Beispiel #1
0
def main():
    # setup the model and run for num_epochs saving the last state only
    # this is at the top so that the be is generated
    mlp = gen_model(args.backend)

    # setup data iterators
    (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir)
    if args.backend == 'nervanacpu' or args.backend == 'cpu':
        # limit data since cpu backend runs slower
        train = DataIterator(X_train[:1000], y_train[:1000], nclass=nclass, lshape=(1, 28, 28))
        valid = DataIterator(X_test[:1000], y_test[:1000], nclass=nclass, lshape=(1, 28, 28))
    else:
        train = DataIterator(X_train, y_train, nclass=nclass, lshape=(1, 28, 28))
        valid = DataIterator(X_test, y_test, nclass=nclass, lshape=(1, 28, 28))

    # serialization related
    cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    opt_gdm = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)

    checkpoint_model_path = os.path.join('./', 'test_oneshot.pkl')
    checkpoint_schedule = 1  # save at every step

    callbacks = Callbacks(mlp, train)
    callbacks.add_serialize_callback(checkpoint_schedule, checkpoint_model_path, history=2)

    # run the fit all the way through saving a checkpoint e
    mlp.fit(train, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks)

    # setup model with same random seed run epoch by epoch
    # serializing and deserializing at each step
    mlp = gen_model(args.backend)
    cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    opt_gdm = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)

    # reset data iterators
    train.reset()
    valid.reset()

    checkpoint_model_path = os.path.join('./', 'test_manyshot.pkl')
    checkpoint_schedule = 1  # save at evey step
    callbacks = Callbacks(mlp, train)
    callbacks.add_serialize_callback(checkpoint_schedule,
                                     checkpoint_model_path,
                                     history=num_epochs)
    for epoch in range(num_epochs):
        # _0 points to state at end of epoch 0
        mlp.fit(train, optimizer=opt_gdm, num_epochs=epoch+1, cost=cost, callbacks=callbacks)

        # load saved file
        prts = os.path.splitext(checkpoint_model_path)
        fn = prts[0] + '_%d' % epoch + prts[1]
        mlp.load_weights(fn)  # load the saved weights

    # compare test_oneshot_<num_epochs>.pkl to test_manyshot_<num_epochs>.pkl
    try:
        compare_model_pickles('test_oneshot_%d.pkl' % (num_epochs-1),
                              'test_manyshot_%d.pkl' % (num_epochs-1))
    except:
        print 'test failed....'
        sys.exit(1)
Beispiel #2
0
def test_dataset(backend):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator(X_train, y_train, nclass=nclass)
    train_set.be = NervanaObject.be

    for i in range(2):
        for X_batch, y_batch in train_set:
            print X_batch.shape, y_batch.shape
        train_set.index = 0
Beispiel #3
0
def test_dataset(backend):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator(X_train, y_train, nclass=nclass)
    train_set.be = NervanaObject.be

    for i in range(2):
        for X_batch, y_batch in train_set:
            print X_batch.shape, y_batch.shape
        train_set.index = 0
Beispiel #4
0
def test_dataset(backend_default, data):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=data)

    train_set = ArrayIterator(X_train, y_train, nclass=nclass)
    train_set.be = NervanaObject.be

    for i in range(2):
        for X_batch, y_batch in train_set:
            neon_logger.display("Xshape: {}, yshape: {}".format(X_batch.shape, y_batch.shape))
        train_set.index = 0
    def load_data(self):
        # load up the mnist data set
        # split into train and tests sets
        (X_train,
         y_train), (X_test,
                    y_test), nclass = load_mnist(path=self.args.data_dir)

