Beispiel #1
0
def degree_fracture(infile, outfile, fraction, recalculate = False):
    """
    Removes given fraction of nodes from infile network in reverse order of 
    degree centrality (with or without recalculation of centrality values 
    after each node removal) and saves the network in outfile.
    """

    g = networkx.read_gml(infile)
    m = networkx.degree_centrality(g)
    l = sorted(m.items(), key = operator.itemgetter(1), reverse = True)
    largest_component = max(networkx.connected_components(g), key = len)
    n = len(g.nodes())
    for i in range(1, n - 1):
        g.remove_node(l.pop(0)[0])
        if recalculate:
            m = networkx.degree_centrality(g)
            l = sorted(m.items(), key = operator.itemgetter(1), 
                       reverse = True)
        largest_component = max(networkx.connected_components(g), key = len)
        if i * 1. / n >= fraction:
            break
    components = networkx.connected_components(g)
    component_id = 1
    for component in components:
        for node in component:
            g.node[node]["component"] = component_id
        component_id += 1
    networkx.write_gml(g, outfile)
Beispiel #2
0
def degree(infile, recalculate = False):
    """
    Performs robustness analysis based on degree centrality,  
    on the network specified by infile using sequential (recalculate = True) 
    or simultaneous (recalculate = False) approach. Returns a list 
    with fraction of nodes removed, a list with the corresponding sizes of 
    the largest component of the network, and the overall vulnerability 
    of the network.
    """

    g = networkx.read_gml(infile)
    m = networkx.degree_centrality(g)
    l = sorted(m.items(), key = operator.itemgetter(1), reverse = True)
    x = []
    y = []
    largest_component = max(networkx.connected_components(g), key = len)
    n = len(g.nodes())
    x.append(0)
    y.append(len(largest_component) * 1. / n)
    R = 0.0
    for i in range(1, n - 1):
        g.remove_node(l.pop(0)[0])
        if recalculate:
            m = networkx.degree_centrality(g)
            l = sorted(m.items(), key = operator.itemgetter(1), 
                       reverse = True)
        largest_component = max(networkx.connected_components(g), key = len)
        x.append(i * 1. / n)
        R += len(largest_component) * 1. / n
        y.append(len(largest_component) * 1. / n)
    return x, y, 0.5 - R / n
def degree_component(seed_num, graph=None, graph_json_filename=None, graph_json_str=None):
  if graph_json_filename is None and graph_json_str is None and graph is None:
    return []

  G = None
  if graph is not None:
    G = graph
  elif graph_json_str is None:
    G = util.load_graph(graph_json_filename=graph_json_filename)
  else:
    G = util.load_graph(graph_json_str=graph_json_str)

  components = list(nx.connected_components(G))
  components = filter(lambda x: len(x) > 0.1 * len(G), components)
  total_size = sum(map(lambda x: len(x), components))
  total_nodes = 0
  rtn = []
  for comp in components[1:]:
    num_nodes = int(float(len(comp)) / total_size * seed_num)
    component = G.subgraph(list(comp))
    clse_cent = nx.degree_centrality(component)
    collector = collections.Counter(clse_cent)
    clse_cent = collector.most_common(num_nodes)
    rtn += map(lambda (x, y): x, clse_cent)
    total_nodes += num_nodes

  num_nodes = seed_num - total_nodes
  component = G.subgraph(list(components[0]))
  clse_cent = nx.degree_centrality(component)
  collector = collections.Counter(clse_cent)
  clse_cent = collector.most_common(num_nodes)
  rtn += map(lambda (x, y): x, clse_cent)
  return rtn
def degree_removal(g, recalculate=False):
    """
    Performs robustness analysis based on degree centrality,
    on the network specified by infile using sequential (recalculate = True)
    or simultaneous (recalculate = False) approach. Returns a list
    with fraction of nodes removed, a list with the corresponding sizes of
    the largest component of the network, and the overall vulnerability
    of the network.
    """

    m = nx.degree_centrality(g)
    l = sorted(m.items(), key=operator.itemgetter(1), reverse=True)
    x = []
    y = []
    dimension = fd.fractal_dimension(g, iterations=100, debug=False)
    n = len(g.nodes())
    x.append(0)
    y.append(dimension)

    for i in range(1, n-1):
        g.remove_node(l.pop(0)[0])
        if recalculate:
            m = nx.degree_centrality(g)
            l = sorted(m.items(), key=operator.itemgetter(1),
                       reverse=True)
        dimension = fd.fractal_dimension(g, iterations=100, debug=False)
        x.append(i * 1. / n)
        y.append(dimension)

    return x, y
def sna_calculations(g, play_file):
    """
    :param g: a NetworkX graph object
    :type g: object
    :param play_file: the location of a play in .txt format
    :type play_file: string
    :return: returns a dictionary containing various network related figures
    :rtype: dict
    :note: also writes into results/file_name-snaCalculations.csv and results/allCharacters.csv
    """
    file_name = os.path.splitext(os.path.basename(play_file))[0]
    sna_calculations_list = dict()
    sna_calculations_list['playType'] = file_name[0]
    sna_calculations_list['avDegreeCentrality'] = numpy.mean(numpy.fromiter(iter(nx.degree_centrality(g).values()),
                                                                            dtype=float))
    sna_calculations_list['avDegreeCentralityStd'] = numpy.std(
        numpy.fromiter(iter(nx.degree_centrality(g).values()), dtype=float))
    sna_calculations_list['avInDegreeCentrality'] = numpy.mean(
        numpy.fromiter(iter(nx.in_degree_centrality(g).values()), dtype=float))
    sna_calculations_list['avOutDegreeCentrality'] = numpy.mean(
        numpy.fromiter(iter(nx.out_degree_centrality(g).values()), dtype=float))

    try:
        sna_calculations_list['avShortestPathLength'] = nx.average_shortest_path_length(g)
    except:
        sna_calculations_list['avShortestPathLength'] = 'not connected'

    sna_calculations_list['density'] = nx.density(g)
    sna_calculations_list['avEigenvectorCentrality'] = numpy.mean(
        numpy.fromiter(iter(nx.eigenvector_centrality(g).values()), dtype=float))
    sna_calculations_list['avBetweennessCentrality'] = numpy.mean(
        numpy.fromiter(iter(nx.betweenness_centrality(g).values()), dtype=float))
    sna_calculations_list['DegreeCentrality'] = nx.degree_centrality(g)
    sna_calculations_list['EigenvectorCentrality'] = nx.eigenvector_centrality(g)
    sna_calculations_list['BetweennessCentrality'] = nx.betweenness_centrality(g)

    # sna_calculations.txt file
    sna_calc_file = csv.writer(open('results/' + file_name + '-snaCalculations.csv', 'wb'), quoting=csv.QUOTE_ALL,
                               delimiter=';')
    for key, value in sna_calculations_list.items():
        sna_calc_file.writerow([key, value])

    # all_characters.csv file
    if not os.path.isfile('results/allCharacters.csv'):
        with open('results/allCharacters.csv', 'w') as f:
            f.write(
                'Name;PlayType;play_file;DegreeCentrality;EigenvectorCentrality;BetweennessCentrality;speech_amount;AverageUtteranceLength\n')

    all_characters = open('results/allCharacters.csv', 'a')
    character_speech_amount = speech_amount(play_file)
    for character in sna_calculations_list['DegreeCentrality']:
        all_characters.write(character + ';' + str(sna_calculations_list['playType']) + ';' + file_name + ';' + str(
            sna_calculations_list['DegreeCentrality'][character]) + ';' + str(
            sna_calculations_list['EigenvectorCentrality'][character]) + ';' + str(
            sna_calculations_list['BetweennessCentrality'][character]) + ';' + str(
            character_speech_amount[0][character]) + ';' + str(character_speech_amount[1][character]) + '\n')
    all_characters.close()

    return sna_calculations
Beispiel #6
0
    def __init__(self, time, voteomat):

        self.foldername = voteomat.network_func_name + voteomat.distribution_func_name
        self.foldertime = time
        self.path = "Statistics//"+self.foldername+"//"
        self.path += g_candidates_affecting_nodes + "=" + str(voteomat.candidates_affecting) + "_"
        self.path += g_candidates_affected_by_median + "=" + str(voteomat.candidates_affected) + "_"
        self.path += g_neighbours_affecting_each_other + "=" + str(voteomat.affecting_neighbours) + "_"
        self.path += g_counterforce_affecting_candidates + "=" + str(voteomat.counter_force_affecting) + "_"
        self.path += "counterforce_left="+str(voteomat.counter_force_left)+"_"+"counterforce_right="+str(voteomat.counter_force_right)+ "_" + time
        self.make_sure_path_exists(self.path)
        self.file = open(self.path + "//statistic.csv", 'w')
        self.statistic = {}
        self.statistic["networkfunc"] = voteomat.network_func_name
        self.statistic["distributionfunc"] = voteomat.distribution_func_name
        self.statistic["acceptance"] = voteomat.acceptance
        median, avg, std = voteomat.get_statistic()
        self.statistic["median"] = []
        self.statistic["median"].append(median)
        self.statistic["avg"] = []
        self.statistic["avg"].append(avg)
        self.statistic["std"] = []
        self.statistic["std"].append(std)


        self.statistic["node_with_highest_degree_centrality"] = []
        self.max_degree_node = max( nx.degree_centrality(voteomat.get_network()).items(),key = lambda x: x[1])[0]

        self.statistic["node_with_highest_degree_centrality"].append(voteomat.get_network().nodes(data = True)[self.max_degree_node][1]["orientation"])
        self.statistic["node_with_minimum_degree_centrality"] = []
        self.min_degree_node = min(nx.degree_centrality(voteomat.get_network()).items(), key = lambda x: x[1])[0]
        self.statistic["node_with_minimum_degree_centrality"].append(voteomat.get_network().nodes(data = True)[self.min_degree_node][1]["orientation"])
        self.statistic["node_with_highest_closeness_centrality"] = []
        self.max_closeness_node = max( nx.closeness_centrality(voteomat.get_network()).items(),key = lambda x: x[1])[0]
        self.statistic["node_with_highest_closeness_centrality"].append(voteomat.get_network().nodes(data = True)[self.max_closeness_node][1]["orientation"])
        self.statistic["node_with_highest_betweenness_centrality"] = []
        self.max_betweenness_node = max(nx.betweenness_centrality(voteomat.get_network()).items() ,key = lambda x: x[1])[0]
        self.statistic["node_with_highest_betweenness_centrality"].append(voteomat.get_network().nodes(data = True)[self.max_betweenness_node][1]["orientation"])
        try:
            self.statistic["node_with_highest_eigenvector_centrality"] = []
            self.max_eigenvector_node = max( nx.eigenvector_centrality(voteomat.get_network(), max_iter = 1000).items(),key = lambda x: x[1])[0]
            self.statistic["node_with_highest_eigenvector_centrality"].append(voteomat.get_network().nodes(data = True)[self.max_eigenvector_node][1]["orientation"])
        except nx.NetworkXError:
            print "Eigenvector centrality not possible."

