Beispiel #1
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer
    priori = np.zeros((C, 1))
    sum_ = x.sum(axis=1)

    for i in range(C):
        priori[i] = sum_[i] / total
    
    e = np.zeros(N)

    for i in range(N):
        for j in range(C):
            e[i] = e[i] + priori[j] * l[j,i]

    for i in range(N):
        for j in range(C):
            p[j,i] = l[j,i] * priori[j] / e[i]
            
    # end answer
    
    return p
Beispiel #2
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    
    p = np.zeros((C, N))
    #TODO

    # begin answer
    totalRow = np.sum(x, axis = 1)
    for i in range(C):
        sum = 0
        for j in range(N):
            p[i][j] = l[i][j] * totalRow[i] / total 
            sum += p[i][j]
    for j in range(N):
        sum = np.sum(p[:,j])
        for i in range(C):
            p[i][j] = p[i][j] / sum
    # end answer
    
    return p
Beispiel #3
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    # total of occurences of features
    total = np.sum(x)
    p = np.zeros((C, N))

    # begin answer
    total_per_feature = np.sum(x, axis=0)
    total_per_class = np.sum(x, axis=1)
    prior = np.zeros(C)
    for i in range(C):
        prior[i] = total_per_class[i] / total
    prob_per_feature = np.zeros(N)
    for i in range(N):
        prob_per_feature[i] = total_per_feature[i] / total

    for i in range(C):
        for j in range(N):
            p[i, j] = l[i, j] * prior[i] / prob_per_feature[j]
    # end answer

    return p
Beispiel #4
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x, axis=1)
    total2 = np.sum(x)
    r = 0

    while r < C:
        m = 0
        while m < N:
            l[r][m] *= (total[r] / total2)
            m += 1
        r += 1

    total = np.sum(l, axis=0)
    print(total)
    r = 0
    while r < C:
        m = 0
        while m < N:
            l[r][m] /= total[m]
            m += 1
        r += 1

    print(l)
    return l
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer
    # total is the sum of the original dataset, though the input x is the distribution of dataset
    # total_class is the sum of every class from the original dataset
    total_class = x.sum(axis=1)
    p_w = total_class / total
    for i in range(0, C):
        for j in range(0, N):
            p[i, j] = p_w[i] * l[i, j] / (l[0, j] * p_w[0] + l[1, j] * p_w[1])
    # end answer

    return p
def posterior(x):
    l = likelihood(x)
    total = np.sum(x)
    p_w = np.sum(x, axis=1, keepdims=True) / total
    pos = l * p_w
    px = np.sum(x, axis=0) / total
    return pos / px
Beispiel #7
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer
    prior = np.zeros((C, 1))
    for i in range(0, C):
        prior[i] = x.sum(axis=1)[i] / total

    px = np.zeros((1, N))
    for j in range(0, N):
        for i in range(0, C):
                px[0][j] += prior[i] * l[i][j]

    for j in range(0, N):
        for i in range(0, C):
                p[i][j] = l[i][j] * prior[i] / px[0][j]

    # end answer
    
    return p
Beispiel #8
0
    def __call__(self, params, dtype=np.double):

        from math import log

        #print params[0], params[1], params[2]
        return (
            prior(params) + 
            likelihood.likelihood(params)
            )
Beispiel #9
0
    def __call__(self, params, dtype=np.double):
        q, beta, k, c1, c2, c3, deq, deqq, diq, delta, gamma, E0, I0 = params

        #from math import log

        return (prior.prior(q, beta, k, c1, c2, c3, deq, deqq, diq, delta,
                            gamma, E0, I0) +
                likelihood.likelihood(q, beta, k, c1, c2, c3, deq, deqq, diq,
                                      delta, gamma, E0, I0))
Beispiel #10
0
def test_likelihood():
    '''Test that the likelihood calculation is correct'''

    cases = np.asarray([[3, 1, 0, 1], [1, 0, 2, 1], [0, 0, 0, 1]])
    intensity = np.asarray([[1, 3, 1.5, 6], [4.2, 3.1, 7, 1.4],
                            [2, 5.1, 4.2, 8.9]])

    result = likelihood.likelihood(intensity, cases)
    assert_almost_equal(result, -39.145, decimal=3)
Beispiel #11
0
def moveBorders(data,options):
    """
    move parameter-boundaries to save computing power 
    function borders=moveBorders(data, options)
    this function evaluates the likelihood on a much sparser, equally spaced
    grid definded by mbStepN and moves the borders in so that that 
    marginals below tol are taken away from the borders.
    
    this is meant to save computing power by not evaluating the likelihood in
    areas where it is practically 0 everywhere.
    """
    borders = []
    
    tol = options['maxBorderValue']
    d = options['borders'].shape[0]
    
    MBresult = {'X1D':[]}
    
    
    ''' move borders out
    should our borders be to tight, e.g. the distribution does not go to zero
    at the borders we move them out until this is the case. 
    
    TODO it was disabled in MATLAB version. What to do with it?
    '''
    
    ''' move borders inwards '''
    
    for idx in range(0,d):
        if (len(options['mbStepN']) >= idx and options['mbStepN'][idx] >= 2 
            and options['borders'][idx,0] != options['borders'][idx,1]) :
            MBresult['X1D'].append(np.linspace(options['borders'][idx,0], options['borders'][idx,1], options['mbStepN'][idx]))
        else:
            if (options['borders'][idx,0] != options['borders'][idx,1] and options['expType'] != 'equalAsymptote'):
                warnings.warn('MoveBorders: You set only one evaluation for moving the borders!') 
            
