Beispiel #1
0
def mplot(x, mat):
    m, n = mat.shape
    # linestyles = ['_', '-', '--', ':', '-.']
    linestyles = ['-', '--', '-.']
    # styles = ['+', '*', 'x']
    styles = ['']
    colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k')

    for i in range(n):
        color = colors[i % len(colors)]
        style = styles[i % len(styles)]
        ls = linestyles[i % len(linestyles)]
        plt.plot(x, mat[:, i], linestyle=ls, marker=style,
                color=color, markersize=4)
Beispiel #2
0
        for i in xrange(m):
            D[i, j] = I_rec[i][j, seq_map[args.entro]]

    x = HeuristicRefinePL(D, args.lamb, 50, 0.5, 0.01)
    if x is None:
        print('No feasible selection')
        # import sys
        sys.exit(0)

    print('solution: ', x)
    select_D = D[:, np.nonzero(x)[0]]
    org_entro = np.nanmin(D, axis=1)
    select_entro = np.nanmin(select_D, axis=1)

    plt.subplot(411)
    plt.plot(D)
    plt.title('divergence between traffic and all candidate PLs')
    plt.setp(plt.gca().get_xticklabels(), visible=False)
    plt.ylabel('divergence')

    plt.subplot(412)
    # plt.plot(select_D)
    mplot(range(m), select_D)
    plt.title('divergence between traffic and selected PLs')
    plt.setp(plt.gca().get_xticklabels(), visible=False)
    plt.ylabel('divergence')


    ##### plot selected model id with PL Identification #######
    plt.subplot(413)
    selected_model = []