        freeman = self.freeman_centrality([x[1] for x in nx.degree_centrality(voteomat.get_network()).items()], max( nx.degree_centrality(voteomat.get_network()).items(),key = lambda x: x[1])[1])
        self.statistic["freeman_centrality"] = round(freeman,2)

        self.statistic["affecting_neighbours"] = voteomat.affecting_neighbours
        self.statistic["affecting_candidates"] = voteomat.candidates_affecting
        self.statistic["affected_canddiates"] = voteomat.candidates_affected
        self.statistic["affecting_counter_force"] = voteomat.counter_force_affecting
        self.statistic["affecting_counter_force_left"] = voteomat.counter_force_left
        self.statistic["affecting_counter_force_right"] = voteomat.counter_force_right

        self.statistic["candidates"] = []
        for candidate in voteomat.candidates:
            self.statistic["candidates"].append(candidate.to_save())
        self.statistic["network"] = voteomat.get_network().nodes(data=True);
def degree_apl(g, recalculate=False):
    """
    Performs robustness analysis based on degree centrality,
    on the network specified by infile using sequential (recalculate = True)
    or simultaneous (recalculate = False) approach. Returns a list
    with fraction of nodes removed, a list with the corresponding sizes of
    the largest component of the network, and the overall vulnerability
    of the network.
    """

    m = networkx.degree_centrality(g)
    l = sorted(m.items(), key=operator.itemgetter(1), reverse=True)
    x = []
    y = []

    average_path_length = 0.0
    number_of_components = 0
    n = len(g.nodes())

    for sg in networkx.connected_component_subgraphs(g):
        average_path_length += networkx.average_shortest_path_length(sg)
        number_of_components += 1

    average_path_length = average_path_length / number_of_components
    initial_apl = average_path_length

    x.append(0)
    y.append(average_path_length * 1. / initial_apl)

    r = 0.0
    for i in range(1, n - 2):
        g.remove_node(l.pop(0)[0])
        if recalculate:
            m = networkx.degree_centrality(g)
            l = sorted(m.items(), key=operator.itemgetter(1),
                       reverse=True)

        average_path_length = 0.0
        number_of_components = 0

        for sg in networkx.connected_component_subgraphs(g):
            if len(sg.nodes()) > 1:
                average_path_length += networkx.average_shortest_path_length(sg)
            number_of_components += 1


        average_path_length = average_path_length / number_of_components

        x.append(i * 1. / initial_apl)
        r += average_path_length * 1. / initial_apl
        y.append(average_path_length * 1. / initial_apl)
    return x, y, r / initial_apl
def labels(G, threshhold = 95):
    '''return labels(dictionary) for nodes with high centrality for a given percentile'''
    labels = {}
    
    # create cutoff based on the given percentile
    cen_cutoff = np.percentile(list(nx.degree_centrality(G).values()), threshhold)
    
    # put nodes label in the dictionary if the centrality passes the threshold
    for key,value in nx.degree_centrality(G).items():
        if value >= cen_cutoff:
            labels[key] = key
    
    return labels
Beispiel #9
0
 def __init__(self) :
     self.g = nx.barabasi_albert_graph(random.randint(100,1000),random.randint(2,7))
     self.degree_centrality = nx.degree_centrality(self.g)
     self.deg = nx.degree_centrality(self.g)
     self.sorted_deg = sorted(self.deg.items(), key=operator.itemgetter(1))
     self.nodes = len(self.g.nodes())
     self.edges = len(self.g.edges())
     self.degree_rank()
     self.degree_dict = self.g.degree()
     self.avg_deg = sum(self.g.degree().values())/float(len(self.g.nodes()))
     #print self.rank
     #print self.degree_dict
     self.form_dataset()
Beispiel #10
0
	def degree_centrality(self, withme=True, node=None, average=False):

		if node==None:
			if withme:
				my_dict = nx.degree_centrality(self.mynet)
				new = {}
				new2={}
				for i in my_dict:
					new[self.id_to_name(i)] = my_dict[i]
					new2[i] = my_dict[i]
				if average:
					print "The average is " + str(round(sum(new.values())/float(len(new.values())),4))
				else:
					for i,j in new.items():
						print i, round(j,4)
					return new2
	 		else:
				my_dict = nx.degree_centrality(self.no_ego_net)

				new = {}
				new2={}
				for i in my_dict:
					new[self.id_to_name(i)] = my_dict[i]
					new2[i] = my_dict[i]
				if average:
					print "The average is " + str(round(sum(new.values())/float(len(new.values())),4))
				else:
					for i,j in new.items():
						print i, round(j,4)
					return new2
	
		else:
			if withme:
				my_dict = nx.degree_centrality(self.mynet)
				try:
					print "The coefficient for node "+str(node)+ "is "+ str(round(my_dict[node],4))
				except:
					try:
						return my_dict [self.name_to_id(node)]
					except:
						print "Invalid node name"
			else:
				my_dict = nx.degree_centrality(self.no_ego_net)
				try:
					print "The coefficient for node "+str(node)+ "is "+ str(round(my_dict[node],4))
				except:
					try:
						print "The coefficient for node "+str(node)+ "is "+ str(round(my_dict[[self.name_to_id(node)]],4))
					except:
						print "Invalid node name"
Beispiel #11
0
def set_capacities_degree_gravity(topology, capacities, capacity_unit='Mbps'):
    """
    Set link capacities proportionally to the product of the degrees of the
    two end-points of the link

    Parameters
    ----------
    topology : Topology
        The topology to which link capacities will be set
    capacities : list
        A list of all possible capacity values
    capacity_unit : str, optional
        The unit in which capacity value is expressed (e.g. Mbps, Gbps etc..)
    """
    if topology.is_directed():
        in_degree = nx.in_degree_centrality(topology)
        out_degree = nx.out_degree_centrality(topology)
        gravity = {(u, v): out_degree[u] * in_degree[v]
                   for (u, v) in topology.edges()}
    else:
        degree = nx.degree_centrality(topology)
        gravity = {(u, v): degree[u] * degree[v]
                   for (u, v) in topology.edges()}
    _set_capacities_proportionally(topology, capacities, gravity,
                                   capacity_unit=capacity_unit)
Beispiel #12
0
def high_degrees_fast(seed_num, graph=None, graph_json_filename=None, graph_json_str=None):
  """
  Find the high-degree nodes of the given graph by sorting on the adjacency 
  list lengths and slicing.
  
  Parameters:
    seed_num: Number of nodes to choose.
    graph_json_filename: Filename where the adjacency list lives as JSON.
    graph_json_str: Graph as an adjacency list string in JSON.
  
  Return: List of 'seed_num' highest degree nodes. 
  """
  if graph_json_filename is None and graph_json_str is None and graph is None:
    return []

  G = None
  if graph is not None:
    G = graph
  elif graph_json_str is None:
    G = util.load_graph(graph_json_filename=graph_json_filename)
  else:
    G = util.load_graph(graph_json_str=graph_json_str)

  clse_cent = nx.get_node_attributes(G, "centrality")
  if len(clse_cent) == 0:
    clse_cent = nx.degree_centrality(G)
    nx.set_node_attributes(G, "centrality", clse_cent)
    print "hi high-degree"

  collector = collections.Counter(clse_cent)
  clse_cent = collector.most_common(seed_num)

  return map(lambda (x, y): x, clse_cent)
        def centrality_month_airports(data):    
            df = data.copy()
            df['DateOfDeparture'] = pd.to_datetime(df['DateOfDeparture'])
            df['month'] = df['DateOfDeparture'].dt.week.astype(str)
            df['year'] = df['DateOfDeparture'].dt.year.astype(str)
            df['year_month'] = df[['month','year']].apply(lambda x: '-'.join(x),axis=1)
            df['year_month_dep'] = df[['Departure','month','year']].apply(lambda x: '-'.join(x),axis=1)
            df['year_month_arr'] = df[['Arrival','month','year']].apply(lambda x: '-'.join(x),axis=1)
            year_month = pd.unique(df['year_month'])
            G = nx.Graph()
            centrality = {}

            for i, item in enumerate(year_month):
                sub_df = df[df['year_month'] == item][['Departure','Arrival']]
                list_dep_arr = zip(sub_df['Departure'], sub_df['Arrival'])
                G.add_edges_from(list_dep_arr)
                #G.number_of_nodes()
                #G.number_of_edges()
                centrality_month = nx.degree_centrality(G)
                centrality_month = pd.DataFrame(centrality_month.items())
                centrality_month['year_month'] = [item] * centrality_month.shape[0]
                centrality_month['airport_year_month'] = centrality_month[centrality_month.columns[[0,2]]].apply(lambda x: '-'.join(x),axis=1)
                centrality_month =dict(zip(centrality_month['airport_year_month'], centrality_month[1]))

