWSC = False
  if obs[:3].lower() in ('obs','wsc'):    
    if any(var in CRU_vars for var in variables): 
      if aggregation == 'mean' and seasons is None: 
        lUnity = True; obs = []
    if basins and any([var in WSC_vars for var in variables]):
      if aggregation.lower() in ('mean','std','sem','min','max') and seasons is None: 
        lWSC = True; obs = []
  if not isinstance(obs,(list,tuple)): obs = (obs,)
  # configure slicing (extract basin/province/shape and period)
  slices = _configSlices(slices=slices, basins=basins, provs=provs, shapes=shapes, period=period)
  if slices is not None:
    noyears = slices.copy(); noyears.pop('years',None) # slices for climatologies
  # prepare and load ensemble of observations
  obsens = Ensemble(name='obs',title='Observations', basetype=Dataset)
  if len(obs) > 0: # regular operations with user-defined dataset
    try:
      ensemble = loadEnsembleTS(names=obs, season=seasons, aggregation=aggregation, slices=slices, 
                                varlist=variables, shape=shapetype, ldataset=False, **kwargs)
      for ens in ensemble: obsens += ens
    except EmptyDatasetError: pass 
  if lUnity: # load Unity data instead of averaging CRU data
    if period is None: period = (1979,1994)
    dataset = loadDataset(name='Unity', varlist=variables, mode='climatology', period=period, shape=shapetype)
    if slices is not None: dataset = dataset(**noyears) # slice immediately
    obsens += dataset.load() 
  if lCRU: # this is basically regular operations with CRU as default
    obsens += loadEnsembleTS(names='CRU', season=seasons, aggregation=aggregation, slices=slices, 
                             varlist=variables, shape=shapetype, ldataset=True, **kwargs)    
  if lWSC: # another special case: river hydrographs
#     from datasets.WSC import loadGageStation, GageStationError
    try:
      dataset = loadGageStation(basin=basins, varlist=['runoff'], aggregation=aggregation, mode='climatology', filetype='monthly')
      if slices is not None: dataset = dataset(**noyears) # slice immediately
      obsens += dataset.load()
    except GageStationError: 
      pass # just ignore, if gage station if data is missing 
  # return ensembles (will be wrapped in a list, if BatchLoad is used)
  return obsens
Beispiel #3
0
 def testLoadDataset(self):
   ''' test universal dataset loading function '''
   from datasets.common import loadDataset, loadClim, loadStnTS 
   # test climtology
   ds = loadClim(name='PCIC', grid='arb2_d02', varlist=['precip'])
   assert isinstance(ds, Dataset)
   assert ds.name == 'PCIC'
   assert 'precip' in ds
   assert ds.gdal and ds.isProjected
   # test CVDP
   ds = loadDataset(name='HadISST', period=None, varlist=None, mode='CVDP')
   assert isinstance(ds, Dataset)
   assert ds.name == 'HadISST'
   assert 'PDO' in ds
   assert ds.gdal and not ds.isProjected
   # test CVDP with WRF
   ds = loadDataset(name='phys-ens-2100', period=None, varlist=None, mode='CVDP')
   assert isinstance(ds, Dataset)
   assert ds.name == 'phys-ens-2100'
   assert 'PDO' in ds
   assert ds.gdal and not ds.isProjected    
   # test WRF station time-series
   ds = loadStnTS(name='ctrl-1_d02', varlist=['MaxPrecip_1d'], station='ecprecip', filetypes='hydro')
   assert isinstance(ds, Dataset)
   assert ds.name == 'ctrl-1_d02'
   assert 'MaxPrecip_1d' in ds
   # test example with list expansion
   # test EC station time-series
   dss = loadStnTS(name=['EC','ctrl-1'], varlist=['MaxPrecip_1d','precip'],
                   station='ecprecip', filetypes='hydro',
                   load_list=['name','varlist'], lproduct='outer')
   assert len(dss) == 4
   assert isinstance(ds, Dataset)
   assert dss[1].name == 'EC' and dss[2].name == 'ctrl-1'
   assert 'MaxPrecip_1d' in dss[0] and 'precip' in dss[1]
   assert 'MaxPrecip_1d' not in dss[3] and 'precip' not in dss[2]
Beispiel #4
0
    if isinstance(periods, (np.integer, int)): periods = [periods]
    # check and expand WRF experiment list
    WRF_experiments = getExperimentList(WRF_experiments, WRF_project, 'WRF')
    if isinstance(WRF_domains, (np.integer, int)): WRF_domains = [WRF_domains]
    # check and expand CESM experiment list
    CESM_experiments = getExperimentList(CESM_experiments, CESM_project,
                                         'CESM')
    # expand datasets and resolutions
    if datasets is None: datasets = gridded_datasets
    # update some dependencies
    unity_grid = grid  # trivial in this case
    obs_args['grid'] = grid
    obs_args['varlist'] = load_list