        # setup a training set iterator
        self.train_set = ArrayIterator(X_train,
                                       y_train,
                                       nclass=nclass,
                                       lshape=(1, 28, 28))
        # setup a validation data set iterator
        self.valid_set = ArrayIterator(X_test,
                                       y_test,
                                       nclass=nclass,
                                       lshape=(1, 28, 28))
Beispiel #6
0
def test_model_get_outputs(backend):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator(X_train[:backend.bsz * 3])

    init_norm = Gaussian(loc=0.0, scale=0.1)

    layers = [Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]
    mlp = Model(layers=layers)
    out_list = []
    for x, t in train_set:
        x = mlp.fprop(x)
        out_list.append(x.get().T.copy())
    ref_output = np.vstack(out_list)

    train_set.reset()
    output = mlp.get_outputs(train_set)
    assert np.allclose(output, ref_output)
Beispiel #7
0
def test_model_get_outputs(backend_default):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator(X_train[:backend_default.bsz * 3])

    init_norm = Gaussian(loc=0.0, scale=0.1)

    layers = [Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]
    mlp = Model(layers=layers)
    out_list = []
    mlp.initialize(train_set)
    for x, t in train_set:
        x = mlp.fprop(x)
        out_list.append(x.get().T.copy())
    ref_output = np.vstack(out_list)

    train_set.reset()
    output = mlp.get_outputs(train_set)
    assert np.allclose(output, ref_output)
Beispiel #8
0
def test_model_get_outputs(backend_default, data):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=data)
    train_set = ArrayIterator(X_train[:backend_default.bsz * 3])

    init_norm = Gaussian(loc=0.0, scale=0.1)

    layers = [Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]
    mlp = Model(layers=layers)
    out_list = []
    mlp.initialize(train_set)
    for x, t in train_set:
        x = mlp.fprop(x)
        out_list.append(x.get().T.copy())
    ref_output = np.vstack(out_list)

    train_set.reset()
    output = mlp.get_outputs(train_set)
    assert np.allclose(output, ref_output)

    # test model benchmark inference
    mlp.benchmark(train_set, inference=True, niterations=5)
Beispiel #9
0
from neon.layers import GeneralizedCost, Affine, BranchNode, Multicost, Tree
from neon.models import Model
from neon.optimizers import GradientDescentMomentum
from neon.transforms import Rectlin, Logistic, Misclassification, Softmax
from neon.transforms import CrossEntropyBinary, CrossEntropyMulti
from neon.util.argparser import NeonArgparser


# parse the command line arguments
parser = NeonArgparser(__doc__)

args = parser.parse_args()

# load up the mnist data set
# split into train and tests sets
(X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir)

# setup a training set iterator
train_set = DataIterator(X_train, y_train, nclass=nclass)
# setup a validation data set iterator
valid_set = DataIterator(X_test, y_test, nclass=nclass)

# setup weight initialization function
init_norm = Gaussian(loc=0.0, scale=0.01)

normrelu = dict(init=init_norm, activation=Rectlin())
normsigm = dict(init=init_norm, activation=Logistic(shortcut=True))
normsoft = dict(init=init_norm, activation=Softmax())

# setup model layers
b1 = BranchNode(name="b1")
Beispiel #10
0
from neon.layers import GeneralizedCost, Affine, BranchNode, Multicost, Tree
from neon.models import Model
from neon.optimizers import GradientDescentMomentum
from neon.transforms import Rectlin, Logistic, Misclassification, Softmax
from neon.transforms import CrossEntropyBinary, CrossEntropyMulti
from neon.util.argparser import NeonArgparser


# parse the command line arguments
parser = NeonArgparser(__doc__)

args = parser.parse_args()

# load up the mnist data set
# split into train and tests sets
(X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir)

# setup a training set iterator
train_set = DataIterator(X_train, y_train, nclass=nclass)
# setup a validation data set iterator
valid_set = DataIterator(X_test, y_test, nclass=nclass)

# setup weight initialization function
init_norm = Gaussian(loc=0.0, scale=0.01)

normrelu = dict(init=init_norm, activation=Rectlin())
normsigm = dict(init=init_norm, activation=Logistic(shortcut=True))
normsoft = dict(init=init_norm, activation=Softmax())

# setup model layers
b1 = BranchNode(name="b1")
Beispiel #11
0
            yield (inputs, targets)


class DataIterator(ArrayIterator):
    """
    This class has been renamed to ArrayIterator and deprecated.
    This is just a place holder until the class is removed.  Please
    use the ArrayIterator class.
    """
    def __init__(self, *args, **kwargs):
        logger.error('DataIterator class has been deprecated and renamed'
                     '"ArrayIterator" please use that name.')
        super(DataIterator, self).__init__(*args, **kwargs)


if __name__ == '__main__':
    from neon.data import load_mnist
    (X_train, y_train), (X_test, y_test) = load_mnist()

    from neon.backends.nervanagpu import NervanaGPU
    ng = NervanaGPU(0, device_id=1)

