Beispiel #1
0
def do_ping(service):
	# get service data (url and param_name)
	url,param_name = services[service]
	# Prepare input date
	sitemap_url = model.get_config().url + 'sitemap.xml'
	form_fields = {param_name: sitemap_url}
	form_data = urllib.urlencode(form_fields)
	# invoke the url fetch
	result = urlfetch.fetch(url,payload=form_data,follow_redirects=True)
	# return status code
	return result.status_code 	
Beispiel #2
0
def twit(key):
	config = model.get_config()
	post = model.get_post_by_key(key)
	if not post.as_draft:
		
		auth = tweepy.OAuthHandler(config.consumer_key, config.consumer_secret)
		auth.set_access_token(config.access_key, config.access_secret)
		api = tweepy.API(auth)
		
		post_url = config.url + post.slug
		msg = post.title + " " + post_url
		api.update_status(msg)
		return msg
	else:
		return "draft!"
Beispiel #3
0
def main(args=sys.argv[1:]):
    parser = argparse.ArgumentParser(description='Studio WebUI server. \
                     Usage: studio \
                     <arguments>')

    parser.add_argument('--config', help='configuration file', default=None)
    #    parser.add_argument('--guest',
    #                        help='Guest mode (does not require db credentials)',
    #                        action='store_true')

    parser.add_argument('--port',
                        help='port to run Flask server on',
                        type=int,
                        default=5000)

    parser.add_argument('--host', help='host name.', default='0.0.0.0')

    parser.add_argument('--verbose',
                        '-v',
                        help='Verbosity level. Allowed vaules: ' +
                        'debug, info, warn, error, crit ' +
                        'or numerical value of logger levels.',
                        default=None)

    args = parser.parse_args(args)
    config = model.get_config()
    if args.config:
        with open(args.config) as f:
            config = yaml.load(f)

    if args.verbose:
        config['verbose'] = args.verbose


#    if args.guest:
#        config['database']['guest'] = True
    global _config
    global _db_provider
    _config = config
    _db_provider = model.get_db_provider(_config, blocking_auth=False)

    getlogger().setLevel(model.parse_verbosity(config.get('verbose')))

    global _save_auth_cookie
    _save_auth_cookie = True

    print('Starting Studio UI on port {0}'.format(args.port))
    app.run(host=args.host, port=args.port)
Beispiel #4
0
    def __init__(self, args):
        self.config = model.get_config()
        if args.config:
            if isinstance(args.config, basestring):
                with open(args.config) as f:
                    self.config.update(yaml.load(f))
            else:
                self.config.update(args.config)

        if args.guest:
            self.config['database']['guest'] = True

        self.db = model.get_db_provider(self.config)
        self.logger = logging.getLogger('LocalExecutor')
        self.logger.setLevel(model.parse_verbosity(self.config.get('verbose')))
        self.logger.debug("Config: ")
        self.logger.debug(self.config)
Beispiel #5
0
def main(args=sys.argv[1:]):
    logger = logs.getLogger('studio-runner')
    parser = argparse.ArgumentParser(
        description='Studio runner. \
                     Usage: studio run <runner_arguments> \
                     script <script_arguments>')
    parser.add_argument('--config', help='configuration file', default=None)
    parser.add_argument('--project', help='name of the project', default=None)
    parser.add_argument(
        '--experiment', '-e',
        help='Name of the experiment. If none provided, ' +
             'random uuid will be generated',
        default=None)

    parser.add_argument(
        '--guest',
        help='Guest mode (does not require db credentials)',
        action='store_true')

    parser.add_argument(
        '--force-git',
        help='If run in a git directory, force running the experiment ' +
             'even if changes are not commited',
        action='store_true')

    parser.add_argument(
        '--gpus',
        help='Number of gpus needed to run the experiment',
        type=int,
        default=None)

    parser.add_argument(
        '--cpus',
        help='Number of cpus needed to run the experiment' +
             ' (used to configure cloud instance)',
        type=int,
        default=None)

