Beispiel #1
0
    def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
        x, y = ravel(x), ravel(y)
        if not all(diff(x) > 0.0):
            raise TypeError('x must be strictly increasing')
        if not all(diff(y) > 0.0):
            raise TypeError('y must be strictly increasing')
        if not ((x.min() == x[0]) and (x.max() == x[-1])):
            raise TypeError('x must be strictly ascending')
        if not ((y.min() == y[0]) and (y.max() == y[-1])):
            raise TypeError('y must be strictly ascending')
        if not x.size == z.shape[0]:
            raise TypeError('x dimension of z must have same number of '
                            'elements as x')
        if not y.size == z.shape[1]:
            raise TypeError('y dimension of z must have same number of '
                            'elements as y')
        z = ravel(z)
        xb, xe, yb, ye = bbox
        nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(
            x, y, z, xb, xe, yb, ye, kx, ky, s)

        if not ier in [0, -1, -2]:
            msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
            raise ValueError(msg)

        self.fp = fp
        self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
        self.degrees = kx, ky
    def __init__(self, x, y, z, bbox = [None]*4, kx=3, ky=3, s=0):
        x,y = ravel(x),ravel(y)
        if not all(diff(x) > 0.0):
            raise TypeError,'x must be strictly increasing'
        if not all(diff(y) > 0.0):
            raise TypeError,'y must be strictly increasing'
        if not ((x.min() == x[0]) and (x.max() == x[-1])):
            raise TypeError, 'x must be strictly ascending'
        if not ((y.min() == y[0]) and (y.max() == y[-1])):
            raise TypeError, 'y must be strictly ascending'
        if not x.size == z.shape[0]:
            raise TypeError,\
                  'x dimension of z must have same number of elements as x'
        if not y.size == z.shape[1]:
            raise TypeError,\
                  'y dimension of z must have same number of elements as y'
        z = ravel(z)
        xb,xe,yb,ye = bbox
        nx,tx,ny,ty,c,fp,ier = dfitpack.regrid_smth(x,y,z,
                                                    xb,xe,yb,ye,
                                                    kx,ky,s)
        if ier in [0,-1,-2]: # normal return
            pass
        else:
            message = _surfit_messages.get(ier,'ier=%s' % (ier))
            warnings.warn(message)

        self.fp = fp
        self.tck = tx[:nx],ty[:ny],c[:(nx-kx-1)*(ny-ky-1)]
        self.degrees = kx,ky
Beispiel #3
0
    def __init__(self,
                 x,
                 y,
                 z,
                 kind='linear',
                 copy=True,
                 bounds_error=False,
                 fill_value=np.nan):
        self.x, self.y, self.z = map(asarray, [x, y, z])
        self.x, self.y = map(ravel, [self.x, self.y])

        if self.z.size == len(self.x) * len(self.y):
            rectangular_grid = True
            if not all(self.x[1:] > self.x[:-1]):
                j = np.argsort(self.x)
                self.x = self.x[j]
                self.z = self.z[:, j]
            if not all(self.y[1:] > self.y[:-1]):
                j = np.argsort(self.y)
                self.y = self.y[j]
                self.z = self.z[j, :]
            self.z = ravel(self.z.T)
        else:
            rectangular_grid = False
            self.z = ravel(self.z)
            if len(self.x) != len(self.y):
                raise ValueError(
                    "x and y must have equal lengths for non rectangular grid")
            if len(self.z) != len(self.x):
                raise ValueError(
                    "Invalid length for input z for non rectangular grid")

        try:
            kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind]
        except KeyError:
            raise ValueError("Unsupported interpolation type.")

        if not rectangular_grid:
            # TODO: surfit is really not meant for interpolation!
            self.tck = fitpack.bisplrep(self.x,
                                        self.y,
                                        self.z,
                                        kx=kx,
                                        ky=ky,
                                        s=0.0)
        else:
            nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(self.x,
                                                              self.y,
                                                              self.z,
                                                              None,
                                                              None,
                                                              None,
                                                              None,
                                                              kx=kx,
                                                              ky=ky,
                                                              s=0.0)
            self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)],
                        kx, ky)
Beispiel #4
0
    def __init__(self, x, y, z,
                 bbox = [None]*4, kx=3, ky=3, s=0):
        """
        Input:
          x,y  - 1-d sequences of coordinates in strictly ascending order
            z  - 2-d array of data with shape (x.size,y.size)
        Optional input:
          bbox       - 4-sequence specifying the boundary of
                       the rectangular approximation domain.
                       By default, bbox=[min(x,tx),max(x,tx),
                                         min(y,ty),max(y,ty)]
          kx,ky=3,3  - degrees of the bivariate spline.
          s          - positive smoothing factor defined for
                       estimation condition:
                         sum((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) <= s
                       Default s=0 which is for interpolation
        """
        x,y = ravel(x),ravel(y)
        if not all(diff(x) > 0.0):
            raise TypeError,'x must be strictly increasing'
        if not all(diff(y) > 0.0):
            raise TypeError,'y must be strictly increasing'
        if not ((x.min() == x[0]) and (x.max() == x[-1])):
            raise TypeError, 'x must be strictly ascending'
        if not ((y.min() == y[0]) and (y.max() == y[-1])):
            raise TypeError, 'y must be strictly ascending'
        if not x.size == z.shape[0]:
            raise TypeError,\
                  'x dimension of z must have same number of elements as x'
        if not y.size == z.shape[1]:
            raise TypeError,\
                  'y dimension of z must have same number of elements as y'
        z = ravel(z)
        xb,xe,yb,ye = bbox
        nx,tx,ny,ty,c,fp,ier = dfitpack.regrid_smth(x,y,z,
                                                    xb,xe,yb,ye,
                                                    kx,ky,s)
        if ier in [0,-1,-2]: # normal return
            pass
        else:
            message = _surfit_messages.get(ier,'ier=%s' % (ier))
            warnings.warn(message)