                z = centrality.copy()
                z.update(centrality_month)
                centrality = z
            df['centrality_month_dep'] = df['year_month_dep'].map(centrality)
            df['centrality_month_arr'] = df['year_month_arr'].map(centrality)
            return df
Beispiel #14
0
def degree_centrality(graph, records):
    """ Reports on the most central individuals in the graph """
    dc = nx.degree_centrality(graph)
    nodes = sorted(dc.items(), key=operator.itemgetter(1), reverse=True)[:records]
    print("Degree Centrality - top {} individuals".format(records))
    for n in nodes:
        print("  {:30}:\t{}".format(n[0], n[1]))
Beispiel #15
0
 def centralities(self):
     '''
     Get info on centralities of data
     Params:
         None
     Returns:
         dictionary of centrality metrics with keys(centralities supported):
             degree - degree centrality
             betweeness - betweeness centrality
             eigenvector - eigenvector centrality
             hub - hub scores - not implemented
             authority - authority scores - not implemented
             katz - katz centrality with params X Y
             pagerank - pagerank centrality with params X Y
     '''
     output = {}
     output['degree'] = nx.degree_centrality(self.G)
     output['betweeness'] = nx.betweenness_centrality(self.G)
     try:
         output['eigenvector'] = nx.eigenvector_centrality(self.G)
         output['katz'] = nx.katz_centrality(self.G)
     except:
         output['eigenvector'] = 'empty or exception'
         output['katz'] = 'empty or exception'
     # output['hub'] = 'Not implemented'
     # output['authority'] = 'Not implemented'
     # output['pagerank'] = 'Not implemented'
     return output
Beispiel #16
0
def fast_approximate_solution_two(graph):
    """
    Given a graph, construct a solution greedily using approximation methods.
    Performs bad.
    """
    new_graph = nx.Graph()
    degrees = nx.degree_centrality(graph) 
    largest = argmax(degrees)
    new_graph.add_node(largest)
    while new_graph.number_of_edges() < graph.number_of_nodes() - 1:
        degrees = {n: count_uncovered_degree(graph, new_graph, n) for n in nx.nodes(graph)}
        neighbor_list = [nx.neighbors(graph, n) for n in new_graph.nodes()]
        neighbors = set()
        for lst in neighbor_list:
            neighbors = neighbors.union(lst)
        if not neighbors:
            break
        next_largest = argmax_in(degrees, neighbors, exceptions = new_graph.nodes())
        possible_edge_ends = [n for n in nx.neighbors(graph, next_largest) 
                              if graph.has_edge(n, next_largest) 
                              and n in new_graph.nodes()]
        new_graph.add_node(next_largest)
        edge_end = argmax_in(degrees, possible_edge_ends)
        new_graph.add_edge(edge_end, next_largest)

    return new_graph
Beispiel #17
0
	def modularity(self):
		"""
		Compute the modularity. 

		Returns:
			Numerical value of the modularity of the graph. 
		"""
		g = self.gr
		A = nx.adj_matrix(g)
		degDict = nx.degree_centrality(g)

		adjDict = {}
		n = A.shape[0]
		B = A.sum(axis=1)
		for i in range(n):
			adjDict[g.nodes()[i]] = B[i,0]

		m = len(g.edges())

		connComponents = nx.connected_components(g)

		mod = 0

		for c in connComponents:
			edgesWithinCommunity = 0
			randomEdges = 0
			for u in c:
				edgesWithinCommunity += adjDict[u]
				randomEdges += degDict[u]
			mod += (float(edgesWithinCommunity) - float(randomEdges * randomEdges)/float(2 * m))	
		mod = mod/float(2 * m)
			
		return mod	
Beispiel #18
0
def run_main(file):

    NumberOfStations=465
    print file
    adjmatrix = np.loadtxt(file,delimiter=' ',dtype=np.dtype('int32'))

    # for i in range (0,NumberOfStations):
    #     if(adjmatrix[i,i]==1):
    #         print "posicion: ["+str(i)+","+str(i)+"]"


    g = nx.from_numpy_matrix(adjmatrix, create_using = nx.MultiGraph())
    degree = g.degree()
    density = nx.density(g)
    degree_centrality = nx.degree_centrality(g)
    clossness_centrality = nx.closeness_centrality(g)
    betweenless_centrality = nx.betweenness_centrality(g)

    print degree
    print density
    print degree_centrality
    print clossness_centrality
    print betweenless_centrality
    #nx.draw(g)
#    np.savetxt(OutputFile, Matrix, delimiter=' ',newline='\n',fmt='%i')
Beispiel #19
0
def draw_graph(label_flag=True, remove_isolated=True, different_size=True, iso_level=10, node_size=40):
    G=build_graph(fb.get_friends_network())
    betweenness=nx.betweenness_centrality(G)
    degree=nx.degree_centrality(G)
    degree_num=[ degree[v] for v in G]
    maxdegree=max(degree_num);mindegree=min(degree_num);
    print maxdegree,mindegree
    clustering=nx.clustering(G)
    print nx.transitivity(G)
    # Judge whether remove the isolated point from graph
    if remove_isolated is True:
        H = nx.empty_graph()
        for SG in nx.connected_component_subgraphs(G):
            if SG.number_of_nodes() > iso_level:
                H = nx.union(SG, H)
        G = H
    # Ajust graph for better presentation
    if different_size is True:
        L = nx.degree(G)
        G.dot_size = {}
        for k, v in L.items():
            G.dot_size[k] = v
        #node_size = [betweenness[v] *1000 for v in G]
        node_size = [G.dot_size[v] * 10 for v in G]
        node_color= [((degree[v]-mindegree))/(maxdegree-mindegree) for v in G]
        #edge_width = [getcommonfriends(u,v) for u,v in G.edges()]
    pos = nx.spring_layout(G, iterations=15)
    nx.draw_networkx_edges(G, pos, alpha=0.05)
    nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color=node_color, vmin=0.0,vmax=1.0, alpha=0.3)
    # Judge whether shows label
    if label_flag is True:
        nx.draw_networkx_labels(G, pos, font_size=6,alpha=0.1)
    #nx.draw_graphviz(G)
    plt.show()
    return G
Beispiel #20
0
def mean_degree_centrality(pg, normalize=0):
    """
    mean_degree_centrality(pg) calculates mean in- and out-degree
    centralities for directed graphs and simple degree-centralities
    for undirected graphs. If the normalize flag is set, each node's
    centralities are weighted by the number of edges in the (di)graph.
    """
    centrality = {}
    try:
        if networkx.is_directed_acyclic_graph(pg):
            cent_sum_in, cent_sum_out = 0, 0
            for n in pg.nodes():
                n_cent_in = pg.in_degree(n)
                n_cent_out = pg.out_degree(n)
                if normalize:
                    n_cent_in = float(n_cent_in) / float(pg.size()-1)
                    n_cent_out = float(n_cent_out) / float(pg.size()-1)
                cent_sum_in = cent_sum_in + n_cent_in
                cent_sum_out = cent_sum_out + n_cent_out
            centrality['in'] = cent_sum_in / float(pg.order())
            centrality['out'] = cent_sum_out / float(pg.order())
        else:
            cent_sum = 0
            for n in pg.nodes():
                if not normalize:
                    n_cent = pg.degree(n)
                else:
                    n_cent = networkx.degree_centrality(pg,n)
                cent_sum = cent_sum + n_cent
            centrality['all'] = cent_sum / float(pg.order())
    except:
        logging.error('pyp_network.mean_degree_centrality() failed!')
    return centrality
Beispiel #21
0
def plotGraph(G, figsize=(8, 8), filename=None):
    """
    Plots an individual graph, node size by degree centrality,
    edge size by edge weight.
    """
    labels = {n:n for n in G.nodes()}
    
    d = nx.degree_centrality(G)
    
    layout=nx.spring_layout
    pos=layout(G)
    
    plt.figure(figsize=figsize)
    plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01)
    
    # nodes
    nx.draw_networkx_nodes(G,pos,
                            nodelist=G.nodes(),
                            node_color="steelblue",
                            node_size=[v * 250 for v in d.values()],
                            alpha=0.8)
    try:
        weights = [G[u][v]['weight'] for u,v in G.edges()]
    except:
        weights = [1 for u,v in G.edges()]
    nx.draw_networkx_edges(G,pos,
                           with_labels=False,
                           edge_color="grey",
                           width=weights
                        )
    
    if G.order() < 1000:
        nx.draw_networkx_labels(G,pos, labels)
    plt.savefig(filename)
    plt.close("all")
def compute_static_graph_statistics(G,start_time,end_time):
    verts = G.vertices
    n = len(verts)
    m = float(end_time - start_time)
    agg_statistics = [dict.fromkeys(verts,0),dict.fromkeys(verts,0),dict.fromkeys(verts,0)]*3
    avg_statistics = [dict.fromkeys(verts,0),dict.fromkeys(verts,0),dict.fromkeys(verts,0)]*3

    aggregated_graph = nx.Graph()
    aggregated_graph.add_nodes_from(verts)
    start_time = max(1,start_time)
    for t in xrange(start_time,end_time+1):
        aggregated_graph.add_edges_from(G.snapshots[t].edges_iter())
         
        dc = G.snapshots[t].degree()
        cc = nx.closeness_centrality(G.snapshots[t])
        bc = nx.betweenness_centrality(G.snapshots[t])
        for v in verts:
            avg_statistics[0][v] += dc[v]/(n-1.0)
            avg_statistics[1][v] += cc[v]
            avg_statistics[2][v] += bc[v]
    for v in verts:
        avg_statistics[0][v] = avg_statistics[0][v]/m
        avg_statistics[1][v] = avg_statistics[1][v]/m
        avg_statistics[2][v] = avg_statistics[2][v]/m
    
    dc = nx.degree_centrality(aggregated_graph)
    cc = nx.closeness_centrality(aggregated_graph)
    bc = nx.betweenness_centrality(aggregated_graph)
    for v in verts:
        agg_statistics[0][v] = dc[v]
        agg_statistics[1][v] = cc[v]
        agg_statistics[2][v] = bc[v]
    return (agg_statistics, avg_statistics)
Beispiel #23
0
def degree_centrality(graph, outfile, records=10):
    """ Perform a degree centrality analysis on graph """
    ranking = nx.degree_centrality(graph)
    ordering = sorted(ranking.items(), key=operator.itemgetter(1), reverse=True)[:records]
    print("Employee,Degree Centrality", file=outfile)
    for employee, rank in ordering:
      print("{},{}".format(employee, rank), file=outfile)
Beispiel #24
0
def degree_centrality_report(graph, n):
    """ Reports on the top n most central individuals on the graph """
    pr = nx.degree_centrality(graph)
    nodes = sorted(pr.items(), key=operator.itemgetter(1), reverse=True)[:n]
    print("Degree Centrality - top {} individuals".format(n))
    for n in nodes:
        print("  {:30}:\t{}".format(n[0], n[1]))
Beispiel #25
0
def degree_centrality(graph):
    centrality = nx.degree_centrality(graph)
    nx.set_node_attributes(graph, 'centrality', centrality)
    degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True)
    for idx, item in enumerate(degrees[0:10]):
        item = (idx+1,) + item + (graph.degree(item[0]),)
        print "%i. %s: %0.3f (%i)" % item
def print_info(G):
  #info prints name, type, number of nodes and edges, and average degree already
  print(nx.info(G))
  print "Density: ", nx.density(G)
  print "Number of connected components: ", nx.number_connected_components(G)