    parser.add_argument(
        '--ram',
        help='Amount of RAM needed to run the experiment' +
             ' (used to configure cloud instance), ex: 10G, 10GB',
        default=None)

    parser.add_argument(
        '--gpuMem',
        help='Amount of GPU RAM needed to run the experiment',
        default=None)

    parser.add_argument(
        '--hdd',
        help='Amount of hard drive space needed to run the experiment' +
             ' (used to configure cloud instance), ex: 10G, 10GB',
        default=None)

    parser.add_argument(
        '--queue', '-q',
        help='Name of the remote execution queue',
        default=None)

    parser.add_argument(
        '--cloud',
        help='Cloud execution mode. Could be gcloud, gcspot, ec2 or ec2spot',
        default=None)

    parser.add_argument(
        '--bid',
        help='Spot instance price bid, specified in USD or in percentage ' +
             'of on-demand instance price. Default is %(default)s',
        default='100%')

    parser.add_argument(
        '--capture-once', '-co',
        help='Name of the immutable artifact to be captured. ' +
        'It will be captured once before the experiment is run',
        default=[], action='append')

    parser.add_argument(
        '--capture', '-c',
        help='Name of the mutable artifact to be captured continuously',
        default=[], action='append')

    parser.add_argument(
        '--reuse', '-r',
        help='Name of the artifact from another experiment to use',
        default=[], action='append')

    parser.add_argument(
        '--verbose', '-v',
        help='Verbosity level. Allowed values: ' +
             'debug, info, warn, error, crit ' +
             'or numerical value of logger levels.',
        default=None)

    parser.add_argument(
        '--metric',
        help='Metric to show in the summary of the experiment, ' +
             'and to base hyperparameter search on. ' +
             'Refers a scalar value in tensorboard log ' +
             'example: --metric=val_loss[:final | :min | :max] to report ' +
             'validation loss in the end of the keras experiment ' +
             '(or smallest or largest throughout the experiment for :min ' +
             'and :max respectively)',
        default=None)

    parser.add_argument(
        '--hyperparam', '-hp',
        help='Try out multiple values of a certain parameter. ' +
             'For example, --hyperparam=learning_rate:0.01:0.1:l10 ' +
             'will instantiate 10 versions of the script, replace ' +
             'learning_rate with a one of the 10 values for learning ' +
             'rate that lies on a log grid from 0.01 to 0.1, create '
             'experiments and place them in the queue.',
             default=[], action='append')

    parser.add_argument(
        '--num-workers',
        help='Number of local or cloud workers to spin up',
        type=int,
        default=None)

    parser.add_argument(
        '--python-pkg',
        help='Python package not present in the current environment ' +
             'that is needed for experiment. Only compatible with ' +
             'remote and cloud workers for now',
        default=[], action='append')

    parser.add_argument(
        '--ssh-keypair',
        help='Name of the SSH keypair used to access the EC2 ' +
             'instances directly',
        default=None)

    parser.add_argument(
        '--optimizer', '-opt',
        help='Name of optimizer to use, by default is grid search. ' +
        'The name of the optimizer must either be in ' +
        'studio/optimizer_plugins ' +
        'directory or the path to the optimizer source file ' +
        'must be supplied. ',
        default='grid')

    parser.add_argument(
        '--cloud-timeout',
        help="Time (in seconds) that cloud workers wait for messages. " +
             "If negative, " +
             "wait for the first message in the queue indefinitely " +
             "and shut down " +
             "as soon as no new messages are available. " +
             "If zero, don't wait at all." +
             "Default value is %(default)d",
        type=int,
        default=300)

    parser.add_argument(
        '--user-startup-script',
        help='Path of script to run immediately ' +
             'before running the remote worker',
        default=None)

    parser.add_argument(
        '--branch',
        help='Branch of studioml to use when running remote worker, useful ' +
             'for debugging pull requests. Default is current',
        default=None)