            MBresult['X1D'].append( np.array([0.5*np.sum(options['borders'][idx])]))        
           
        
    MBresult['weight'] = getWeights(MBresult['X1D'])
    #kwargs = {'alpha': None, 'beta':None , 'lambda': None,'gamma':None , 'varscale':None }
    #fill_kwargs(kwargs,MBresult['X1D'])
    MBresult['Posterior'] = likelihood(data, options, MBresult['X1D'])[0] 
    integral = sum(np.reshape(MBresult['Posterior'], -1) * np.reshape(MBresult['weight'], -1))
    MBresult['Posterior'] /= integral

    borders = np.zeros([d,2])    
    
    for idx in range(0,d):
        (L1D,x,w) = marginalize(MBresult, np.array([idx]))
        x1 = x[np.max([np.where(L1D*w >= tol)[0][0] - 1, 0])]
        x2 = x[np.min([np.where(L1D*w >= tol)[0][-1]+1, len(x)-1])]
        
        borders[idx,:] = [x1,x2]
    
    return borders
Beispiel #12
0
 def posterior(x, pks={}):
     #print tot_branch_length
     prior_value = prior(x, p=p, use_skewed_distr=use_skewed_distr, pks=pks)
     if prior_value == -float('inf'):
         return -float('inf'), prior_value
     likelihood_value = likelihood(x, emp_cov, M=M)
     pks['prior'] = prior_value
     pks['likelihood'] = likelihood_value
     #pks['posterior']=prior_value+likelihood_value
     return likelihood_value, prior_value
 def __init__(self, S, M, U, V, I, T, X, Y, events, checkins, pre_compute_map, pre_compute_Aij):
     self.S = S
     self.M = M
     self.U = U
     self.V = V
     self.I = I
     self.T = T
     self.X = X
     self.Y = Y
     self.events = events
     self.checkins = checkins
     self.likelihood = likelihood(S, M, U, V, I, T, X, Y, events, checkins, pre_compute_map, pre_compute_Aij)
Beispiel #14
0
def moveBorders(data,options):
    """
    move parameter-boundaries to save computing power 
    function borders=moveBorders(data, options)
    this function evaluates the likelihood on a much sparser, equally spaced
    grid definded by mbStepN and moves the borders in so that that 
    marginals below tol are taken away from the borders.
    
    this is meant to save computing power by not evaluating the likelihood in
    areas where it is practically 0 everywhere.
    """
    borders = []
    
    tol = options.maxBorderValue
    d = options.borders.shape[0]
    
    MBresult =  lambda: 0
    
    ''' move borders out
    should our borders be to tight, e.g. the distribution does not go to zero
    at the borders we move them out until this is the case. 
    
    TODO it was disabled in MATLAB version. What to do with it?
    '''
    
    ''' move borders inwards '''
    
    for idx in range(0,d):
        if (len(options.mbStepN) >= idx and options.mbStepN[idx] >= 2 
            and options.borders[idx,0] != options.borders[idx,1]) :
            MBresult.X1D[idx] = np.linspace(options.borders[idx,0], options.borders[idx,1], options.mbStepN[idx])
        else:
            if (options.borders[idx,0] != options.borders[idx,1] and options.expType != 'equalAsymptote'):
                warnings.warn('MoveBorders: You set only one evaluation for moving the borders!') 
            
            MBresult.X1D[idx] = 0.5*np.sum(options.borders[idx])            
           
        
    MBresult.weight = getWeights(MBresult.X1D)
    MBresult.Posterior = likelihood(data, options, MBresult.X1D) # TODO check!
    integral = sum(MBresult.Posterior[:] * MBresult.weight[:])
    MBresult.Posterior /= integral

    borders = np.zeros([d,2])    
    
    for idx in range(0,d):
        (L1D,x,w) = marginalize(MBresult, idx)
        x1 = x[np.max(np.where(L1D*w >= tol)[0] - 1, 1)]
        x2 = x[np.min(np.where(L1D*w >= tol)[-1]+1, len(x))]
        
        borders[idx,:] = [x1,x2]
    
    return borders
Beispiel #15
0
def Metro_Hastings(A_old, b_old, sigma_old):
    import numpy as np

    from fakedata import m

    from likelihood import likelihood

    # Initial guess of the parameters
    A_new = np.zeros(m, np.float64)
    b_new = np.zeros(m, np.float64)

    # Suppose the proposal distribution g(theta_new|theta_old) is gaussian N(theta_old,var_prop).
    # Generate a new candidate theta from the gaussian distribution
    var_prop = 1.0
    sigma_new = np.random.normal(sigma_old, var_prop)

    for i in range(0, m):
        A_new[i] = np.random.normal(A_old[i], var_prop)
        b_new[i] = np.random.normal(b_old[i], var_prop)

    # Compute the log likelihood ratio
    lik_old = likelihood(A_old, b_old, sigma_old)
    lik_new = likelihood(A_new, b_new, sigma_new)
    log_r = lik_new - lik_old

    accepted = 0.0
    u = 0.0
    # Accept or reject
    if (log_r > 0):  # Accept new parameters if r > 1
        accepted = 1.0  # monitor acceptance
    else:
        u = np.random.uniform(0.0, 1.0)
        if (u < np.exp(log_r)):  # Accept new parameters with probability r.
            accepted = 1.0  # monitor acceptance
        else:
            A_new = A_old
            b_new = b_old
            sigma_new = sigma_old

    return A_new, b_new, sigma_new, accepted
Beispiel #16
0
 def posterior(x, pks={}):
     #print tot_branch_length
     prior_value = prior(x, p=p, use_skewed_distr=use_skewed_distr, pks=pks)
     if prior_value == -float('inf'):
         return -float('inf'), prior_value
     likelihood_value = likelihood(x, emp_cov, M=M, pks=pks)
     pks['prior'] = prior_value
     pks['likelihood'] = likelihood_value
     prior_values = (pks['branch_prior'], pks['no_admix_prior'],
                     pks['admix_prop_prior'], pks['top_prior'])
     covariance = pks['covariance']
     #pks['posterior']=prior_value+likelihood_value
     return likelihood_value, prior_value, prior_values, covariance
Beispiel #17
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer
    l = likelihood(x)
    preC = [i / np.sum(x) for i in [np.sum(x[j]) for j in range(C)]]
    preX = [i / np.sum(x) for i in np.sum(x, axis=0)]
    for i in range(C):
        for j in range(N):
            p[i, j] = preC[i] * l[i, j] / preX[j]
    # end answer
    