  all_degree_cent = nx.degree_centrality(G)
  all_bet_cent = nx.betweenness_centrality(G)
  all_close_cent = nx.closeness_centrality(G)
  
  oldest = []
  agerank = 0
  
  names = []
  
  print ("Node, Degree Centrality, Betweenness Centrality, Closeness Centrality:")
  for x in range(G.number_of_nodes()):
    names.append(G.nodes(data=True)[x][1]['label'])
    
    if G.nodes(data=True)[x][1]['agerank'] >= agerank:
      if G.nodes(data=True)[x][1]['agerank'] != agerank:
        oldest = [] 
        agerank = G.nodes(data=True)[x][1]['agerank']
        oldest.append(G.nodes(data=True)[x][1])
        
    print G.nodes(data=True)[x][1]['label'],' %.2f' % all_degree_cent.get(x),\
    ' %.2f' % all_bet_cent.get(x),\
    ' %.2f' % all_close_cent.get(x)
  
  print "Oldest facebook(s): ", ', '.join([x['label'] for x in oldest])

  return names
Beispiel #27
0
 def most_central(self,F=1,cent_type='betweenness'):
     if cent_type == 'betweenness':
         ranking = nx.betweenness_centrality(self.G).items()
     elif cent_type == 'closeness':
         ranking = nx.closeness_centrality(self.G).items()
     elif cent_type == 'eigenvector':
         ranking = nx.eigenvector_centrality(self.G).items()
     elif cent_type == 'harmonic':
         ranking = nx.harmonic_centrality(self.G).items()
     elif cent_type == 'katz':
         ranking = nx.katz_centrality(self.G).items()
     elif cent_type == 'load':
         ranking = nx.load_centrality(self.G).items()
     elif cent_type == 'degree':
         ranking = nx.degree_centrality(self.G).items()
     ranks = [r for n,r in ranking]
     cent_dict = dict([(self.lab[n],r) for n,r in ranking])
     m_centrality = sum(ranks)
     if len(ranks) > 0:
         m_centrality = m_centrality/len(ranks)
     #Create a graph with the nodes above the cutoff centrality- remove the low centrality nodes
     thresh = F*m_centrality
     lab = {}
     for k in self.lab:
         lab[k] = self.lab[k]
     g = Graph(self.adj.copy(),self.char_list)
     for n,r in ranking:
         if r < thresh:
             g.G.remove_node(n)
             del g.lab[n]
     return (cent_dict,thresh,g)
Beispiel #28
0
def calculate_network_measures(net, analyser):
    deg=nx.degree_centrality(net)
    clust=[]

    if(net.is_multigraph()):
        net = analyser.flatGraph(net)

    if(nx.is_directed(net)):
        tmp_net=net.to_undirected()
        clust=nx.clustering(tmp_net)
    else:
        clust=nx.clustering(net)



    if(nx.is_directed(net)):
        tmp_net=net.to_undirected()
        paths=nx.shortest_path(tmp_net, source=None, target=None, weight=None)
    else:
        paths=nx.shortest_path(net, source=None, target=None, weight=None)

    lengths = [map(lambda a: len(a[1]), x[1].items()[1:]) for x in paths.items()]
    all_lengths=[]
    for a in lengths:
        all_lengths.extend(a)
    max_value=max(all_lengths)
    #all_lengths = [x / float(max_value) for x in all_lengths]

    return deg.values(),clust.values(),all_lengths
Beispiel #29
0
def allocate(G_phy, G_bgp):
    log.info("Allocating route reflectors")
    graph_phy = G_phy._graph
    for asn, devices in G_phy.groupby("asn").items():
        routers = [d for d in devices if d.is_router]
        router_ids = ank_utils.unwrap_nodes(routers)

        subgraph_phy = graph_phy.subgraph(router_ids)
        if len(subgraph_phy) == 1:  
                continue # single node in graph, no ibgp

        betw_cen = nx.degree_centrality(subgraph_phy)

        ordered = sorted(subgraph_phy.nodes(), key = lambda x: betw_cen[x], reverse = True)

        rr_count = len(subgraph_phy)/5 # Take top 20% to be route reflectors
        route_reflectors = ordered[:rr_count] # most connected 20%
        rr_clients = ordered[rr_count:] # the other routers
        route_reflectors = list(ank_utils.wrap_nodes(G_bgp, route_reflectors))
        rr_clients = list(ank_utils.wrap_nodes(G_bgp, rr_clients))

        G_bgp.update(route_reflectors, route_reflector = True) # mark as route reflector
        # rr <-> rr
        over_links = [(rr1, rr2) for rr1 in route_reflectors for rr2 in route_reflectors if rr1 != rr2] 
        G_bgp.add_edges_from(over_links, type = 'ibgp', direction = 'over')
        # client -> rr
        up_links = [(client, rr) for (client, rr) in itertools.product(rr_clients, route_reflectors)]
        G_bgp.add_edges_from(up_links, type = 'ibgp', direction = 'up')
        # rr -> client
        down_links = [(rr, client) for (client, rr) in up_links] # opposite of up
        G_bgp.add_edges_from(down_links, type = 'ibgp', direction = 'down')

    log.debug("iBGP done")
Beispiel #30
0
def plotGraph(graph, color="r", figsize=(12, 8)):
    
    labels = {n:n for n in graph.nodes()}
    
    d = nx.degree_centrality(graph)
    
    layout=nx.spring_layout
    pos=layout(graph)
    
    plt.figure(figsize=figsize)
    plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01)
    
    # nodes
    nx.draw_networkx_nodes(graph,pos,
                            nodelist=graph.nodes(),
                            node_color=color,
                            node_size=[v * 250 for v in d.values()],
                            alpha=0.8)
                            
    nx.draw_networkx_edges(graph,pos,
                           with_labels=False,
                           edge_color=color,
                           width=0.50
                        )
    
    if graph.order() < 1000:
        nx.draw_networkx_labels(graph,pos, labels)
    return plt
Beispiel #31
0
def centrality(G2):
    print("Running Centrality Module")
    # Check the type of centrality, and calculate for each node
    if myargs.centrality == "degree":
        cent = nx.degree_centrality(G2)
        cent_size = numpy.fromiter(cent.values(), float)
        print(cent)
    if myargs.centrality == "eigen":
        cent = nx.eigenvector_centrality(G2)
        cent_size = numpy.fromiter(cent.values(), float)
        print(cent)
    if myargs.centrality == "betweenness":
        cent = nx.betweenness_centrality(G2)
        cent_size = numpy.fromiter(cent.values(), float)
        print(cent)
    if myargs.centrality == "closeness":
        cent = nx.closeness_centrality(G2)
        cent_size = numpy.fromiter(cent.values(), float)
        print(cent)

    # This gives a degree frequency index (useful to compare to Power Law)
    degree_G2 = nx.degree(G2)
    degree_df = pd.DataFrame(degree_G2, columns=["Node", "Degree"])
    degree_list = degree_df["Degree"].to_numpy()
    degree_freq_G2 = nx.degree_histogram(G2)
    degree_freq_df = pd.DataFrame(degree_freq_G2, columns=["Frequency"])
    degree_freq_df["Degree"] = degree_freq_df.index
    degree_freq_df = degree_freq_df[["Degree", "Frequency"]]
    degree_df.to_csv(f"{edge_file}_Freq.txt", sep="\t")

    # This allows us to compare centrality between two different
    Cents1 = []
    Cents0 = []
    for v in G2.nodes:
        if v in group:
            G2.nodes[v]["subgroup"] = 1
            G2.nodes[v]["centrality"] = cent[v]
            Cents1.append(cent[v])
        else:
            G2.nodes[v]["subgroup"] = 0
            G2.nodes[v]["centrality"] = cent[v]
            Cents0.append(cent[v])
    node_color = [get_color(G2.nodes[v]["subgroup"]) for v in G2.nodes]
    # print(G2.nodes)
    # print(Cents1)
    # print(Cents0)

    # Output1: Graph, Highlight High Centrality & Groups.
    plt.figure()
    nx.draw(
        G2,
        pos=None,
        with_labels=True,
        node_color=node_color,
        node_size=cent_size * 2000,
        width=1,
    )  # ,ax=fig.subplot(111))
    plt.savefig(f"{myargs.centrality}_{myargs.thresh}_{edge_file}_Network.png")
    # plt.show()

    # Output2: Degree Histogram
    fig = plt.figure("Degree of Graph", figsize=(8, 8))
    # Create a gridspec for adding subplots of different sizes
    # axgrid = fig.add_gridspec(5, 4)

    # ax2 = fig.add_subplot(axgrid[:, :])
    # ax2.bar(*numpy.unique(degree_sequence, return_counts=True))
    # ax2.set_title("Degree histogram")
    # ax2.set_xlabel("Degree")
    # ax2.set_ylabel("# of Nodes")
    histoimage = plt.hist(cent.values(), range=[0, 0.15], color="skyblue")
    fig.tight_layout()
    fig.savefig(f"{myargs.centrality}_{myargs.thresh}_{edge_file}_Histo.png")
def central_characters(graph, n=10):
    res = Counter(nx.degree_centrality(graph)).most_common(n)
    return res
Beispiel #33
0
import pickle
import networkx as nx
import matplotlib.pyplot as plt
from nxviz import MatrixPlot, CircosPlot
from nxviz.plots import ArcPlot
from itertools import combinations
from collections import defaultdict

graph = pickle.load(open('github_users.p', 'rb'))

print("no. of users: " + str(len(graph.nodes())))
print("no. of user-collaborations(p2p) : " + str(len(graph.edges())))

plt.hist(list(nx.degree_centrality(graph).values()))
plt.show()