    parser.add_argument(
        '--max-duration',
        help='Max experiment runtime (i.e. time after which experiment ' +
             'should be killed no matter what.).  Examples of values ' +
             'might include 5h, 48h2m10s',
        default=None)

    parser.add_argument(
        '--lifetime',
        help='Max experiment lifetime (i.e. wait time after which ' +
             'experiment loses relevance and should not be started)' +
             '  Examples include 240h30m10s',
        default=None)

    parser.add_argument(
        '--container',
        help='Singularity container in which experiment should be run. ' +
             'Assumes that container has all dependencies installed',
        default=None
    )

    parser.add_argument(
        '--port',
        help='Ports to open on a cloud instance',
        default=[], action='append'
    )

    # detect which argument is the script filename
    # and attribute all arguments past that index as related to the script
    (runner_args, other_args) = parser.parse_known_args(args)
    py_suffix_args = [i for i, arg in enumerate(args) if arg.endswith('.py')
                      or '::' in arg]

    rerun = False
    if len(py_suffix_args) < 1:
        print('None of the arugments end with .py')
        if len(other_args) == 0:
            print("Trying to run a container job")
            assert runner_args.container is not None
            exec_filename = None
        elif len(other_args) == 1:
            print("Treating last argument as experiment key to rerun")
            rerun = True
            experiment_key = args[-1]
        else:
            print("Too many extra arguments - should be either none " +
                  "for container job or one for experiment re-run")
            sys.exit(1)
    else:
        script_index = py_suffix_args[0]
        exec_filename, other_args = args[script_index], args[script_index + 1:]
        runner_args = parser.parse_args(args[:script_index])

    # TODO: Queue the job based on arguments and only then execute.

    config = model.get_config(runner_args.config)

    if runner_args.verbose:
        config['verbose'] = runner_args.verbose

    if runner_args.guest:
        config['database']['guest'] = True

    if runner_args.container:
        runner_args.capture_once.append(
            runner_args.container + ':_singularity')

    verbose = model.parse_verbosity(config['verbose'])
    logger.setLevel(verbose)

    if git_util.is_git() and not git_util.is_clean() and not rerun:
        logger.warn('Running from dirty git repo')
        if not runner_args.force_git:
            logger.error(
                'Specify --force-git to run experiment from dirty git repo')
            sys.exit(1)

    resources_needed = parse_hardware(runner_args, config['resources_needed'])
    logger.debug('resources requested: ')
    logger.debug(str(resources_needed))

    artifacts = {}
    artifacts.update(parse_artifacts(runner_args.capture, mutable=True))
    artifacts.update(parse_artifacts(runner_args.capture_once, mutable=False))
    with model.get_db_provider(config) as db:
        artifacts.update(parse_external_artifacts(runner_args.reuse, db))

    if runner_args.branch:
        config['cloud']['branch'] = runner_args.branch

    if runner_args.user_startup_script:
        config['cloud']['user_startup_script'] = \
            runner_args.user_startup_script

    if runner_args.lifetime:
        config['experimentLifetime'] = runner_args.lifetime

    if any(runner_args.hyperparam):
        if runner_args.optimizer is "grid":
            experiments = add_hyperparam_experiments(
                exec_filename,
                other_args,
                runner_args,
                artifacts,
                resources_needed,
                logger)

            queue_name = submit_experiments(
                experiments,
                config=config,
                logger=logger,
                queue_name=runner_args.queue,
                cloud=runner_args.cloud)

            spin_up_workers(
                runner_args,
                config,
                resources_needed,
                queue_name=queue_name,
                verbose=verbose)
        else:
            opt_modulepath = os.path.join(
                os.path.dirname(os.path.abspath(__file__)),
                "optimizer_plugins",
                runner_args.optimizer + ".py")
            if not os.path.exists(opt_modulepath):
                opt_modulepath = os.path.abspath(
                    os.path.expanduser(runner_args.optimizer))
            logger.info('optimizer path: %s' % opt_modulepath)