    return p
Beispiel #18
0
 def posterior(x, pks={}):
     #print tot_branch_length
     #print get_number_of_leaves(x[0]), emp_cov.shape[0]
     prior_value = prior(x,
                         p=p,
                         use_skewed_distr=use_skewed_distr,
                         pks=pks,
                         use_uniform_prior=use_uniform_prior)
     if prior_value == -float('inf'):
         return -float('inf'), prior_value
     likelihood_value = likelihood(x, emp_cov, M=M, nodes=nodes)
     pks['prior'] = prior_value
     pks['likelihood'] = likelihood_value
     #pks['posterior']=prior_value+likelihood_value
     return likelihood_value, prior_value
Beispiel #19
0
def moveBorders(data,options):
    """
    move parameter-boundaries to save computing power 
    function borders=moveBorders(data, options)
    this function evaluates the likelihood on a much sparser, equally spaced
    grid definded by mbStepN and moves the borders in so that that 
    marginals below tol are taken away from the borders.
    
    this is meant to save computing power by not evaluating the likelihood in
    areas where it is practically 0 everywhere.
    """
    borders = []
    
    tol = options['maxBorderValue']
    d = options['borders'].shape[0]
    
    MBresult = {'X1D':[]}
    
    ''' move borders inwards '''
    for idx in range(0,d):
        if (len(options['mbStepN']) >= idx and options['mbStepN'][idx] >= 2 
            and options['borders'][idx,0] != options['borders'][idx,1]) :
            MBresult['X1D'].append(np.linspace(options['borders'][idx,0], options['borders'][idx,1], options['mbStepN'][idx]))
        else:
            if (options['borders'][idx,0] != options['borders'][idx,1] and options['expType'] != 'equalAsymptote'):
                warnings.warn('MoveBorders: You set only one evaluation for moving the borders!') 
            
            MBresult['X1D'].append( np.array([0.5*np.sum(options['borders'][idx])]))        
           
        
    MBresult['weight'] = getWeights(MBresult['X1D'])
    #kwargs = {'alpha': None, 'beta':None , 'lambda': None,'gamma':None , 'varscale':None }
    #fill_kwargs(kwargs,MBresult['X1D'])
    MBresult['Posterior'] = likelihood(data, options, MBresult['X1D'])[0] 
    integral = sum(np.reshape(MBresult['Posterior'], -1) * np.reshape(MBresult['weight'], -1))
    MBresult['Posterior'] /= integral

    borders = np.zeros([d,2])    
    
    for idx in range(0,d):
        (L1D,x,w) = marginalize(MBresult, np.array([idx]))
        x1 = x[np.max([np.where(L1D*w >= tol)[0][0] - 1, 0])]
        x2 = x[np.min([np.where(L1D*w >= tol)[0][-1]+1, len(x)-1])]
        
        borders[idx,:] = [x1,x2]
    
    return borders
Beispiel #20
0
    def perform(self, node, inputs, outputs):
        """
        Perform the Op; get the log-likelihood of the data given the inputs.
        """

        start_index = 0
        if self.fixed_r_c is None:
            r_c = inputs[0][0]
            start_index += 1
        else:
            r_c = self.fixed_r_c

        if self.fixed_r_h is None:
            r_h = inputs[0][start_index]
            start_index += 1
        else:
            r_h = self.fixed_r_h

        fit_params = {
            'baseline_intensities': np.asarray(
                inputs[0][start_index:]
            ),
            'r_c': r_c,
            'r_h': r_h
        }

        if (r_c == 0) and (r_h == 0):
            intensity = likelihood.carehome_intensity_null(
                covariates=self.covariates,
                cases=self.cases,
                fit_params=fit_params
            )
        else:
            intensity = likelihood.carehome_intensity(
                covariates=self.covariates,
                cases=self.cases,
                discharges=self.discharges,
                fit_params=fit_params,
                dist_params=self.dist_params
            )

        logl = likelihood.likelihood(intensity, self.cases)
        if outputs is not None:
            outputs[0][0] = np.array(logl)
        else:
            return logl
Beispiel #21
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO
    p_w = np.sum(x, axis=1, keepdims=True) / total
    # begin answer
    p = l * p_w / (np.sum(l * p_w, axis=0))
    # end answer

    return p
Beispiel #22
0
def ll_table(maindir,year,N_TRIAL,trajectories, feature_matrices,discount, Tprob,clobber=True):

    outname='results/ll_table.csv'
    if os.path.exists(outname) and not clobber:
        return pd.read_csv(outname)

    df = pd.DataFrame().from_dict(read_multi_data(maindir,year))
    fnames = df.fname.values
    ll_list = []
    for f in fnames:
        weights = np.load(f) # last updated weights
        weights = weights[-1].mean(axis=(0,1))
        ll_list.append(likelihood(N_TRIAL,trajectories, feature_matrices, weights, discount, Tprob))
    df['LL'] = pd.Series(ll_list)
    df.sort_values(by="LL",ascending=False,inplace=True)
    df = df.rename(columns={"V": "Year", "E": "Epochs", "N": "Number of experts", "LR":"LR", "LRD": "LR Decay","S":"Seed","LL":"LogLikelihood" })
    df.to_csv('results/ll_table.csv')
    df.iloc[:,1:].to_html('results/ll_table.html',index=False)
    return df
Beispiel #23
0
def plot_ll(N_TRIAL, trajectories, feature_matrices, weights, discount, Tprob):

