Beispiel #1
0
def main(testing=False):
    # STEP 0: Parameters

    patchsize = 8
    num_patches = testing and 10 or 10000
    visible_size = patchsize * patchsize
    hidden_size = testing and 3 or 25
    target_activation = 0.01
    lamb = 0.0001
    beta = 3

    # STEP 1: Get data

    patches = sampleIMAGES(patchsize, num_patches)
    util.display_network(patches[:, np.random.randint(0, num_patches, 200)])
    theta = autoencoder.initialize_parameters(hidden_size, visible_size)

    # STEP 2: Implement sparseAutoencoderLoss

    def sal(theta):
        return autoencoder.sparse_autoencoder_loss(theta, visible_size,
                                                   hidden_size, lamb,
                                                   target_activation, beta,
                                                   patches)

    loss, grad = sal(theta)

    # STEP 3: Gradient Checking
    if testing:
        numgrad = util.compute_numerical_gradient(lambda x: sal(x)[0], theta)

        # Eyeball the gradients
        print np.hstack([numgrad, grad])

        diff = linalg.norm(numgrad - grad) / linalg.norm(numgrad + grad)
        print "Normed difference: %f" % diff

    # STEP 4: Run sparse_autoencoder_loss with L-BFGS

    # Initialize random theta
    theta = autoencoder.initialize_parameters(hidden_size, visible_size)

    print "Starting..."
    x, f, d = scipy.optimize.fmin_l_bfgs_b(sal,
                                           theta,
                                           maxfun=400,
                                           iprint=25,
                                           m=20)
    print "Done"
    print x
    print f
    print d

    W1, W2, b1, b2 = autoencoder.unflatten(x, visible_size, hidden_size)
    print "W1.shape=%s" % (W1.shape, )
    util.display_network(W1.T)
def main(testing=False):
  # STEP 0: Parameters

  patchsize = 8
  num_patches = testing and 10 or 10000
  visible_size = patchsize * patchsize
  hidden_size = testing and 3 or 25
  target_activation = 0.01
  lamb = 0.0001
  beta = 3

  # STEP 1: Get data

  patches = sampleIMAGES(patchsize, num_patches)
  util.display_network(patches[:,np.random.randint(0, num_patches, 200)])
  theta = autoencoder.initialize_parameters(hidden_size, visible_size)

  # STEP 2: Implement sparseAutoencoderLoss

  def sal(theta):
    return autoencoder.sparse_autoencoder_loss(theta, visible_size, hidden_size, lamb,
                                               target_activation, beta, patches)

  loss, grad = sal(theta)


  # STEP 3: Gradient Checking
  if testing:
    numgrad = util.compute_numerical_gradient(lambda x: sal(x)[0], theta)

    # Eyeball the gradients
    print np.hstack([numgrad, grad])

    diff = linalg.norm(numgrad-grad) / linalg.norm(numgrad+grad)
    print "Normed difference: %f" % diff

  # STEP 4: Run sparse_autoencoder_loss with L-BFGS

  # Initialize random theta
  theta = autoencoder.initialize_parameters(hidden_size, visible_size)

  print "Starting..."
  x, f, d = scipy.optimize.fmin_l_bfgs_b(sal, theta, maxfun=400, iprint=25, m=20)
  print "Done"
  print x
  print f
  print d

  W1, W2, b1, b2 = autoencoder.unflatten(x, visible_size, hidden_size)
  print "W1.shape=%s" % (W1.shape,)
  util.display_network(W1.T)
Beispiel #3
0
def main(testing=True):
  images = mnist.load_images('../data/train-images-idx3-ubyte')  # 784 x 60000
  labels = mnist.load_labels('../data/train-labels-idx1-ubyte')  # 60000 x 1
  util.display_network(images[:,0:100])  # Show the first 100 images

  visible_size = 28*28
  hidden_size = 196
  sparsity_param = 0.1
  lamb = 3e-3
  beta = 3
  patches = images[:,0:10000]
  theta = autoencoder.initialize_parameters(hidden_size, visible_size)
  def sal(theta):
    return autoencoder.sparse_autoencoder_loss(theta, visible_size, hidden_size, lamb,
                                               sparsity_param, beta, patches)
  x, f, d = scipy.optimize.fmin_l_bfgs_b(sal, theta, maxfun=400, iprint=1, m=20)
  W1, W2, b1, b2 = autoencoder.unflatten(x, visible_size, hidden_size)
  util.display_network(W1.T)
Beispiel #4
0
#     inputSize, hiddenSizeL1, ...
#     lambda, sparsityParam, ...
#     beta, trainData), ...
#     sae1Theta, options);