# Calculate the largest connected component subgraph
largest_ccs = sorted(nx.connected_component_subgraphs(graph),
                     key=lambda x: len(x))[-1]

h = MatrixPlot(largest_ccs)

h.draw()
plt.show()

for n, d in graph.nodes(data=True):
    graph.node[n]['degree'] = nx.degree(graph, n)

# a = ArcPlot(graph=graph, node_order='degree')

# a.draw()
Beispiel #34
0
def getSCV(v, g):
    return nx.degree_centrality(g)[v]
Beispiel #35
0
    G = nx.DiGraph()
    df = pd.read_csv(path, sep="\t")
    nodes = df.iloc[:, 1].unique().tolist()
    edges = [(f[0], f[1]) for f in df.as_matrix()]
    G.add_nodes_from(nodes)
    G.add_edges_from(edges)
    return G


# 2

# A
hits = nx.hits_scipy(g)
pagerank = nx.pagerank_scipy(g)  # default .85
eigen = nx.eigenvector_centrality(g)
degree = nx.degree_centrality(g)

get_top_hubs = lambda hits: get_top_nodes(hits[0])
get_top_auths = lambda hits: get_top_nodes(hits[1])


def get_top_nodes(d, n=20):
    return map(lambda x: x[0], sorted(d.items(), key=lambda x: x[1]))[0:n]


get_top_nodes(degree)
get_top_nodes(eigen)
get_top_nodes(pagerank)
get_top_hubs(hits)
get_top_auths(hits)
Beispiel #36
0
    nodes.set_norm(mcolors.SymLogNorm(linthresh=0.01, linscale=1))

    # labels = nx.draw_networkx_labels(G, pos)
    edges = nx.draw_networkx_edges(G, pos)

    plt.title(measure_name)
    plt.colorbar(nodes)
    plt.axis('off')
    plt.show()


pos = nx.spring_layout(G)
my_graph = nx.DiGraph()
my_graph.add_edges_from(G.edges())

d = nx.degree_centrality(G)
print(d)
#draw(my_graph, pos=none, nx.degree_centrality(my_graph), 'Degree of  Centrality')

d = nx.in_degree_centrality(my_graph)
print(d)
draw(my_graph, pos, d, 'Degree of Incentrality')

d = nx.out_degree_centrality(my_graph)
print(d)
draw(my_graph, pos, d, 'Degree of Outcentrality')
"""### Eigen Vector Centrality
indegree and outdegree ka different
"""

e = nx.eigenvector_centrality(G)
Beispiel #37
0
def main():
    qid = sys.argv[1]

    for cdo in CDO.objects.values('doc', 'citation').distinct()[:5]:
        print(cdo)
        #CDO.objects.filter(pk__in=CDO.objects.filter(doc=).values_list('id', flat=True)[1:]).delete()

    sys.exit()
    #time.sleep(14400)

    q = Query.objects.get(pk=qid)

    mdocs = Doc.objects.filter(query=q, wosarticle__cr__isnull=False)

    cdos = CDO.objects.filter(doc__query=q)

    # cdos = CDO.objects.filter(
    #     doc__in=mdocs.values_list('UT',flat=True)
    # )

    m = mdocs.count()
    m_dict = dict(zip(list(mdocs.values_list('UT', flat=True)),
                      list(range(m))))

    rev_m_dict = dict(
        zip(list(range(m)), list(mdocs.values_list('UT', flat=True))))

    del mdocs

    n = Citation.objects.count()
    n_dict = dict(
        zip(list(Citation.objects.all().values_list('id', flat=True)),
            list(range(n))))

    print("ROWIDS")
    row_ids = list(cdos.values_list('doc__UT', flat=True))
    rows = np.array([m_dict[x] for x in row_ids])

    print("colids")
    col_ids = list(cdos.values_list('citation__id', flat=True))
    cols = np.array([n_dict[x] for x in col_ids])

    print("data")
    data = np.array([1] * cdos.count())

    print("matrix")
    Scoo = coo_matrix((data, (rows, cols)), shape=(m, n))

    del cdos
    del row_ids
    del rows
    del col_ids
    del cols
    del data
    del n_dict

    gc.collect()

    S = Scoo.tocsr()
    del Scoo
    gc.collect()

    print("transpose")
    St = S.transpose()

    print("multiply")
    Cmat = S * St

    del S
    del St
    gc.collect()

    ltri = tril(Cmat, k=-1)

    G = nx.from_scipy_sparse_matrix(ltri)

    cnode = m_dict[Doc.objects.get(UT='WOS:000297683800015').UT]

    paths = nx.single_source_shortest_path(G, cnode)

    deg = nx.degree_centrality(G)
    ecent = nx.eigenvector_centrality(G)

    x = nx.core_number(G)

    for i in range(G.number_of_nodes()):
        d = Doc.objects.get(pk=rev_m_dict[i])
        d.k = x[i]
        d.degree = deg[i]
        d.eigen_cent = ecent[i]
        try:
            d.distance = len(paths[i])
        except:
            pass
        d.save()

    del x
    del G
    del deg
    del ecent
    gc.collect()

    bcmatrix = find(tril(Cmat, k=-1))

    N = len(bcmatrix[0])

    bcrange = list(range(N))
    print(N)

    chunk_size = 5000

    BibCouple.objects.all().delete()

    for i in range(N // chunk_size + 1):

        f = i * chunk_size
        print(f)
        l = (i + 1) * chunk_size - 1
        if l > N:
            l = N - 1

        bcs = []
        chunk = bcrange[f:l]
        pool = Pool(processes=5)
        bcs.append(
            pool.map(
                partial(bib_couple, bc_matrix=bcmatrix, rev_m_dict=rev_m_dict),
                chunk))
        pool.terminate()
        gc.collect()

        django.db.connections.close_all()
        bcs = flatten(bcs)
        BibCouple.objects.bulk_create(bcs)
def diminish_community(sbm_graph, community_id, nodes_to_purturb, criteria,
                       criteria_r):
    """Function to diminsh the SBM community
           
           Attributes:
               sbm_graph (Object): Networkx Graph Object
               community_id (int): Community to diminish
               criteria (str): Criteria used to diminish the community
               criteria_r (bool): Used to sort the nodes in reverse once order based on criteria
               nodes_to_purturb (int): Number of nodes to perturb
    """
    n = sbm_graph._node_num
    community_nodes = [
        i for i in range(n) if sbm_graph._node_community[i] == community_id
    ]
    nodes_to_purturb = min(len(community_nodes), nodes_to_purturb)
    labels = {}
    try:
        function = function_mapping[criteria]
        if criteria == 'katz':
            G_cen = function(sbm_graph._graph, alpha=0.01)
        else:
            G_cen = function(sbm_graph._graph)
    except KeyError:
        print(criteria,
              'is an invalid input! Using degree_centrality instead.')
        G_cen = nx.degree_centrality(sbm_graph._graph)
        pass

    G_cen = sorted(G_cen.items(),
                   key=operator.itemgetter(1),
                   reverse=criteria_r)
    perturb_nodes = []
    count = 0
    i = 0
    while count < nodes_to_purturb:
        if sbm_graph._node_community[G_cen[i][0]] == community_id:
            perturb_nodes.append(G_cen[i][0])
            count += 1
        i += 1

    node_plot = []
    count = 0
    i = 0
    while count < 20:
        if sbm_graph._node_community[G_cen[i][0]] == community_id:
            node_plot.append(G_cen[i][0])
            count += 1
        i += 1

    node_plot_reverse = []
    count = 0
    i = len(G_cen) - 1
    while count < 20:
        if sbm_graph._node_community[G_cen[i][0]] == community_id:
            node_plot_reverse.append(G_cen[i][0])
            count += 1
        i -= 1

    for i, nid in enumerate(perturb_nodes):
        labels[nid] = str("{0:.2f}".format(G_cen[i][1]))
    del G_cen
    # perturb_nodes = random.sample(community_nodes, nodes_to_purturb)

    left_communitis = [
        i for i in range(sbm_graph._community_num) if i != community_id
    ]
    for node_id in perturb_nodes:
        new_community = random.sample(left_communitis, 1)[0]
        print('Node %d change from community %d to %d' %
              (node_id, sbm_graph._node_community[node_id], new_community))
        sbm_graph._node_community[node_id] = new_community
    for node_id in perturb_nodes:
        _resample_egde_for_node(sbm_graph, node_id)

    return perturb_nodes, labels, node_plot, node_plot_reverse
Beispiel #39
0
if nx.is_connected(G_mentions):
    print("graph is connected")
else:
    print("graph is not connected")

print(
    f"Number of connected components: {nx.number_connected_components(G_mentions)}"
)
print(
    f"Average clustering coefficient: {nx.average_clustering(G_mentions):.5f}")
print(f"Transitivity: {nx.transitivity(G_mentions):.5f}")