            assert os.path.exists(opt_modulepath)
            sys.path.append(os.path.dirname(opt_modulepath))
            opt_module = importlib.import_module(
                os.path.basename(opt_modulepath.replace(".py", '')))

            h = HyperparameterParser(runner_args, logger)
            hyperparams = h.parse()
            optimizer = getattr(
                opt_module,
                "Optimizer")(
                hyperparams,
                config['optimizer'],
                logger)

            workers_started = False
            queue_name = runner_args.queue
            while not optimizer.stop():
                hyperparam_pop = optimizer.ask()
                hyperparam_tuples = h.convert_to_tuples(hyperparam_pop)

                experiments = add_hyperparam_experiments(
                    exec_filename,
                    other_args,
                    runner_args,
                    artifacts,
                    resources_needed,
                    logger,
                    optimizer=optimizer,
                    hyperparam_tuples=hyperparam_tuples)

                queue_name = submit_experiments(
                    experiments,
                    config=config,
                    logger=logger,
                    cloud=runner_args.cloud,
                    queue_name=queue_name)

                if not workers_started:
                    spin_up_workers(
                        runner_args,
                        config,
                        resources_needed,
                        queue_name=queue_name,
                        verbose=verbose)
                    workers_started = True

                fitnesses, behaviors = get_experiment_fitnesses(
                    experiments, optimizer, config, logger)

                # for i, hh in enumerate(hyperparam_pop):
                #     print fitnesses[i]
                #     for hhh in hh:
                #         print hhh
                try:
                    optimizer.tell(hyperparam_pop, fitnesses, behaviors)
                except BaseException:
                    optimizer.tell(hyperparam_pop, fitnesses)

                try:
                    optimizer.disp()
                except BaseException:
                    logger.warn('Optimizer has no disp() method')
    else:
        if rerun:
            with model.get_db_provider(config) as db:
                experiment = db.get_experiment(experiment_key)
                new_key = runner_args.experiment if runner_args.experiment \
                    else experiment_key + '_rerun' + str(uuid.uuid4())
                experiment.key = new_key
                for _, art in six.iteritems(experiment.artifacts):
                    art['mutable'] = False

                experiments = [experiment]

        else:
            experiments = [create_experiment(
                filename=exec_filename,
                args=other_args,
                experiment_name=runner_args.experiment,
                project=runner_args.project,
                artifacts=artifacts,
                resources_needed=resources_needed,
                metric=runner_args.metric,
                max_duration=runner_args.max_duration,
            )]

        queue_name = submit_experiments(
            experiments,
            config=config,
            logger=logger,
            cloud=runner_args.cloud,
            queue_name=runner_args.queue)

        spin_up_workers(
            runner_args,
            config,
            resources_needed,
            queue_name=queue_name,
            verbose=verbose)

    return
Beispiel #6
0
def main(args=sys.argv):
    logger = logging.getLogger('studio-runner')
    parser = argparse.ArgumentParser(
        description='Studio runner. \
                     Usage: studio run <runner_arguments> \
                     script <script_arguments>')
    parser.add_argument('--config', help='configuration file', default=None)
    parser.add_argument('--project', help='name of the project', default=None)
    parser.add_argument(
        '--experiment', '-e',
        help='Name of the experiment. If none provided, ' +
             'random uuid will be generated',
        default=None)

    parser.add_argument(
        '--guest',
        help='Guest mode (does not require db credentials)',
        action='store_true')

    parser.add_argument(
        '--force-git',
        help='If run in a git directory, force running the experiment ' +
             'even if changes are not commited',
        action='store_true')

    parser.add_argument(
        '--gpus',
        help='Number of gpus needed to run the experiment',
        default=None)

    parser.add_argument(
        '--cpus',
        help='Number of cpus needed to run the experiment' +
             ' (used to configure cloud instance)',
        default=None)