    N_EPOCHS, N_EXPERTS, N_TRIALS, N_FEAT = np.shape(weights)

    epochs = [0, 10, 20, 40, 80, 160, 320, 400, 499]
    lldict = {'epoch': [], 'average LL': []}

    for epoch in epochs:
        w = weights[epoch].mean(axis=(0, 1))
        lldict['epoch'].append(epoch)
        lldict['average LL'].append(
            likelihood(N_TRIAL, trajectories, feature_matrices, w, discount,
                       Tprob))

    ll = pd.DataFrame.from_dict(lldict)

    g = sns.relplot(x="epoch", y="average LL", data=ll)

    g.fig.suptitle("Average Log Likelihood")
    plt.savefig(f'results/avgLL{str(datetime.date.today())}.png')
Beispiel #24
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    prior = np.sum(x, axis=1) / total
    p = np.zeros((C, N))
    #TODO

    # begin answer
    for c in range(C):
        p[c] = l[c] * prior[c] / (l[0] * prior[0] + l[1] * prior[1])
    # end answer

    return p
Beispiel #25
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer

    prior = np.sum(x, axis=1) / total
    evidence = np.sum(x, axis=0) / total
    p = l * prior.reshape(C, 1) / evidence.reshape(1, N)

    # end answer

    return p
Beispiel #26
0
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO

    # begin answer
    for j in range(N):
        P_x = np.sum(x[:, j]) / total
        for i in range(C):
            P_i = np.sum(x[i, :]) / total
            p[i][j] = l[i][j] * P_i / P_x
    # end answer

    return p
def posterior(x):
    '''
    POSTERIOR Two Class Posterior Using Bayes Formula
    INPUT:  x, features of different class, C-By-N vector
            C is the number of classes, N is the number of different feature
    OUTPUT: p,  posterior of each class given by each feature, C-By-N matrix
    '''

    C, N = x.shape
    l = likelihood(x)
    total = np.sum(x)
    p = np.zeros((C, N))
    #TODO
    pw = np.sum(x, axis=1)
    px = np.sum(x, axis=0)
    pw /= total
    px /= total
    # begin answer
    for i in range(C):
        for j in range(N):
            p[i, j] = l[i, j] * pw[i] / px[j]
    # end answer

    return p
Beispiel #28
0
def parameter_estimation(model,f,param_dict):
    if type(model)==list:
        model_expr=model[0].rstrip() 
    else:
        model_expr=model
    
    chosen_model=Model(mtype=model_expr)
    
    if model_expr in param_dict:
        param=param_dict[model_expr]   
        print 'Sol ('+model_expr+') =',param
    else:
        L=lambda P:-likelihood(f[1],f[2],f[0],P,model)
#    parameters={}
    
        Sol=minimize(L,np.array([0.29,4.5]),method='BFGS')     ###minimization
    #             options={'maxfev':1e+08,'maxiter':1e+08} ###and parameter estimation       
        param=Sol.x
        param_dict[model_expr]=Sol.x
        print 'Sol ('+model_expr+') =',param
    
        """Estimate the Posterior PDF - QUADRATIC APPROXIMATION of Likelihood function"""
    if 'C_m'+model_expr in param_dict:
        C_m=param_dict['C_m'+model_expr]
        Alpha=param_dict['Alpha'+model_expr]
        Mu=param_dict['Mu'+model_expr]
        PDF=param_dict['PDF'+model_expr]
    else:
        mu,alpha=symbols('mu alpha')
        Params=[mu,alpha]
        if model=='Ogden' or model=='Exponential' or model=='Mooney-Rivlin':
            L=likelihood(f[1],f[2],f[0],Params,model)
        
            diff_mu_2 = lambdify((mu,alpha),sympy.diff(L,mu,2))
            diff_alpha_2 = lambdify((mu,alpha),sympy.diff(L,alpha,2))
            diff_mu_alpha = lambdify((mu,alpha),
                                     sympy.diff(sympy.diff(L,alpha),mu))
        else:
            cov_list = likelihood(f[1],f[2],f[0],Params,model)
            diff_mu_2 = cov_list[0]
            diff_alpha_2 = cov_list[1]
            diff_mu_alpha = cov_list[2]
        
        A = diff_mu_2(param[0],param[1])
        B = diff_alpha_2(param[0],param[1])
        C = diff_mu_alpha(param[0],param[1])
        
        Sigma_Mu = np.sqrt(-B/(A*B-C**2))
        Sigma_alpha = np.sqrt(-A/(A*B-C**2))
        Sigma_Mu_alpha = np.sqrt(C/(A*B-C**2)+0j)
        
        print 'Sigma_Mu =',Sigma_Mu,'\n','Sigma_alpha =',Sigma_alpha,'\n','Sigma_Mu_alpha =',Sigma_Mu_alpha
        
        """Covariance Matrix"""
        delL=np.array([[A,C],[C,B]])
        C_m=-np.linalg.inv(delL)
        param_dict['C_m'+model_expr]=C_m
         
        #%%============================================================================
        """SAMPLING based estimate of Posterior PDF"""
        
        # Sampling values from [-2*sigma 2*sigma]
        
        Mu = np.r_[param[0]-2*Sigma_Mu:param[0]+2*Sigma_Mu:0.01]
        Alpha = np.r_[param[1]-2*Sigma_alpha:param[1]+2*Sigma_alpha:0.01]
        
        PDF=[]
        for i in range(len(Mu)):
            PDFrow=[]    
            for j in range(len(Alpha)):        
                P = [Mu[i],Alpha[j]]
                PDFrow.append(np.exp(likelihood(f[1],f[2],f[0],P,model)))
            PDF.append(PDFrow)
        PDF=np.array(PDF)
        param_dict['Mu'+model_expr]=Mu
        param_dict['Alpha'+model_expr]=Alpha
        param_dict['PDF'+model_expr]=PDF
        
        """Likelihood at optimal values of Mu and Alpha"""
        Pop = np.exp(likelihood(f[1],f[2],f[0],[param[0],param[1]],model))
        print 'Pop =',Pop
        