        self.fp = fp
        self.tck = tx[:nx],ty[:ny],c[:(nx-kx-1)*(ny-ky-1)]
        self.degrees = kx,ky
Beispiel #5
0
    def __init__(self, x, y, z,
                 bbox = [None]*4, kx=3, ky=3, s=0):
        """
        Input:
          x,y  - 1-d sequences of coordinates in strictly ascending order
            z  - 2-d array of data with shape (x.size,y.size)
        Optional input:
          bbox       - 4-sequence specifying the boundary of
                       the rectangular approximation domain.
                       By default, bbox=[min(x,tx),max(x,tx),
                                         min(y,ty),max(y,ty)]
          kx,ky=3,3  - degrees of the bivariate spline.
          s          - positive smoothing factor defined for
                       estimation condition:
                         sum((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) <= s
                       Default s=0 which is for interpolation
        """
        x,y = ravel(x),ravel(y)
        if not all(diff(x) > 0.0):
            raise TypeError,'x must be strictly increasing'
        if not all(diff(y) > 0.0):
            raise TypeError,'y must be strictly increasing'
        if not ((x.min() == x[0]) and (x.max() == x[-1])):
            raise TypeError, 'x must be strictly ascending'
        if not ((y.min() == y[0]) and (y.max() == y[-1])):
            raise TypeError, 'y must be strictly ascending'
        if not x.size == z.shape[0]:
            raise TypeError,\
                  'x dimension of z must have same number of elements as x'
        if not y.size == z.shape[1]:
            raise TypeError,\
                  'y dimension of z must have same number of elements as y'
        z = ravel(z)
        xb,xe,yb,ye = bbox
        nx,tx,ny,ty,c,fp,ier = dfitpack.regrid_smth(x,y,z,
                                                    xb,xe,yb,ye,
                                                    kx,ky,s)
        if ier in [0,-1,-2]: # normal return
            pass
        else:
            message = _surfit_messages.get(ier,'ier=%s' % (ier))
            warnings.warn(message)

        self.fp = fp
        self.tck = tx[:nx],ty[:ny],c[:(nx-kx-1)*(ny-ky-1)]
        self.degrees = kx,ky
Beispiel #6
0
    def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False,
                 fill_value=np.nan):
        self.x, self.y, self.z = map(asarray, [x, y, z])
        self.x, self.y = map(ravel, [self.x, self.y])

        if self.z.size == len(self.x) * len(self.y):
            rectangular_grid = True
            if not all(self.x[1:] > self.x[:-1]):
                j = np.argsort(self.x)
                self.x = self.x[j]
                self.z = self.z[:,j]
            if not all(self.y[1:] > self.y[:-1]):
                j = np.argsort(self.y)
                self.y = self.y[j]
                self.z = self.z[j,:]
            self.z = ravel(self.z.T)
        else:
            rectangular_grid = False
            self.z = ravel(self.z)
            if len(self.x) != len(self.y):
                raise ValueError(
                    "x and y must have equal lengths for non rectangular grid")
            if len(self.z) != len(self.x):
                raise ValueError(
                    "Invalid length for input z for non rectangular grid")

        try:
            kx = ky = {'linear' : 1,
                       'cubic' : 3,
                       'quintic' : 5}[kind]
        except KeyError:
            raise ValueError("Unsupported interpolation type.")

        if not rectangular_grid:
            # TODO: surfit is really not meant for interpolation!
            self.tck = fitpack.bisplrep(self.x, self.y, self.z,
                                        kx=kx, ky=ky, s=0.0)
        else:
            nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(
                self.x, self.y, self.z, None, None, None, None,
                kx=kx, ky=ky, s=0.0)
            self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)],
                        kx, ky)