    parser.add_argument(
        '--ram',
        help='Amount of RAM needed to run the experiment' +
             ' (used to configure cloud instance)',
        default=None)

    parser.add_argument(
        '--hdd',
        help='Amount of hard drive space needed to run the experiment' +
             ' (used to configure cloud instance)',
        default=None)

    parser.add_argument(
        '--queue', '-q',
        help='Name of the remote execution queue',
        default=None)

    parser.add_argument(
        '--cloud',
        help='Cloud execution mode. Could be gcloud, ec2 or ec2spot',
        default=None)

    parser.add_argument(
        '--bid',
        help='Spot instance price bid, specified in USD or in percentage ' +
             'of on-demand instance price. Default is %(default)s',
        default='100%')

    parser.add_argument(
        '--capture-once', '-co',
        help='Name of the immutable artifact to be captured. ' +
        'It will be captured once before the experiment is run',
        default=[], action='append')

    parser.add_argument(
        '--capture', '-c',
        help='Name of the mutable artifact to be captured continuously',
        default=[], action='append')

    parser.add_argument(
        '--reuse', '-r',
        help='Name of the artifact from another experiment to use',
        default=[], action='append')

    parser.add_argument(
        '--verbose', '-v',
        help='Verbosity level. Allowed values: ' +
             'debug, info, warn, error, crit ' +
             'or numerical value of logger levels.',
        default=None)

    parser.add_argument(
        '--metric', '-m',
        help='Metric to show in the summary of the experiment, ' +
             'and to base hyperparameter search on. ' +
             'Refers a scalar value in tensorboard log ' +
             'example: --metric=val_loss[:final | :min | :max] to report ' +
             'validation loss in the end of the keras experiment ' +
             '(or smallest or largest throughout the experiment for :min ' +
             'and :max respectively)',
        default=None)

    parser.add_argument(
        '--hyperparam', '-hp',
        help='Try out multiple values of a certain parameter. ' +
             'For example, --hyperparam=learning_rate:0.01:0.1:l10 ' +
             'will instantiate 10 versions of the script, replace ' +
             'learning_rate with a one of the 10 values for learning ' +
             'rate that lies on a log grid from 0.01 to 0.1, create '
             'experiments and place them in the queue.',
             default=[], action='append')

    parser.add_argument(
        '--num-workers',
        help='Number of local or cloud workers to spin up',
        default=None)

    parser.add_argument(
        '--python-pkg',
        help='Python package not present in the current environment ' +
             'that is needed for experiment. Only compatible with ' +
             'remote and cloud workers for now',
        default=[], action='append')

    parser.add_argument(
        '--ssh-keypair',
        help='Name of the SSH keypair used to access the EC2 ' +
             'instances directly',
        default=None)

    parser.add_argument(
        '--optimizer', '-opt',
        help='Name of optimizer to use, by default is grid search. ' +
        'The name of the optimizer must either be in ' +
        'studio/optimizer_plugins ' +
        'directory or the path to the optimizer source file ' +
        'must be supplied. ',
        default='grid')

    parser.add_argument(
        '--cloud-timeout',
        help="Time (in seconds) that cloud workers wait for messages. " +
             "If negative, " +
             "wait for the first message in the queue indefinitely " +
             "and shut down " +
             "as soon as no new messages are available. " +
             "If zero, don't wait at all." +
             "Default value is %(default)",
        type=int,
        default=300)

    # detect which argument is the script filename
    # and attribute all arguments past that index as related to the script
    py_suffix_args = [i for i, arg in enumerate(args) if arg.endswith('.py')]
    if len(py_suffix_args) < 1:
        print('At least one argument should be a python script ' +
              '(end with *.py)')
        parser.print_help()
        exit()

    script_index = py_suffix_args[0]
    runner_args = parser.parse_args(args[1:script_index])

    exec_filename, other_args = args[script_index], args[script_index + 1:]
    # TODO: Queue the job based on arguments and only then execute.