        #%%============================================================================
        """Evidence - Volume under the likelihood surface integrated over mu and alpha"""
        mu_max = 0
        mu_min = 10 
        alpha_max = 0
        alpha_min = 20 
        Mu = np.r_[param[0]-2*Sigma_Mu:param[0]+2*Sigma_Mu:0.01]
        Alpha = np.r_[param[1]-2*Sigma_alpha:param[1]+2*Sigma_alpha:0.01]
        Vol_PDF = np.trapz(np.trapz(PDF,Alpha,axis=1),Mu,axis=0)
        Evidence = ((1.0/(mu_max-mu_min))*(1.0/(alpha_max-alpha_min))*Vol_PDF)
        print 'Vol_PDF =',Vol_PDF
        print 'Evidence =',Evidence
        
    #Print Figures
    fig=plt.figure()
    
    plt.subplot(221)
    plt.errorbar(f[0],f[1],f[2],ecolor='r',elinewidth=1,capsize=3) 
    plt.hold(True)
    plt.plot(f[0],chosen_model.T(f[0],param[0],param[1]),linewidth=1)
    plt.grid(True)
    plt.axis('tight')
    plt.hold(False)
    
    plt.subplot(222)
    cov_plot(param[:,np.newaxis],C_m,2,r'$\mu$',r'$\alpha$')

    Alpha,Mu=np.meshgrid(Alpha,Mu)         
    ax_five=fig.add_subplot(223,projection='3d')
    surf_PDF=ax_five.plot_surface(Alpha,Mu,PDF,cmap=cm.coolwarm)
    fig.colorbar(surf_PDF)
    plt.axis('tight')
    #%%============================================================================
    """Comparison - Quadratic Approximation and Samplin"""

    Mu, Alpha, PDF=param_dict['Mu'+model_expr],param_dict['Alpha'+model_expr],param_dict['PDF'+model_expr]
    plt.subplot(224)
    plt.contour(Mu,Alpha,PDF.T)
    plt.hold(True)
    plt.colorbar()
    cov_plot(param[:,np.newaxis],C_m,2,r'$\mu$',r'$\alpha$')
    plt.hold(False)
#    plt.show(plt.figure())
    
    return fig,param_dict
Beispiel #29
0
    def __call__(self, params, dtype=np.double):
        q, C, p = params

        from math import log

        return (prior.prior(q, C, p) + likelihood.likelihood(q, C, p))
Beispiel #30
0
 def train(self, x, sample_nums):
     self.likelihood = likelihood(x)
     self.prior = np.array(sample_nums) / np.sum(sample_nums)
     self.log_likelihood = np.log(self.likelihood)
     self.log_prior = np.log(self.prior)
     self.trained = True
Beispiel #31
0
# read data
data = sio.loadmat('./data.mat')
x1_train, x1_test, x2_train, x2_test = data['x1_train'], data['x1_test'], data['x2_train'], data['x2_test']

all_x = np.concatenate([x1_train, x1_test, x2_train, x2_test], 1)
data_range = [np.min(all_x), np.max(all_x)]

from get_x_distribution import get_x_distribution

train_x = get_x_distribution(x1_train, x2_train, data_range)
test_x = get_x_distribution(x1_test, x2_test, data_range)


from likelihood import likelihood
l = likelihood(train_x)
width = 0.35
p1 = plt.bar(np.arange(data_range[0], data_range[1] + 1), l.T[:,0], width)
p2 = plt.bar(np.arange(data_range[0], data_range[1] + 1) + width, l.T[:,1], width)
plt.xlabel('x')
plt.ylabel('$P(x|\omega)$')
plt.legend((p1[0], p2[0]), ('$\omega_1$', '$\omega_2$'))
plt.axis([data_range[0] - 1, data_range[1] + 1, 0, 0.5])
plt.show()

err = 0
C = l.shape[1]
i = 0

while(i < C):
    if l[0][i] < l[1][i]:
Beispiel #32
0
def gridSetting(data,options,Seed):
    
    # Initialisierung
    d = np.size(options['borders'],0)
    X1D = []
    '''Equal steps in cumulative distribution'''
    
    if options['gridSetType'] == 'cumDist':
        Like1D = np.zeros([options['GridSetEval'], 1])
        for idx in range(d):
            if options['borders'][idx, 0] < options['borders'][idx,1]:
                X1D.append(np.zeros([1, options['stepN'][idx]]))
                local_N_eval = options['GridSetEval']
                while any(np.diff(X1D[idx]) == 0):
                    Xtest1D = np.linspace(options['borders'][idx,0], options['borders'][idx,1], local_N_eval)
                    alpha = Seed[0]
                    beta = Seed[1]
                    l = Seed[2]
                    gamma = Seed[3]
                    varscale = Seed[4]
                    
                    if idx == 1:
                        alpha = Xtest1D
                    elif idx == 2:
                        beta = Xtest1D
                    elif idx == 3:
                        l = Xtest1D
                    elif idx == 4:
                        gamma = Xtest1D
                    elif idx == 5:
                        varscale = Xtest1D
                    
                    Like1D = likelihood(data, options, [alpha, beta, l, gamma, varscale])
                    Like1D = Like1D + np.mean(Like1D)*options['UniformWeight']
                    Like1D = np.cumsum(Like1D)
                    Like1D = Like1D/max(Like1D)
                    wanted = np.linspace(0,1,options['stepN'][idx])
                    
                    for igrid in range(options['stepN'][idx]):
                        X1D[idx].append(copy.deepcopy(Xtest1D[Like1D >= wanted, 0, 'first'])) #TODO check
                        
                    local_N_eval = 10*local_N_eval
            else: 
                X1D.append(copy.deepcopy(options['borders'][idx,0]))
        
        ''' equal steps in cumulative  second derivative'''
    elif (options['gridSetType'] in ['2', '2ndDerivative']):
        Like1D = np.zeros([options['GridSetEval'], 1])
        
        for idx in range(d):
            if options['borders'][idx,0] < options['borders'][idx,1]:
                X1D.append(np.zeros([1,options['stepN'][idx]]))
                local_N_eval = options['GridSetEval']
                while any(np.diff(X1D[idx] == 0)):
                    