    NervanaObject.be = ng
    ng.bsz = 128
    train_set = ArrayIterator(
        [X_test[:1000], X_test[:1000]], y_test[:1000], nclass=10)
    for i in range(3):
        for bidx, (X_batch, y_batch) in enumerate(train_set):
            print bidx, train_set.start
            pass
Beispiel #12
0
def test_model_serialize(backend_default, data):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=data)

    train_set = DataIterator(
        [X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28))

    init_norm = Gaussian(loc=0.0, scale=0.01)

    # initialize model
    path1 = Sequential([Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Pooling(2),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    path2 = Sequential([Affine(nout=100, init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Dropout(keep=0.5),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    layers = [MergeMultistream(layers=[path1, path2], merge="stack"),
              Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]

    tmp_save = 'test_model_serialize_tmp_save.pickle'
    mlp = Model(layers=layers)
    mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)
    mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    mlp.initialize(train_set, cost=mlp.cost)
    n_test = 3
    num_epochs = 3
    # Train model for num_epochs and n_test batches
    for epoch in range(num_epochs):
        for i, (x, t) in enumerate(train_set):
            x = mlp.fprop(x)
            delta = mlp.cost.get_errors(x, t)
            mlp.bprop(delta)
            mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
            if i > n_test:
                break

    # Get expected outputs of n_test batches and states of all layers
    outputs_exp = []
    pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs_exp.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Serialize model
    save_obj(mlp.serialize(keep_states=True), tmp_save)

    # Load model
    mlp = Model(layers=layers)
    mlp.load_weights(tmp_save)

    outputs = []
    pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Check outputs, states, and params are the same
    for output, output_exp in zip(outputs, outputs_exp):
        assert np.allclose(output.get(), output_exp.get())

    for pd, pd_exp in zip(pdicts, pdicts_exp):
        for s, s_e in zip(pd['states'], pd_exp['states']):
            if isinstance(s, list):  # this is the batch norm case
                for _s, _s_e in zip(s, s_e):
                    assert np.allclose(_s, _s_e)
            else:
                assert np.allclose(s, s_e)
        for p, p_e in zip(pd['params'], pd_exp['params']):
            assert type(p) == type(p_e)
            if isinstance(p, list):  # this is the batch norm case
                for _p, _p_e in zip(p, p_e):
                    assert np.allclose(_p, _p_e)
            elif isinstance(p, np.ndarray):
                assert np.allclose(p, p_e)
            else:
                assert p == p_e

    os.remove(tmp_save)
Beispiel #13
0
def test_model_serialize(backend):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator([X_train, X_train],
                             y_train,
                             nclass=nclass,
                             lshape=(1, 28, 28))

    init_norm = Gaussian(loc=0.0, scale=0.01)

    # initialize model
    path1 = [
        Conv((5, 5, 16),
             init=init_norm,
             bias=Constant(0),
             activation=Rectlin()),
        Pooling(2),
        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())
    ]
    path2 = [
        Dropout(keep=0.5),
        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())
    ]
    layers = [
        MergeConcat([path1, path2]),
        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()),
        BatchNorm(),
        Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))
    ]

    tmp_save = 'test_model_serialize_tmp_save.pickle'
    mlp = Model(layers=layers)
    mlp.optimizer = GradientDescentMomentum(learning_rate=0.1,
                                            momentum_coef=0.9)
    mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())

    n_test = 3
    num_epochs = 3
    # Train model for num_epochs and n_test batches
    for epoch in range(num_epochs):
        for i, (x, t) in enumerate(train_set):
            x = mlp.fprop(x)
            delta = mlp.cost.get_errors(x, t)
            mlp.bprop(delta)
            mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
            if i > n_test:
                break

    # Get expected outputs of n_test batches and states of all layers
    outputs_exp = []
    pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs_exp.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Serialize model
    save_obj(mlp.serialize(keep_states=True), tmp_save)