    config = model.get_config(runner_args.config)

    if runner_args.verbose:
        config['verbose'] = runner_args.verbose

    verbose = model.parse_verbosity(config['verbose'])
    logger.setLevel(verbose)

    db = model.get_db_provider(config)

    if git_util.is_git() and not git_util.is_clean():
        logger.warn('Running from dirty git repo')
        if not runner_args.force_git:
            logger.error(
                'Specify --force-git to run experiment from dirty git repo')
            sys.exit(1)

    resources_needed = parse_hardware(runner_args, config['cloud'])
    logger.debug('resources requested: ')
    logger.debug(str(resources_needed))

    artifacts = {}
    artifacts.update(parse_artifacts(runner_args.capture, mutable=True))
    artifacts.update(parse_artifacts(runner_args.capture_once, mutable=False))
    artifacts.update(parse_external_artifacts(runner_args.reuse, db))

    if any(runner_args.hyperparam):
        if runner_args.optimizer is "grid":
            experiments = add_hyperparam_experiments(
                exec_filename,
                other_args,
                runner_args,
                artifacts,
                resources_needed)
            submit_experiments(
                experiments,
                config,
                runner_args,
                logger,
                resources_needed)
        else:
            opt_modulepath = os.path.join(
                os.path.dirname(os.path.abspath(__file__)),
                "optimizer_plugins",
                runner_args.optimizer + ".py")
            # logger.info('optimizer path: %s' % opt_modulepath)
            if not os.path.exists(opt_modulepath):
                opt_modulepath = os.path.abspath(
                    os.path.expanduser(runner_args.optimizer))
            logger.info('optimizer path: %s' % opt_modulepath)
            assert os.path.exists(opt_modulepath)
            sys.path.append(os.path.dirname(opt_modulepath))
            opt_module = importlib.import_module(
                os.path.basename(opt_modulepath.replace(".py", '')))

            hyperparam_values, log_scale_dict = get_hyperparam_values(
                runner_args)

            optimizer = getattr(opt_module, "Optimizer")(hyperparam_values,
                                                         log_scale_dict)

            while not optimizer.stop():
                hyperparam_tuples = optimizer.ask()

                experiments = add_hyperparam_experiments(
                    exec_filename,
                    other_args,
                    runner_args,
                    artifacts,
                    resources_needed,
                    optimizer=optimizer,
                    hyperparam_tuples=hyperparam_tuples)
                submit_experiments(
                    experiments,
                    config,
                    runner_args,
                    logger,
                    resources_needed)

                fitnesses = get_experiment_fitnesses(experiments,
                                                     optimizer, config, logger)

                optimizer.tell(hyperparam_tuples, fitnesses)
                # if config['verbose'] == "info" or config['verbose'] ==
                # "debug":
                try:
                    optimizer.disp()
                except BaseException:
                    logger.warn('Optimizer has no disp() method')
    else:
        experiments = [model.create_experiment(
            filename=exec_filename,
            args=other_args,
            experiment_name=runner_args.experiment,
            project=runner_args.project,
            artifacts=artifacts,
            resources_needed=resources_needed,
            metric=runner_args.metric)]
        submit_experiments(
            experiments,
            config,
            runner_args,
            logger,
            resources_needed)

    db = None
    return
Beispiel #7
0
def render(template_name, **kwargs):
	user = users.get_current_user()
	config = model.get_config()
	return render_template(template_name, config=config, user=user, **kwargs)
Beispiel #8
0
import traceback
import six

import google.oauth2.id_token
import google.auth.transport.requests

from experiment import experiment_from_dict
import logs

app = Flask(__name__)

DB_PROVIDER_EXPIRATION = 1800

_db_provider_timestamp = None
_db_provider = None
_config = model.get_config()

_tensorboard_dirs = {}
_grequest = google.auth.transport.requests.Request()
_save_auth_cookie = False

logger = None


@app.route('/')
def dashboard():
    return _render('dashboard.html')


@app.route('/projects')
def projects():