                    Xtest1D = np.linspace(options['borders'][idx,0], options['borders'][idx,1], local_N_eval)
                    alpha = Seed[0]
                    beta = Seed[1]
                    l = Seed[2]
                    gamma = Seed[3]
                    varscale = Seed[4]
                    
                    if idx == 1:
                        alpha = Xtest1D
                    elif idx == 2:
                        beta = Xtest1D
                    elif idx == 3:
                        l = Xtest1D
                    elif idx == 4:
                        gamma = Xtest1D
                    elif idx == 5:
                        varscale = Xtest1D
                        
                    # calc likelihood on the line                        
                    Like1D = likelihood(data, options, [alpha, beta, l, gamma, varscale])
                    Like1D = np.abs(np.convolve(np.squeeze(Like1D), np.array([1,-2,1]), mode='same'))
                    Like1D = Like1D + np.mean(Like1D)*options['UniformWeight']
                    Like1D = np.cumsum(Like1D)
                    Like1D = Like1D/max(Like1D)
                    wanted = np.linspace(0,1,options['stepN'][idx])
        
                    for igrid in range(options['stepN'][idx]):
                        X1D[idx].append(copy.deepcopy(Xtest1D[Like1D >= wanted, 0, 'first'])) #ToDo
                    local_N_eval = 10*local_N_eval
                    
                    if local_N_eval > 10**7:
                        X1D[idx] = np.unique(np.array(X1D)) # TODO check
                        break
            else: 
                X1D.append(options['borders'][idx,0])
    
        ''' different choices for the varscale '''
        ''' We use STD now directly as parametrisation'''
    elif options['gridSetType'] in ['priorlike', 'STD', 'exp', '4power']:
        for i in range(4):
            if options['borders'](i,0) < options['borders'](i,1):
                X1D.append(np.linspace(options['borders'][i,0], options['borders'][i,1], options['stepN'][i]))
            else:
                X1D.append(copy.deepcopy(options['borders'][id,0]))
        if options['gridSetType'] == 'priorlike':
            maximum = b.cdf(options['borders'][4,1],1,options['betaPrior'])
            minimum = b.cdf(options['borders'][4,0],1,options['betaPrior'])
            X1D.append(b.ppf(np.linspace(minimum, maximum, options['stepN'][4]), 1, options['betaPrior']))
        elif options['gridSetType'] == 'STD':
            maximum = np.sqrt(options['borders'][4,1])
            minimum = np.sqrt(options['borders'][4,0])
            X1D.append((np.linspace(minimum, maximum, options['stepN'][4]))**2)
        elif options['gridSetType'] == 'exp':
            p = np.linspace(1,1,options['stepN'][4])
            X1D.append(np.log(p)/np.log(.1)*(options['borders'][4,1] - options['borders'][4,0]) + options['borders'][4,0])
        elif options['gridSetType'] == '4power':
            maximum = np.sqrt(options['borders'][4,1])
            minimum = np.sqrt(options['borders'][4,0])
            X1D.append((np.linspace(minimum, maximum, options['stepN'][4]))**4) 
        
        
    return X1D
Beispiel #33
0
j = j.astype(np.int)
spam_test_tight = scipy.sparse.csr_matrix((spam_test, (i - 1, j - 1)))
spam_test = scipy.sparse.csr_matrix(
    (spam_test_tight.shape[0], spam_train.shape[0]))
spam_test[:, 0:spam_test_tight.shape[1]] = spam_test_tight

from likelihood import likelihood
# TODO
# Implement a ham/spam email classifier, and calculate the accuracy of your classifier

# Hint: you can directly do matrix multiply between scipy.sparse.coo_matrix and numpy.array.
# Specifically, you can use sparse_matrix * np_array to do this. Note that when you use "*" operator
# between numpy array, this is typically an elementwise multiply.

# begin answer
l = likelihood(x)
print(l.shape)
# a
ratio = l[1] / l[0]
max10_idx = np.argsort(ratio)[:10]

import linecache
for i in max10_idx:
    s = linecache.getline('all_word_map.txt', i + 1).strip()
    print(s)
# f = open('all_word_map.txt')


class SpamClassifier:
    def __init__(self):
        self.class_num = 2
Beispiel #34
0
def psignifitCore(data, options):
    """
    This is the Core processing of psignifit, call the frontend psignifit!
    function result=psignifitCore(data,options)
    Data nx3 matrix with values [x, percCorrect, NTrials]

    sigmoid should be a handle to a function, which accepts
    X,parameters as inputs and gives back a value in [0,1]. ideally
    parameters(1) should correspond to the threshold and parameters(2) to
    the width (distance containing 95% of the function.
    """
    
    d = len(options['borders'])
    result = {'X1D': [], 'marginals': [], 'marginalsX': [], 'marginalsW': []}
    
    '''Choose grid dynamically from data'''
    if options['dynamicGrid']:
        # get seed from linear regression with logit transform
        Seed = getSeed(data,options)
        
        # further optimize the logliklihood to obtain a good estimate of the MAP
        if options['expType'] == 'YesNo':
            calcSeed = lambda X: -l.logLikelihood(data, options, X[0], X[1], X[2], X[3], X[4])
            Seed = scipy.optimize.fmin(func=calcSeed, x0 = Seed)
        elif options['expType'] == 'nAFC':
            calcSeed = lambda X: -l.logLikelihood(data, options, X[0], X[1], X[2], 1/options['expN'], X[3])
            Seed = scipy.optimize.fmin(func=calcSeed, x0 = [Seed[0:2], Seed[4]])
            Seed = [Seed[0:2], 1/options['expN'], Seed[3]] #ToDo check whether row or colum vector
        result['X1D'] = gridSetting(data,options, Seed) 
    
    
    else: # for types which do not need a MAP estimate
        if (options['gridSetType'] == 'priorlike' or options['gridSetType'] == 'STD'
            or options['gridSetType'] == 'exp' or options['gridSetType'] == '4power'):
                result['X1D'] = gridSetting(data,options) 
        else: # Use a linear grid
            for idx in range(0,d):
                # If there is an actual Interval
                if options['borders'][idx, 0] < options['borders'][idx,1]: 
                    
                    result['X1D'].append(np.linspace(options['borders'][idx,0], options['borders'][idx,1],
                                    num=options['stepN'][idx]))
                # if parameter was fixed
                else:
                    result['X1D'].append(np.array([options['borders'][idx,0]]))
                    