# Takes 7 minutes
start = time.time()
graph_centrality = nx.degree_centrality(G_mentions)
max_de = max(graph_centrality.items(), key=itemgetter(1))
sorted_centrality = sorted(graph_centrality.items(),
                           key=itemgetter(1),
                           reverse=True)
graph_closeness = nx.closeness_centrality(G_mentions)
sorted_closeness = sorted(graph_closeness.items(),
                          key=itemgetter(1),
                          reverse=True)
max_clo = max(graph_closeness.items(), key=itemgetter(1))
graph_betweenness = nx.betweenness_centrality(G_mentions,
                                              normalized=True,
                                              endpoints=False)
sorted_betweeness = sorted(graph_betweenness.items(),
                           key=itemgetter(1),
                           reverse=True)
Beispiel #40
0
def graph_json():
    if len(request.args)==0:
        return jsonify(json_graph)
    graph_={'nodes':[],'links':[]}
    nodes_=set()
    graph_nodes=[]
    min_nodes=5
    exp_arts=False
    court_cases=False
    if request.args.get('min'):
        min_nodes=int(request.args.get('min'))
    if request.args.get('exp_arts'):
        if request.args.get('exp_arts')=="true":
            exp_arts=True
    if request.args.get('court_cases'):
        if request.args.get('court_cases')=="true":
            court_cases=True
    if request.args.get('include'):
        re_include=re.compile(request.args.get('include'))
    if request.args.get('include_doc'):
        re_include_doc=re.compile(request.args.get('include_doc'))

    for node in json_graph['nodes']:
        if node['type']==1:
            if request.args.get('include'):
                if re_include.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        nodes_.add(node['id'])
                        graph_nodes.append(node)
            else:
                if not node['id'] in nodes_:
                    graph_nodes.append(node)
                    nodes_.add(node['id'])
        elif not court_cases and not exp_arts and node['type']==2:
            if request.args.get('include_doc'):
                if re_include_doc.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        graph_nodes.append(node)
                        nodes_.add(node['id'])
            else:
                if not node['id'] in nodes_:
                    graph_nodes.append(node)
                    nodes_.add(node['id'])
        elif not court_cases and exp_arts and node['type']==3:
            if request.args.get('include_doc'):
                if re_include_doc.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        graph_nodes.append(node)
                        nodes_.add(node['id'])
            else:
                if not node['id'] in nodes_:
                    graph_nodes.append(node)
                    nodes_.add(node['id'])

    graph_nodes_=[]
    nodes_=set()

    if request.args.get('exclude'):
        re_exclude=re.compile(request.args.get('exclude'))
    if request.args.get('exclude_doc'):
        re_exclude_doc=re.compile(request.args.get('exclude_doc'))


    for node in graph_nodes:
        if node['type']==1:
            if request.args.get('exclude'):
                if not re_exclude.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        graph_nodes_.append(node)
                        nodes_.add(node['id'])
            else:
                if not node['id'] in nodes_:
                    graph_nodes_.append(node)
                    nodes_.add(node['id'])
        elif not court_cases and not exp_arts and node['type']==2:
            if request.args.get('exclude_doc'):
                if not re_exclude_doc.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        graph_nodes_.append(node)
                        nodes_.add(node['id'])
            else:
                if not node['id'] in nodes_:
                    graph_nodes_.append(node)
                    nodes_.add(node['id'])
        elif not court_cases and exp_arts and node['type']==3:
            if request.args.get('exclude_doc'):
                if not re_exclude_doc.search(node['name'].lower()):
                    if not node['id'] in nodes_:
                        graph_nodes_.append(node)
                        nodes_.add(node['id'])
            else:
                if not node['id'] in nodes_:
                    graph_nodes_.append(node)
                    nodes_.add(node['id'])



    targets_=set()
    sources_=set()
    for edge in json_graph['links']:
        if edge['source'] in nodes_ and edge['target'] in nodes_:
            if int(edge['ori_val'])>= min_nodes:
                graph_['links'].append(edge)
                targets_.add(edge['target'])
                sources_.add(edge['source'])

    for node in graph_nodes_:
        if node['type']==1:
            if node['id'] in sources_ or node['id'] in targets_:
                graph_['nodes'].append(node)
        if node['type']>1:
            if node['id'] in targets_:
                graph_['nodes'].append(node)


    G = nx.DiGraph()
    G.add_nodes_from([ n['id'] for n in graph_['nodes']])
    G.add_weighted_edges_from([ (e['source'],e['target'],e['ori_val']) for e in graph_['links']])

    graph_['stats']={}
    graph_['stats']['Density']=nx.density(G)
    dc=nx.degree_centrality(G)
    m,nm=get_max(dc)
    if m>0.0:
        graph_['stats']['avg Degree Centrality']=sum([v for v in dc.values()])/len(dc)
        graph_['stats']['max Degree Centrality']=m
        graph_['stats']['Node Degree Centrality']=nm

    for i,node in enumerate(graph_['nodes']):
        graph_['nodes'][i]['dc']=dc[node['id']]



    return jsonify(graph_)
Beispiel #41
0
def Degree_Centrality(G):
    Degree_Centrality = nx.degree_centrality(G)
    #print "Degree_Centrality:", sorted(Degree_Centrality.iteritems(), key=lambda d:d[1], reverse = True)
    return Degree_Centrality
Beispiel #42
0
def extended_stats(G,
                   connectivity=False,
                   anc=False,
                   ecc=False,
                   bc=False,
                   cc=False):
    """
    Calculate extended topological stats and metrics for a graph.

    Many of these algorithms have an inherently high time complexity. Global
    topological analysis of large complex networks is extremely time consuming
    and may exhaust computer memory. Consider using function arguments to not
    run metrics that require computation of a full matrix of paths if they
    will not be needed.

    Parameters
    ----------
    G : networkx.MultiDiGraph
        input graph
    connectivity : bool
        if True, calculate node and edge connectivity
    anc : bool
        if True, calculate average node connectivity
    ecc : bool
        if True, calculate shortest paths, eccentricity, and topological metrics
        that use eccentricity
    bc : bool
        if True, calculate node betweenness centrality
    cc : bool
        if True, calculate node closeness centrality

    Returns
    -------
    stats : dict
        dictionary of network measures containing the following elements (some
        only calculated/returned optionally, based on passed parameters):

          - avg_neighbor_degree
          - avg_neighbor_degree_avg
          - avg_weighted_neighbor_degree
          - avg_weighted_neighbor_degree_avg
          - degree_centrality
          - degree_centrality_avg
          - clustering_coefficient
          - clustering_coefficient_avg
          - clustering_coefficient_weighted
          - clustering_coefficient_weighted_avg
          - pagerank
          - pagerank_max_node
          - pagerank_max
          - pagerank_min_node
          - pagerank_min
          - node_connectivity
          - node_connectivity_avg
          - edge_connectivity
          - eccentricity
          - diameter
          - radius
          - center
          - periphery
          - closeness_centrality
          - closeness_centrality_avg
          - betweenness_centrality
          - betweenness_centrality_avg

    """
    stats = {}

    # create a DiGraph from the MultiDiGraph, for those metrics that require it
    G_dir = nx.DiGraph(G)

    # create an undirected Graph from the MultiDiGraph, for those metrics that
    # require it
    G_undir = nx.Graph(G)

    # get the largest strongly connected component, for those metrics that
    # require strongly connected graphs
    G_strong = utils_graph.get_largest_component(G, strongly=True)

    # average degree of the neighborhood of each node, and average for the graph
    avg_neighbor_degree = nx.average_neighbor_degree(G)
    stats["avg_neighbor_degree"] = avg_neighbor_degree
    stats["avg_neighbor_degree_avg"] = sum(
        avg_neighbor_degree.values()) / len(avg_neighbor_degree)

    # average weighted degree of the neighborhood of each node, and average for
    # the graph
    avg_wtd_nbr_deg = nx.average_neighbor_degree(G, weight="length")
    stats["avg_weighted_neighbor_degree"] = avg_wtd_nbr_deg
    stats["avg_weighted_neighbor_degree_avg"] = sum(
        avg_wtd_nbr_deg.values()) / len(avg_wtd_nbr_deg)

    # degree centrality for a node is the fraction of nodes it is connected to
    degree_centrality = nx.degree_centrality(G)
    stats["degree_centrality"] = degree_centrality
    stats["degree_centrality_avg"] = sum(
        degree_centrality.values()) / len(degree_centrality)

    # calculate clustering coefficient for the nodes
    stats["clustering_coefficient"] = nx.clustering(G_undir)

    # average clustering coefficient for the graph
    stats["clustering_coefficient_avg"] = nx.average_clustering(G_undir)

    # calculate weighted clustering coefficient for the nodes
    stats["clustering_coefficient_weighted"] = nx.clustering(G_undir,
                                                             weight="length")

    # average clustering coefficient (weighted) for the graph
    stats["clustering_coefficient_weighted_avg"] = nx.average_clustering(
        G_undir, weight="length")

    # pagerank: a ranking of the nodes in the graph based on the structure of
    # the incoming links
    pagerank = nx.pagerank(G_dir, weight="length")
    stats["pagerank"] = pagerank

    # node with the highest page rank, and its value
    pagerank_max_node = max(pagerank, key=lambda x: pagerank[x])
    stats["pagerank_max_node"] = pagerank_max_node
    stats["pagerank_max"] = pagerank[pagerank_max_node]

    # node with the lowest page rank, and its value
    pagerank_min_node = min(pagerank, key=lambda x: pagerank[x])
    stats["pagerank_min_node"] = pagerank_min_node
    stats["pagerank_min"] = pagerank[pagerank_min_node]

    # if True, calculate node and edge connectivity
    if connectivity:

        # node connectivity is the minimum number of nodes that must be removed
        # to disconnect G or render it trivial
        stats["node_connectivity"] = nx.node_connectivity(G_strong)

        # edge connectivity is equal to the minimum number of edges that must be
        # removed to disconnect G or render it trivial
        stats["edge_connectivity"] = nx.edge_connectivity(G_strong)
        utils.log("Calculated node and edge connectivity")

    # if True, calculate average node connectivity
    if anc:
        # mean number of internally node-disjoint paths between each pair of
        # nodes in G, i.e., the expected number of nodes that must be removed to
        # disconnect a randomly selected pair of non-adjacent nodes
        stats["node_connectivity_avg"] = nx.average_node_connectivity(G)
        utils.log("Calculated average node connectivity")

    # if True, calculate shortest paths, eccentricity, and topological metrics
    # that use eccentricity
    if ecc:
        # precompute shortest paths between all nodes for eccentricity-based
        # stats
        sp = {
            source: dict(
                nx.single_source_dijkstra_path_length(G_strong,
                                                      source,
                                                      weight="length"))
            for source in G_strong.nodes()
        }

        utils.log("Calculated shortest path lengths")

        # eccentricity of a node v is the maximum distance from v to all other
        # nodes in G
        eccentricity = nx.eccentricity(G_strong, sp=sp)
        stats["eccentricity"] = eccentricity

        # diameter is the maximum eccentricity
        diameter = nx.diameter(G_strong, e=eccentricity)
        stats["diameter"] = diameter