    # Load model
    mlp = Model(layers=layers)
    mlp.load_weights(tmp_save)

    outputs = []
    pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Check outputs, states, and params are the same
    for output, output_exp in zip(outputs, outputs_exp):
        assert np.allclose(output.get(), output_exp.get())

    for pd, pd_exp in zip(pdicts, pdicts_exp):
        for s, s_e in zip(pd['states'], pd_exp['states']):
            if isinstance(s, list):  # this is the batch norm case
                for _s, _s_e in zip(s, s_e):
                    assert np.allclose(_s, _s_e)
            else:
                assert np.allclose(s, s_e)
        for p, p_e in zip(pd['params'], pd_exp['params']):
            if isinstance(p, list):  # this is the batch norm case
                for _p, _p_e in zip(p, p_e):
                    assert np.allclose(_p, _p_e)
            else:
                assert np.allclose(p, p_e)

    os.remove(tmp_save)
Beispiel #14
0
                                                        axis=0)
                    if self.be.bsz > bsz:
                        self.ybuf[:, bsz:] = self.be.onehot(
                            self.ydev[:(self.be.bsz - bsz)], axis=0)
                else:
                    self.ybuf[:, :bsz] = self.ydev[i1:i2].T
                    if self.be.bsz > bsz:
                        self.ybuf[:, bsz:] = self.ydev[:(self.be.bsz - bsz)].T

            inputs = self.Xbuf[0] if len(self.Xbuf) == 1 else self.Xbuf
            targets = self.ybuf if self.ybuf else inputs
            yield (inputs, targets)


if __name__ == '__main__':
    from neon.data import load_mnist
    (X_train, y_train), (X_test, y_test) = load_mnist()

    from neon.backends.nervanagpu import NervanaGPU
    ng = NervanaGPU(0, device_id=1)

    NervanaObject.be = ng
    ng.bsz = 128
    train_set = DataIterator([X_test[:1000], X_test[:1000]],
                             y_test[:1000],
                             nclass=10)
    for i in range(3):
        for bidx, (X_batch, y_batch) in enumerate(train_set):
            print bidx, train_set.start
            pass
Beispiel #15
0
            inputs = self.Xbuf[0] if len(self.Xbuf) == 1 else self.Xbuf
            targets = self.ybuf if self.ybuf else inputs
            yield (inputs, targets)


class DataIterator(ArrayIterator):
    """
    This class has been renamed to ArrayIterator and deprecated.
    This is just a place holder until the class is removed.  Please
    use the ArrayIterator class.
    """
    def __init__(self, *args, **kwargs):
        logger.error('DataIterator class has been deprecated and renamed'
                     '"ArrayIterator" please use that name.')
        super(DataIterator, self).__init__(*args, **kwargs)


if __name__ == '__main__':
    from neon.data import load_mnist
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()

    from neon.backends import gen_backend
    be = gen_backend('gpu', batch_size=128)

    train_set = ArrayIterator(X_test[:1000], y_test[:1000], nclass=nclass)
    for i in range(3):
        for bidx, (X_batch, y_batch) in enumerate(train_set):
            logger.display("{}".format((bidx, train_set.start)))
            pass
Beispiel #16
0
            inputs = self.Xbuf[0] if len(self.Xbuf) == 1 else self.Xbuf
            targets = self.ybuf if self.ybuf else inputs
            yield (inputs, targets)


class DataIterator(ArrayIterator):
    """
    This class has been renamed to ArrayIterator and deprecated.
    This is just a place holder until the class is removed.  Please
    use the ArrayIterator class.
    """
    def __init__(self, *args, **kwargs):
        logger.error('DataIterator class has been deprecated and renamed'
                     '"ArrayIterator" please use that name.')
        super(DataIterator, self).__init__(*args, **kwargs)


if __name__ == '__main__':
    from neon.data import load_mnist
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()

    from neon.backends import gen_backend
    be = gen_backend('gpu', batch_size=128)

    train_set = ArrayIterator(X_test[:1000], y_test[:1000], nclass=nclass)
    for i in range(3):
        for bidx, (X_batch, y_batch) in enumerate(train_set):
            logger.display("{}".format((bidx, train_set.start)))
            pass