fn = lambda theta: autoencoder.sparse_autoencoder_loss(
    theta, input_size, hidden_size_l1, lamb, sparsity_param, beta, train_data)
sae1_opt_theta, loss, d = (scipy.optimize.fmin_l_bfgs_b(fn,
                                                        sae1_theta,
                                                        maxfun=maxfun,
                                                        iprint=1))

if DISPLAY:
    W1, W2, b1, b2 = autoencoder.unflatten(sae1_opt_theta, input_size,
                                           hidden_size_l1)
    util.display_network(W1.T)

# === Step 3: Train the second sparse autoencoder ===
#
# Train the second sparse autoencoder on the first autoencoder features.
sae1_features = autoencoder.feedforward_autoencoder(sae1_opt_theta,
                                                    hidden_size_l1, input_size,
                                                    train_data)

# Randomly initialize the parameters
sae2_theta = autoencoder.initialize_parameters(hidden_size_l2, hidden_size_l1)

fn = lambda theta: autoencoder.sparse_autoencoder_loss(
    theta, hidden_size_l1, hidden_size_l2, lamb, sparsity_param, beta,
    sae1_features)
sae2_opt_theta, loss, d = (scipy.optimize.fmin_l_bfgs_b(fn,
plt.figure()
plt.imshow(covar)
plt.title('Visualization of covariance matrix')
plt.show()

# STEP 2: Find k, the number of components to retain

SD = S
k = SD[(np.cumsum(SD) / np.sum(SD)) < 0.99].size

# STEP 3: Implement PCA with dimension reduction
xRot = U[:,0:k].T.dot(x)
xHat = U[:,0:k].dot(xRot)

util.display_network(x[:, randsel], 'Raw images', show=False)
util.display_network(xHat[:, randsel], 'PCA processed images')

# STEP 4a: Implement PCA with whitening and regularisation

epsilon = 0.1
xPCAWhite = np.diag(1.0 / np.sqrt(S + epsilon)).dot(U.T).dot(x)

# STEP 4b: Check your implementation of PCA whitening

covar = xPCAWhite.dot(xPCAWhite.T) / n

plt.figure()
plt.imshow(covar)
plt.title('Visualization of covariance matrix')
plt.show()
#!/usr/bin/env python

import sys
sys.path.append('..')

import numpy as np
from library import stl10
from library import softmax
from library import autoencoder
from library import util

import scipy.optimize


if __name__ == '__main__':

	r = np.load("result.npz")
	W11 = r["W11"]

	print W11.shape
	util.display_network(W11.T)

	# print W12.shape
	# util.display_network(W12.T)
	stack.layers[0].size = inputSize

	stack.layers[1].type = 'hidden'
	stack.layers[1].size = 50

	stack.layers[2].type = 'output'
	stack.layers[2].size = numOfClasses

	opts = util.Empty()
	opts.alpha = 0.1
	opts.batchsize = 100
	opts.momentun = 0
	opts.numepochs = 10


	# The nn setup & training
	stack = nn.setup(stack)
	stack = nn.train(stack, trainData, trainLabels, opts)

	if DISPLAY:
  		util.display_network(stack.layers[1].W.T)

  	pred = nn.predict(stack, testData)

  	print pred
  	print testLabels

	acc = (testLabels == pred).mean()

	print 'Accuracy: %0.3f' % (acc * 100)
			y = np.random.randint(width - patchSize + 1)
			x = np.random.randint(height - patchSize + 1)
			sample = IMAGES[y:y+patchSize, x:x+patchSize, idx]
			patches[:, p] = np.array(sample).flatten()
			p = p + 1

	return patches

if __name__ == '__main__':

	# Step 0a: Load data
	x = sampleIMAGESRAW()

	inputSize, numOfSamples = x.shape
	randsel = np.random.randint(0, numOfSamples, 200)
	util.display_network(x[:, randsel], 'Raw data')

	# Step 0b: Zero-mean the data (by column)
	avg = np.mean(x, axis = 0)
	x = x - avg

	# Step 1a: Implement PCA to obtain xRot
	sigma = x.dot(x.T) / numOfSamples
	U, S, V = np.linalg.svd(sigma)
	xRot = U.T.dot(x)

	# Step 1b: Check your implementation of PCA
	covar = xRot.dot(xRot.T) / numOfSamples

	plt.figure()
	plt.imshow(covar)