        # radius is the minimum eccentricity
        radius = nx.radius(G_strong, e=eccentricity)
        stats["radius"] = radius

        # center is the set of nodes with eccentricity equal to radius
        center = nx.center(G_strong, e=eccentricity)
        stats["center"] = center

        # periphery is the set of nodes with eccentricity equal to the diameter
        periphery = nx.periphery(G_strong, e=eccentricity)
        stats["periphery"] = periphery

    # if True, calculate node closeness centrality
    if cc:
        # closeness centrality of a node is the reciprocal of the sum of the
        # shortest path distances from u to all other nodes
        closeness_centrality = nx.closeness_centrality(G, distance="length")
        stats["closeness_centrality"] = closeness_centrality
        stats["closeness_centrality_avg"] = sum(
            closeness_centrality.values()) / len(closeness_centrality)
        utils.log("Calculated closeness centrality")

    # if True, calculate node betweenness centrality
    if bc:
        # betweenness centrality of a node is the sum of the fraction of
        # all-pairs shortest paths that pass through node
        # networkx 2.4+ implementation cannot run on Multi(Di)Graphs, so use DiGraph
        betweenness_centrality = nx.betweenness_centrality(G_dir,
                                                           weight="length")
        stats["betweenness_centrality"] = betweenness_centrality
        stats["betweenness_centrality_avg"] = sum(
            betweenness_centrality.values()) / len(betweenness_centrality)
        utils.log("Calculated betweenness centrality")

    utils.log("Calculated extended stats")
    return stats
Beispiel #43
0
def plot_info(G, names):
    def get_spread(dictionary):
        min_val = dictionary[1]
        max_val = dictionary[1]
        for key in dictionary:
            if min_val > dictionary[key]:
                min_val = dictionary[key]
            if max_val < dictionary[key]:
                max_val = dictionary[key]
        if min_val == 0:
            dictionary['Spread'] = 'infinity'
        else:
            dictionary['Spread'] = max_val / min_val
        return dictionary

    def get_katz_alpha(matrix):
        largest = max(linalg.eigvals(matrix))
        return 1 / largest - 0.01

    nx.draw_networkx(G, show_labels=True, labels=names)
    degree_centralities = get_spread(nx.degree_centrality(G))
    eigenvector_centralities = get_spread(nx.eigenvector_centrality(G))
    katz_centralities = get_spread(
        nx.katz_centrality(G, alpha=get_katz_alpha(nx.to_numpy_matrix(G))))
    page_rank_centralities = get_spread(nx.pagerank(G, alpha=0.85))
    closeness_centralities = get_spread(nx.closeness_centrality(G))
    betweeness_centralities = get_spread(nx.betweenness_centrality(G))
    data = []
    for key in degree_centralities:
        data.append([
            degree_centralities[key], eigenvector_centralities[key],
            katz_centralities[key], page_rank_centralities[key],
            closeness_centralities[key], betweeness_centralities[key]
        ])
    row_lables = []
    for x in range(len(names)):
        row_lables.append(names[x])
    row_lables.append('Spread')
    centralities = [
        'Degree', 'Eigenvector', 'Katz', 'Page Rank', 'Closeness',
        'Betweenness'
    ]
    for row in range(len(data)):
        for item in range(len(data[0])):
            if type(data[row][item]) is not str:
                data[row][item] = round(data[row][item], 3)
    the_table = plt.table(cellText=data,
                          rowLabels=row_lables,
                          colLabels=centralities,
                          loc='bottom')
    plt.tight_layout()
    plt.subplots_adjust(left=0.29,
                        bottom=0.46,
                        right=0.75,
                        top=None,
                        wspace=None,
                        hspace=None)
    the_table.scale(2, 2)
    plt.axis('off')
    the_table.auto_set_font_size(False)
    the_table.set_fontsize(10)
    plt.show()
Beispiel #44
0
def degree_centrality():
    degree_centrality_saves = nx.degree_centrality(G)
    order_degree_centrality_rank = sorted(degree_centrality_saves.items(), key=lambda x: x[1], reverse=True)
    #cut_order_degree_centrality_rank = order_degree_centrality_rank[0:10]
    #print(cut_order_degree_centrality_rank)
    return order_degree_centrality_rank
Beispiel #45
0
nx.write_gexf(g, 'graph.gexf')
g1 = nx.read_gexf('graph.gexf')

import matplotlib.pyplot as plt
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos, node_color='yellow', node_size=50)
nx.draw_networkx_edges(g, pos, edge_color='blue')
nx.draw_networkx_labels(g, pos, font_size=20)
plt.axis('off')
plt.show()  #plt.savefig('graph.png')
nx.diameter(g)  #самый длинный путь
g.number_of_nodes()
g.number_of_edges()
nx.density(g)  #примерно отношение узлов к ребрам
nx.average_clustering(g)
deg = nx.degree_centrality(g)

# goo.gl/AQllCa - датасеты разных сетей
import re

g_dolph = nx.Graph()
f = open('out.dolphins', 'r', encoding='utf-8')
dolphins = f.readlines()
for line in dolphins:
    nums = re.findall(r'[0-9]+', line)
    g_dolph.add_edge(int(nums[0]), int(nums[1]))

pos_dolph = nx.spring_layout(g_dolph)
nx.draw_networkx_nodes(g_dolph, pos_dolph, node_color='blue', node_size=100)
nx.draw_networkx_edges(g_dolph, pos_dolph, edge_color='yellow')
nx.draw_networkx_labels(g_dolph, pos_dolph, font_size=20)
Density of the Graph
A good metric to begin with is network density. This is simply the ratio of 
actual edges in the network to all possible edges in the network.
'''
density = nx.density(G) # calulates density of graph
print("Network density:", density)


'''
Centrality
In network analysis, measures of the importance of nodes are referred to as 
centrality measures. Degree is the simplest and the most common way of 
finding important nodes. A node’s degree is the sum of its edges. If a node 
has three lines extending from it to other nodes, its degree is three. Five edges
'''
rsd = nx.degree_centrality(G) # calculates density of graph
rsdf = pd.DataFrame(pd.Series(rsd)) # preprocess the output 
rsdf = rsdf.reset_index() # reset the index
rsdf.columns = ["addresses","Degree centrality"] # renaming columns
rsdf = rsdf.sort_values(by="Degree centrality", ascending=False) # sorting based on descending centrality value
top_5_nodes = list(rsdf.addresses[0:5]) # get top 5 nodes
print(top_5_nodes) # print top 5 nodes


'''
Finding Diameter
Diameter is the longest of all shortest paths. After calculating all shortest
paths between every possible pair of nodes in the network, diameter is the 
length of the path between the two nodes that are furthest apart. The measure
is designed to give a sense of the network’s overall size, the distance from
one end of the network to another.
def degree_centrality(G):
    return nx.degree_centrality(G)
Beispiel #48
0
                       weightfile=['./intermediate/enc_weightsacdm.hdf5',
                                   './intermediate/dec_weightsacdm.hdf5'])

        sample = args.samples
        if not os.path.exists('./test_data/academic/pickle'):
            os.mkdir('./test_data/academic/pickle')
            graphs, length = dataprep_util.get_graph_academic('./test_data/academic/adjlist')
            for i in range(length):
                nx.write_gpickle(graphs[i], './test_data/academic/pickle/' + str(i))
        else:
            length = len(os.listdir('./test_data/academic/pickle'))
            graphs = []
            for i in range(length):
                graphs.append(nx.read_gpickle('./test_data/academic/pickle/' + str(i)))

        G_cen = nx.degree_centrality(graphs[29])  # graph 29 in academia has highest number of edges
        G_cen = sorted(G_cen.items(), key=operator.itemgetter(1), reverse=True)
        node_l = []
        i = 0
        while i < sample:
            node_l.append(G_cen[i][0])
            i += 1

        for i in range(length):
            graphs[i] = graph_util.sample_graph_nodes(graphs[i], node_l)

        outdir = args.resultdir
        if not os.path.exists(outdir):
            os.mkdir(outdir)
        outdir = outdir + '/' + args.testDataType
        if not os.path.exists(outdir):
Beispiel #49
0
    def map_properties(self, sort_by=['Pagerank', 'Out_degree_wg']):
        """
        Compute key properties of nodes in the aggregate map. 
        Returns a sorted pandas DataFrame with graph properties.

        Parameters
        ----------
        sort_by : list 
            List of properties to sort dataframe.
        
        Returns
        -------
        pandas DataFrame 
            Dataframe with a set of graph metrics computed for each node in the graph.
    
        """

        metrics = {

            # Node degree
            'Node_degree':
            dict(self.map.degree)
            # Node out-degree
            ,
            'Out_degree':
            dict(self.map.out_degree)
            # Node weighted out-degree
            ,
            'Out_degree_wg':
            dict(self.map.out_degree(weight='weight'))
            # Node in-degree
            ,
            'In_degree':
            dict(self.map.in_degree)
            # Node weighted in-degree
            ,
            'In_degree_wg':
            dict(self.map.in_degree(weight='weight'))
            # Node pagerank
            ,
            'Pagerank':
            dict(nx.pagerank(self.map))
            # Node eigenvector centrality
            ,
            'Eigenvector_centrality':
            dict(nx.eigenvector_centrality(self.map))
            # Node degree centrality
            ,
            'Degree_centrality':
            dict(nx.degree_centrality(self.map))
            # Node closeness centrality
            ,
            'Closeness_centrality':
            dict(nx.closeness_centrality(self.map))
            # Node betweenness centrality
            ,
            'Betweenness_centrality':
            dict(nx.betweenness_centrality(self.map.to_undirected()))
            # Node Katz centrality
            #,'Katz_centrality' : dict( nx.katz_centrality( self.map.to_undirected() ) )
            # Node communicability centrality
            #,'Communicability centrality' : dict( nx.communicability_centrality( self.map.to_undirected() ) )
        }

        df_node_properties = pd.DataFrame.from_dict(metrics)
        df_node_properties.set_index(np.array(self.map.nodes()), inplace=True)
        df_node_properties.sort_values(sort_by, ascending=False, inplace=True)

        return df_node_properties
betCent = nx.betweenness_centrality(edges, normalized=True, endpoints=True)
node_color = [20000.0 * edges.degree(v) for v in edges]
node_size = [v * 10000 for v in betCent.values()]
plt.figure(figsize=(5, 5))
nx.draw_networkx(edges,
                 pos=pos,
                 with_labels=True,
                 node_color=node_color,
                 node_size=node_size)
plt.show()

sorted(betCent, key=betCent.get, reverse=True)[:5]