    '''Evaluate likelihood and form it into a posterior'''
    
    (result['Posterior'], result['logPmax']) = l.likelihood(data, options, result['X1D'])
    result['weight'] = getWeights(result['X1D'])
    integral = np.sum(np.array(result['Posterior'][:])*np.array(result['weight'][:]))
    result['Posterior'] = result['Posterior']/integral
    result['integral'] = integral
    
    '''Compute marginal distributions'''
    
    for idx in range(0,d):
        m, mX, mW = marginalize(result, np.array([idx]))
        result['marginals'].append(m)
        result['marginalsX'].append(mX)
        result['marginalsW'].append(mW) 
    
    result['marginals'] = np.squeeze(result['marginals'])
    result['marginalsX'] = np.squeeze(result['marginalsX'])
    result['marginalsW'] = np.squeeze(result['marginalsW'])
        
    '''Find point estimate'''
    if (options['estimateType'] in ['MAP','MLE']):
        # get MLE estimate
    
        #start at most likely grid point
        index = np.where(result['Posterior'] == np.max(result['Posterior'].ravel()))
      
        Fit = np.zeros([d,1])
        for idx in range(0,d):
            Fit[idx] = result['X1D'][idx][index[idx]] 
        
        if options['expType'] == 'YesNo':
            fun = lambda X, f: -l.logLikelihood(data, options, [X[0],X[1],X[2],X[3],X[4]])
            x0 = deepcopy(Fit)
            a = None
            
        elif options['expType'] == 'nAFC':
            #def func(X,f):
            #    return -l.logLikelihood(data,options, [X[0], X[1], X[2], f, X[3]])
            #fun = func
            fun = lambda X, f:  -l.logLikelihood(data,options, [X[0], X[1], X[2], f, X[3]])
            x0 = deepcopy(Fit[0:3]) # Fit[3]  is excluded
            x0 = np.append(x0,deepcopy(Fit[4]))
            a = np.array([1/options['expN']])
            
        elif options['expType'] == 'equalAsymptote':
            fun = lambda X, f: -l.logLikelihood(data,options,[X[0], X[1], X[2], f, X[3]])
            x0 = deepcopy(Fit[0:3])
            x0 = np.append(x0,deepcopy(Fit[4]))
            a =  np.array([np.nan])
           
        else:
            raise ValueError('unknown expType')
            
        if options['fastOptim']:           
            Fit = scipy.optimize.fmin(fun, x0, args = (a,), xtol=0, ftol = 0, maxiter = 100, maxfun=100)
            warnings.warn('changed options for optimization')
        else:            
            Fit = scipy.optimize.fmin(fun, x0, args = (a,), disp = True)
          
        if options['expType'] == 'YesNo':
            result['Fit'] = deepcopy(Fit)
        elif options['expType'] == 'nAFC': 
            fit = deepcopy(Fit[0:3])
            fit = np.append(fit, np.array([1/options['expN']]))
            fit = np.append(fit, deepcopy(Fit[3]))
            result['Fit'] = fit
            
        elif options['expType'] =='equalAsymptote':
            fit = deepcopy(Fit[0:3])
            fit = np.append(fit, Fit[2])
            fit = np.append(fit, Fit[3])
            result['Fit'] = fit
        else:
            raise ValueError('unknown expType')
    
        par_idx = np.where(np.isnan(options['fixedPars']) == False)
        for idx in par_idx:
            result['Fit'][idx] = options['fixedPars'][idx]
            
    elif options['estimateType'] == 'mean':
        # get mean estimate
        Fit = np.zeros([d,1])
        for idx in range[0:d]:
            Fit[idx] = np.sum(result['marginals'][idx]*result['marginalsW'][idx]*result['marginalsX'][idx])
        
        result['Fit'] = deepcopy(Fit)
        Fit = np.empty(Fit.shape)
    '''Include input into result'''
    result['options'] = options # no copies here, because they are not changing
    result['data'] = data
    
    '''Compute confidence intervals'''
    if ~options['fastOptim']:
        result['conf_Intervals'] = getConfRegion(result)
        
    return result
Beispiel #35
0
def psignifitCore(data, options):
    """
    This is the Core processing of psignifit, call the frontend psignifit!
    function result=psignifitCore(data,options)
    Data nx3 matrix with values [x, percCorrect, NTrials]

    sigmoid should be a handle to a function, which accepts
    X,parameters as inputs and gives back a value in [0,1]. ideally
    parameters(1) should correspond to the threshold and parameters(2) to
    the width (distance containing 95% of the function.
    """
    
    d = len(options['borders'])
    result = {'X1D': [], 'marginals': [], 'marginalsX': [], 'marginalsW': []}
    
    '''Choose grid dynamically from data'''
    if options['dynamicGrid']:
        # get seed from linear regression with logit transform
        Seed = getSeed(data,options)
        