    ## load observations/reference dataset
    obs_dataset = loadDataset(name=obs_name, mode=obs_mode, **obs_args).load()

    # print an announcement
    if len(WRF_experiments) > 0:
        print('\n Bias-correcting WRF Datasets:')
        print([exp.name for exp in WRF_experiments])
    if len(CESM_experiments) > 0:
        print('\n Bias-correcting CESM Datasets:')
        print([exp.name for exp in CESM_experiments])
    if len(datasets) > 0:
        print('\n Bias-correcting Other Datasets:')
        print(datasets)
    print('\n On Grid/Resolution:\n   {:s}'.format(grid))
    print('\n Variable List: {:s}'.format(
        'All' if varlist is None else printList(varlist)))
    print('\n Bias-Correction Method: {:s}'.format(bc_method))
Beispiel #5
0
def loadShapeObservations(obs=None,
                          seasons=None,
                          basins=None,
                          provs=None,
                          shapes=None,
                          varlist=None,
                          slices=None,
                          aggregation='mean',
                          shapetype=None,
                          period=None,
                          variable_list=None,
                          **kwargs):
    ''' convenience function to load shape observations; the main function is to select sensible defaults 
      based on 'varlist', if no 'obs' are specified '''
    # prepare arguments
    if shapetype is None: shapetype = 'shpavg'  # really only one in use
    # resolve variable list (no need to maintain order)
    if isinstance(varlist, basestring): varlist = [varlist]
    variables = set(shp_params)
    for name in varlist:
        if name in variable_list: variables.update(variable_list[name].vars)
        else: variables.add(name)
    variables = list(variables)
    # figure out default datasets
    if obs is None: obs = 'Observations'
    lUnity = lCRU = lWSC = False
    if obs[:3].lower() in ('obs', 'wsc'):
        if any(var in CRU_vars for var in variables):
            if aggregation == 'mean' and seasons is None:
                lUnity = True
                obs = []
        if basins and any([var in WSC_vars for var in variables]):
            if aggregation.lower() in ('mean', 'std', 'sem', 'min',
                                       'max') and seasons is None:
                lWSC = True
                obs = []
    if not isinstance(obs, (list, tuple)): obs = (obs, )
    # configure slicing (extract basin/province/shape and period)
    slices = _configSlices(slices=slices,
                           basins=basins,
                           provs=provs,
                           shapes=shapes,
                           period=period)
    if slices is not None:
        noyears = slices.copy()
        noyears.pop('years', None)  # slices for climatologies
    # prepare and load ensemble of observations
    obsens = Ensemble(name='obs', title='Observations', basetype=Dataset)
    if len(obs) > 0:  # regular operations with user-defined dataset
        try:
            ensemble = loadEnsembleTS(names=obs,
                                      season=seasons,
                                      aggregation=aggregation,
                                      slices=slices,
                                      varlist=variables,
                                      shape=shapetype,
                                      ldataset=False,
                                      **kwargs)
            for ens in ensemble:
                obsens += ens
        except EmptyDatasetError:
            pass
    if lUnity:  # load Unity data instead of averaging CRU data
        if period is None: period = (1979, 1994)
        dataset = loadDataset(name='Unity',
                              varlist=variables,
                              mode='climatology',
                              period=period,
                              shape=shapetype)
        if slices is not None:
            dataset = dataset(**noyears)  # slice immediately
        obsens += dataset.load()
    if lCRU:  # this is basically regular operations with CRU as default
        obsens += loadEnsembleTS(names='CRU',
                                 season=seasons,
                                 aggregation=aggregation,
                                 slices=slices,
                                 varlist=variables,
                                 shape=shapetype,
                                 ldataset=True,
                                 **kwargs)
    if lWSC:  # another special case: river hydrographs
        #     from datasets.WSC import loadGageStation, GageStationError
        try:
            dataset = loadGageStation(basin=basins,
                                      varlist=['runoff'],
                                      aggregation=aggregation,
                                      mode='climatology',
                                      filetype='monthly')
            if slices is not None:
                dataset = dataset(**noyears)  # slice immediately
            obsens += dataset.load()
        except GageStationError:
            pass  # just ignore, if gage station data is missing
    # return ensembles (will be wrapped in a list, if BatchLoad is used)
    return obsens
Beispiel #6
0
  ## process arguments
  if isinstance(periods, (np.integer,int)): periods = [periods]
  # check and expand WRF experiment list
  WRF_experiments = getExperimentList(WRF_experiments, WRF_project, 'WRF')
  if isinstance(WRF_domains, (np.integer,int)): WRF_domains = [WRF_domains]
  # check and expand CESM experiment list
  CESM_experiments = getExperimentList(CESM_experiments, CESM_project, 'CESM')
  # expand datasets and resolutions
  if datasets is None: datasets = gridded_datasets  
  # update some dependencies
  unity_grid = grid # trivial in this case
  obs_args['grid'] = grid
  obs_args['varlist'] = load_list   

  ## load observations/reference dataset
  obs_dataset = loadDataset(name=obs_name, mode=obs_mode, **obs_args).load()
  
  # print an announcement
  if len(WRF_experiments) > 0:
    print('\n Bias-correcting WRF Datasets:')
    print([exp.name for exp in WRF_experiments])
  if len(CESM_experiments) > 0:
    print('\n Bias-correcting CESM Datasets:')
    print([exp.name for exp in CESM_experiments])
  if len(datasets) > 0:
    print('\n Bias-correcting Other Datasets:')
    print(datasets)
  print('\n On Grid/Resolution:\n   {:s}'.format(grid))
  print('\n Variable List: {:s}'.format('All' if varlist is None else printList(varlist)))
  print('\n Bias-Correction Method: {:s}'.format(bc_method))
  print('\n Observationa/Reference Dataset:\n   {:s}'.format(obs_dataset if ldebug else obs_dataset.name))