def mlogit_warp_grad(alpha, nu, q, y, max_itr=8000, tol=1e-4,
                     deltaO=0.008, deltag=0.008, display=0):
    """
    calculates optimal warping for functional multinomial logistic regression

    :param alpha: scalar
    :param nu: numpy ndarray of shape (M,N) of M functions with N samples
    :param q: numpy ndarray of shape (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses
    :param max_itr: maximum number of iterations (Default=8000)
    :param tol: stopping tolerance (Default=1e-10)
    :param deltaO: gradient step size for rotation (Default=0.008)
    :param deltag: gradient step size for warping (Default=0.008)
    :param display: display iterations (Default=0)

    :rtype: tuple of numpy array
    :return gam_old: warping function

    """

    alpha = alpha/norm(alpha)
    q, scale = cf.scale_curve(q)  # q/norm(q)
    for ii in range(0, nu.shape[2]):
        nu[:, :, ii], scale = cf.scale_curve(nu[:, :, ii])  # nu/norm(nu)

    gam_old, O_old = mw.ocmlogit_warp(np.ascontiguousarray(alpha),
                                      np.ascontiguousarray(nu),
                                      np.ascontiguousarray(q),
                                      np.ascontiguousarray(y, dtype=np.int32),
                                      max_itr, tol, deltaO, deltag, display)

    return (gam_old, O_old)
def preproc_open_curve(beta, T=100):
    n, M, k = beta.shape

    q = np.zeros((n, T, k))
    beta2 = np.zeros((n, T, k))
    for i in range(0, k):
        beta1 = beta[:, :, i]
        beta1, scale = cf.scale_curve(beta1)
        beta1 = cf.resamplecurve(beta1, T)
        centroid1 = cf.calculatecentroid(beta1)
        beta1 = beta1 - np.tile(centroid1, [T, 1]).T
        beta2[:, :, i] = beta1
        q[:, :, i] = cf.curve_to_q(beta1)

    return (q, beta2)
Beispiel #3
0
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)