#Degree Centrality
pos = nx.spring_layout(edges)
degCent = nx.degree_centrality(edges)
node_color = [20000.0 * edges.degree(v) for v in edges]
node_size = [v * 10000 for v in degCent.values()]
plt.figure(figsize=(10, 10))
nx.draw_networkx(edges,
                 pos=pos,
                 with_labels=True,
                 node_color=node_color,
                 node_size=node_size)

plt.show()
sorted(degCent, key=degCent.get, reverse=True)[:5]

#Closeness Centrality
pos = nx.spring_layout(edges)
cloCent = nx.closeness_centrality(edges)
Beispiel #51
0
def find_nodes_with_highest_deg_cent(G):

    # Compute the degree centrality of G: deg_cent
    deg_cent = nx.degree_centrality(G)

    # Compute the maximum degree centrality: max_dc
    max_dc = max(list(deg_cent.values()))

    nodes = set()

    # Iterate over the degree centrality dictionary
    for k, v in deg_cent.items():

        # Check if the current value has the maximum degree centrality
        if v == max_dc:

            # Add the current node to the set of nodes
            nodes.add(k)

    return nodes


# Find the node(s) that has the highest degree centrality in T: top_dc
top_dc = find_nodes_with_highest_deg_cent(T)

print(top_dc)

# Write the assertion statement
for node in top_dc:
    assert nx.degree_centrality(T)[node] == max(
        nx.degree_centrality(T).values())
Beispiel #52
0
def add_degree_centrality(network: nx.Graph):
    dc = nx.degree_centrality(network)
    nx.set_node_attributes(network, dc, 'Degree_Centrality')
    return network
#Assortativity
print("The assortativity of the graph: " +
      str(nx.degree_assortativity_coefficient(g)))
#Average Clustering
print("The average clustering coefficient: " + str(nx.average_clustering(g)))
#Density
print("The Density of our Graph: " + str(nx.density(g)))
#Number of Nodes
print("The Number of Nodes: " + str(len(g.nodes)))
#Number of Edges
print("The Number of Edges: " + str(len(g.edges)))

#MICRO ANALYSIS -------------------------------------
#degree centrality
print("The top 5 nodes by degree centrality:")
deg = pd.DataFrame(dict(nx.degree_centrality(g)).items())
print(deg.sort_values(by=[1], ascending=False).head(5))
#betweenness centrality
print("The top 5 nodes by betweenness centrality:")
bet = pd.DataFrame(dict(nx.betweenness_centrality(g)).items())
print(bet.sort_values(by=[1], ascending=False).head(5))

#boxplot
plt.boxplot(np.array(bet.sort_values(by=[1], ascending=False)[1]))
plt.title('Distribution of Betweenness')

#Bottom of each list
#degree centrality
print("The bottom 5 nodes by degree centrality:")
deg = pd.DataFrame(dict(nx.degree_centrality(g)).items())
print(deg.sort_values(by=[1], ascending=False).tail(5))
 def degree_centrality(self, number=None):
     """度中心性"""
     unsort_dirt = nx.degree_centrality(self.get_graph())
     return sort(unsort_dirt, number)
Beispiel #55
0
def find_max_nodes(G):
    list = nx.degree_centrality(G)
    res = sorted(list.items(), key=lambda x: x[1], reverse=True)
    #TOP 10% is only growth
    return res[0:int(G.number_of_nodes() * 0.1)]
def centrality_compare(graph=None, nodes_string=None, value_counts=None):
    measurements_dict = OrderedDict()
    compare_dict = OrderedDict()

    # The data from wevi
    if nodes_string is None:
        nodes_list = [
            0.07553153757502284, 0.008804137964580436, 0.009528332679916485,
            0.09411131873310066, 0.056807282025497695, 0.09709045935848355,
            0.058825181534953086, 0.2655416154784191, 0.18734994882402486,
            0.14641018582600146
        ]
    else:
        nodes_list = [float(x) for x in nodes_string.split(",")]
    # Put the wevi data in a dictionary
    node_dict = {num: val for num, val in enumerate(nodes_list)}

    # Make the graph and make it simple graph instead of multi graph
    if graph is None:
        graph = graph_maker()
    if value_counts is None:
        value_counts = [14, 30, 30, 11, 15, 32, 39, 37, 45, 47]
    graph = nx.Graph(graph)
    measurements_dict["closeness centrality"] = nx.closeness_centrality(
        graph).values()
    # measurements_dict["eigenvector centrality"] = nx.eigenvector_centrality(graph).values()
    measurements_dict["degree centrality"] = nx.degree_centrality(
        graph).values()
    measurements_dict["betweenness centrality"] = nx.betweenness_centrality(
        graph).values()
    # measurements_dict["katz centrality"] = nx.katz_centrality(graph).values()
    measurements_dict["load centrality"] = nx.load_centrality(graph).values()
    measurements_dict["nodes count"] = value_counts

    # change the lists order to lexicographic
    measurements_dict = {
        key: [float(i) / sum(value) for i in value]
        for key, value in measurements_dict.items()
    }
    measurements_dict["wevi"] = [i for i in node_dict.values()]

    # Loop over all the cenrality measurements
    for centrality_name, centrality_value in measurements_dict.items():
        # Calculate correlations
        pearson = pearsonr(centrality_value, nodes_list)
        spearman = spearmanr(centrality_value, nodes_list)
        linregres = linregress(centrality_value, nodes_list)

        # add it the the compare dict
        compare_dict[centrality_name] = [
            pearson[0], spearman[0], linregres[2]**2, pearson[1], spearman[1],
            linregres[4]
        ]

    # Print the results nicely
    print tabulate([[x] + y for x, y in compare_dict.items()],
                   headers=[
                       'Name', 'Pearson', 'Spearman', 'linregress',
                       'Pearson p-value', 'Spearman p-value',
                       'linregress p-value'
                   ])

    sorted2 = sorted(range(len(measurements_dict.values()[0])),
                     key=lambda k: str(k))

    best_nodes_dict = {}
    for measure, mes_nodes_list in measurements_dict.items():
        best_nodes_dict[measure] = [
            "Node " + str(x[0]) for x in sorted(
                enumerate(mes_nodes_list), key=lambda x: x[1], reverse=True)
        ]
    best_nodes_dict["wevi"] = [
        "Node " + str(sorted2[x[0]])
        for x in sorted(enumerate(measurements_dict["wevi"]),
                        key=lambda x: x[1],
                        reverse=True)
    ]

    df = pd.DataFrame(measurements_dict)
    # df.to_csv("C:\Users\Dvir\Desktop\NNftw\measures.csv")

    print "\n\n"
    print tabulate(
        [[x] + y for x, y in measurements_dict.items()],
        headers=[
            "Node " + str(x)
            for x in sorted(range(len(nodes_list)), key=lambda k: str(k))
        ])

    print "\n\n"
    print tabulate([[x] + y[:5] for x, y in best_nodes_dict.items()],
                   headers=[x for x in range(5)])
    print "\n\n"

    return compare_dict
Beispiel #57
0
listmincentrality = (0, 10)
listmaxcentrality = (0, 0)
for n in (nx.betweenness_centrality(G)).items():
    if (listmincentrality[1] > n[1]):
        listmincentrality = n
    elif (listmaxcentrality[1] < n[1]):
        listmaxcentrality = n

print('')
print("The node that has minimal centrality is : ", listmincentrality)
print("The node that has the maximum centrality is : ", listmaxcentrality)

# normalized
listminnormalized = (0, 10)
listmaxnormalized = (0, 0)
for n in (nx.degree_centrality(G)).items():
    if (listminnormalized[1] > n[1]):
        listminnormalized = n
    elif (listmaxnormalized[1] < n[1]):
        listmaxnormalized = n

print('')
print("The node that has the minimum (normalized) degree is : ", listminnormalized)
print("The node that has the maximal (normalized) degree is: ", listmaxnormalized)


# In[ ]:



# recherche des cliques
Beispiel #58
0
def centrality_distribution(G):
    centrality = nx.degree_centrality(G).values()
    centrality = np.asarray(centrality)
    centrality /= centrality.sum()
    return centrality
Beispiel #59
0
print("Question 2:")
print("Nodes:", len(g.nodes()))
print("Edges:", len(g.edges()))
print()

h = g.copy()

h.remove_node('Mining-the-Social-Web-2nd-Edition(repo)')
# Comment out write if file is made and uncomment read
nx.write_edgelist(h, "followers.edgelist")
# h=nx.read_edgelist("followers.edgelist")

print("Follower Only List Read or Written")
print()

dc = sorted(nx.degree_centrality(h).items(), key=itemgetter(1), reverse=True)

print("Question 3:")
print("Degree Centrality")
print(dc[:10])
print()

bc = sorted(nx.betweenness_centrality(h).items(),
            key=itemgetter(1),
            reverse=True)

print("Betweenness Centrality")
print(bc[:10])
print()

print("Closeness Centrality")
print(nx.minimum_node_cut(GS1))
print(nx.edge_connectivity(GS1))
print(nx.minimum_edge_cut(GS1))

# Centrality:
# Indentification of Important nodes.

# Degree Centrality
# C_deg(V) = D_V/(|N|-1)
# D_V : Degree of node V
# N : Number of Nodes in the graph

GK = nx.karate_club_graph()
nx.draw(GK, with_labels=True)
plt.show()
print(nx.degree_centrality(GK))

# Degree Cenrtality: Directed Graph
# Closeness Centrality

nx.closeness_centrality(GK)

# Page Rank Algorithm

GP = nx.DiGraph()
GP.add_edge(1, 2)
GP.add_edge(1, 3)
GP.add_edge(4, 3)
GP.add_edge(3, 5)
nx.draw(GP, with_labels=True)
plt.show()