        # further optimize the logliklihood to obtain a good estimate of the MAP
        if options['expType'] == 'YesNo':
            calcSeed = lambda X: -_l.logLikelihood(data, options, X[0], X[1], X[2], X[3], X[4])
            Seed = scipy.optimize.fmin(func=calcSeed, x0 = Seed)
        elif options['expType'] == 'nAFC':
            calcSeed = lambda X: -_l.logLikelihood(data, options, X[0], X[1], X[2], 1/options['expN'], X[3])
            Seed = scipy.optimize.fmin(func=calcSeed, x0 = [Seed[0:2], Seed[4]])
            Seed = [Seed[0:2], 1/options['expN'], Seed[3]] #ToDo check whether row or colum vector
        result['X1D'] = gridSetting(data,options, Seed) 
    
    
    else: # for types which do not need a MAP estimate
        if (options['gridSetType'] == 'priorlike' or options['gridSetType'] == 'STD'
            or options['gridSetType'] == 'exp' or options['gridSetType'] == '4power'):
                result['X1D'] = gridSetting(data,options) 
        else: # Use a linear grid
            for idx in range(0,d):
                # If there is an actual Interval
                if options['borders'][idx, 0] < options['borders'][idx,1]: 
                    
                    result['X1D'].append(np.linspace(options['borders'][idx,0], options['borders'][idx,1],
                                    num=options['stepN'][idx]))
                # if parameter was fixed
                else:
                    result['X1D'].append(np.array([options['borders'][idx,0]]))
                    
    '''Evaluate likelihood and form it into a posterior'''
    
    (result['Posterior'], result['logPmax']) = _l.likelihood(data, options, result['X1D'])
    result['weight'] = getWeights(result['X1D'])
    integral = np.sum(np.array(result['Posterior'][:])*np.array(result['weight'][:]))
    result['Posterior'] = result['Posterior']/integral
    result['integral'] = integral
    
    '''Compute marginal distributions'''
    
    for idx in range(0,d):
        m, mX, mW = marginalize(result, np.array([idx]))
        result['marginals'].append(m)
        result['marginalsX'].append(mX)
        result['marginalsW'].append(mW) 
    
    result['marginals'] = np.squeeze(result['marginals'])
    result['marginalsX'] = np.squeeze(result['marginalsX'])
    result['marginalsW'] = np.squeeze(result['marginalsW'])
        
    '''Find point estimate'''
    if (options['estimateType'] in ['MAP','MLE']):
        # get MLE estimate
    
        #start at most likely grid point
        index = np.where(result['Posterior'] == np.max(result['Posterior'].ravel()))
      
        Fit = np.zeros([d,1])
        for idx in range(0,d):
            Fit[idx] = result['X1D'][idx][index[idx]] 
        
        if options['expType'] == 'YesNo':
            fun = lambda X, f: -_l.logLikelihood(data, options, [X[0],X[1],X[2],X[3],X[4]])
            x0 = _deepcopy(Fit)
            a = None
            
        elif options['expType'] == 'nAFC':
            #def func(X,f):
            #    return -_l.logLikelihood(data,options, [X[0], X[1], X[2], f, X[3]])
            #fun = func
            fun = lambda X, f:  -_l.logLikelihood(data,options, [X[0], X[1], X[2], f, X[3]])
            x0 = _deepcopy(Fit[0:3]) # Fit[3]  is excluded
            x0 = np.append(x0,_deepcopy(Fit[4]))
            a = np.array([1/options['expN']])
            
        elif options['expType'] == 'equalAsymptote':
            fun = lambda X, f: -_l.logLikelihood(data,options,[X[0], X[1], X[2], f, X[3]])
            x0 = _deepcopy(Fit[0:3])
            x0 = np.append(x0,_deepcopy(Fit[4]))
            a =  np.array([np.nan])
           
        else:
            raise ValueError('unknown expType')
            
        if options['fastOptim']:           
            Fit = scipy.optimize.fmin(fun, x0, args = (a,), xtol=0, ftol = 0, maxiter = 100, maxfun=100)
            warnings.warn('changed options for optimization')
        else:            
            Fit = scipy.optimize.fmin(fun, x0, args = (a,), disp = False)
        
        if options['expType'] == 'YesNo':
            result['Fit'] = _deepcopy(Fit)
        elif options['expType'] == 'nAFC': 
            fit = _deepcopy(Fit[0:3])
            fit = np.append(fit, np.array([1/options['expN']]))
            fit = np.append(fit, _deepcopy(Fit[3]))
            result['Fit'] = fit
        elif options['expType'] =='equalAsymptote':
            fit = _deepcopy(Fit[0:3])
            fit = np.append(fit, Fit[2])
            fit = np.append(fit, Fit[3])
            result['Fit'] = fit
        else:
            raise ValueError('unknown expType')
        
        par_idx = np.where(np.isnan(options['fixedPars']) == False)
        for idx in par_idx[0]:
            result['Fit'][idx] = options['fixedPars'][idx]
            
    elif options['estimateType'] == 'mean':
        # get mean estimate
        Fit = np.zeros([d,1])
        for idx in range[0:d]:
            Fit[idx] = np.sum(result['marginals'][idx]*result['marginalsW'][idx]*result['marginalsX'][idx])
        
        result['Fit'] = _deepcopy(Fit)
        Fit = np.empty(Fit.shape)
    '''Include input into result'''
    result['options'] = options # no copies here, because they are not changing
    result['data'] = data
    
    '''Compute confidence intervals'''
    if ~options['fastOptim']:
        result['conf_Intervals'] = getConfRegion(result)
        
    return result
Beispiel #36
0
#!/usr/bin/python
# -*- coding: utf-8 *-*
#
#Realization of likelihood ratio method for object identifacation.

#imports
from __future__ import division
from loadcfg import loadcfg
from readfile import readfits
from likelihood import likelihood

#main
#load cfg
cf = loadcfg()

#load and get abstract of catalog
filt = (['HATLAS_IAU_ID', 'RA_J2000', 'DEC_J2000', 'F250_BEST', 'LR'],
['objID', 'ra', 'dec', 'r'])
(ct, nm) = readfits('low.fits', 'high.fits', filt)

#calculate likelihood ratio
sigma = 2.4  # in arcsec
r_max = 10

lr = likelihood(ct, nm, sigma, r_max)