Beispiel #1
0
def _draw_time_series_plot(evaluation, plot_config):
    """"""
    time_range_info = plot_config['time_range']
    ref_ds = evaluation.ref_dataset
    target_ds = evaluation.target_datasets

    if time_range_info == 'monthly':
        ref_ds.values, ref_ds.times = utils.calc_climatology_monthly(ref_ds)

        for t in target_ds:
            t.values, t.times = utils.calc_climatology_monthly(t)
    else:
        logger.error('Invalid time range provided. Only monthly is supported '
                     'at the moment')
        return

    if evaluation.subregions:
        for bound_count, bound in enumerate(evaluation.subregions):
            results = []
            labels = []

            subset = dsp.subset(bound,
                                ref_ds,
                                subregion_name="R{}_{}".format(
                                    bound_count, ref_ds.name))

            results.append(utils.calc_time_series(subset))
            labels.append(subset.name)

            for t in target_ds:
                subset = dsp.subset(bound,
                                    t,
                                    subregion_name="R{}_{}".format(
                                        bound_count, t.name))
                results.append(utils.calc_time_series(subset))
                labels.append(subset.name)

            plots.draw_time_series(np.array(results), ref_ds.times, labels,
                                   'R{}'.format(bound_count),
                                   **plot_config.get('optional_args', {}))

    else:
        results = []
        labels = []

        results.append(utils.calc_time_series(ref_ds))
        labels.append(ref_ds.name)

        for t in target_ds:
            results.append(utils.calc_time_series(t))
            labels.append(t.name)

        plots.draw_time_series(np.array(results), ref_ds.times, labels,
                               'time_series',
                               **plot_config.get('optional_args', {}))
Beispiel #2
0
 def test_calc_climatology_monthly(self):
     expected_result = np.ones(300).reshape(12, 5, 5)
     expected_times = np.array([datetime.datetime(1, 1, 1) + relativedelta(months = x) 
                                for x in range(12)])
     actual_result, actual_times = utils.calc_climatology_monthly(self.dataset)
     np.testing.assert_array_equal(actual_result, expected_result)
     np.testing.assert_array_equal(actual_times, expected_times)
Beispiel #3
0
 def test_calc_climatology_monthly(self):
     expected_result = np.ones(300).reshape(12, 5, 5)
     expected_times = np.array([datetime.datetime(1, 1, 1) + relativedelta(months = x) 
                                for x in range(12)])
     actual_result, actual_times = utils.calc_climatology_monthly(self.dataset)
     np.testing.assert_array_equal(actual_result, expected_result)
     np.testing.assert_array_equal(actual_times, expected_times)
                                                             member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)


for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(
        target_datasets[member], new_lats, new_lons)

# find climatology monthly for obs and models
CRU31.values, CRU31.times = utils.calc_climatology_monthly(CRU31)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member].values, target_datasets[
        member].times = utils.calc_climatology_monthly(target_datasets[member])

# make the model ensemble
target_datasets_ensemble = dsp.ensemble(target_datasets)
target_datasets_ensemble.name = "ENS"

# append to the target_datasets for final analysis
target_datasets.append(target_datasets_ensemble)

""" Step 4: Subregion stuff """
list_of_regions = [
    Bounds(-10.0, 0.0, 29.0, 36.5),
Beispiel #5
0
 def test_invalid_time_shape(self):
     flat_array = np.array(range(350))
     self.dataset.values = flat_array.reshape(14, 5, 5)
     with self.assertRaises(ValueError):
         utils.calc_climatology_monthly(self.dataset)
    target_datasets[member] = dsp.water_flux_unit_conversion(
        target_datasets[member])
    target_datasets[member] = dsp.normalize_dataset_datetimes(
        target_datasets[member], 'monthly')

print("... spatial regridding")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member] = dsp.spatial_regrid(target_datasets[member],
                                                 new_lats, new_lons)

#find climatology monthly for obs and models
CRU31.values, CRU31.times = utils.calc_climatology_monthly(CRU31)

for member, each_target_dataset in enumerate(target_datasets):
    target_datasets[member].values, target_datasets[
        member].times = utils.calc_climatology_monthly(target_datasets[member])

#make the model ensemble
target_datasets_ensemble = dsp.ensemble(target_datasets)
target_datasets_ensemble.name = "ENS"

#append to the target_datasets for final analysis
target_datasets.append(target_datasets_ensemble)
""" Step 4: Subregion stuff """
list_of_regions = [
    Bounds(-10.0, 0.0, 29.0, 36.5),
    Bounds(0.0, 10.0, 29.0, 37.5),
Beispiel #7
0
 def test_calc_climatology_monthly(self):
     expected_result = np.ones(300).reshape(12, 5, 5)
     actual_result = utils.calc_climatology_monthly(self.dataset)
     np.testing.assert_array_equal(actual_result, expected_result)
Beispiel #8
0
def _draw_time_series_plot(evaluation, plot_config):
    """"""
    time_range_info = plot_config['time_range']
    ref_ds = evaluation.ref_dataset
    target_ds = evaluation.target_datasets

    if time_range_info == 'monthly':
        ref_ds.values, ref_ds.times = utils.calc_climatology_monthly(ref_ds)

        for t in target_ds:
            t.values, t.times = utils.calc_climatology_monthly(t)
    else:
        logger.error(
            'Invalid time range provided. Only monthly is supported '
            'at the moment'
        )
        return

    if evaluation.subregions:
        for bound_count, bound in enumerate(evaluation.subregions):
            results = []
            labels = []

            subset = dsp.subset(
                bound,
                ref_ds,
                subregion_name="R{}_{}".format(bound_count, ref_ds.name)
            )

            results.append(utils.calc_time_series(subset))
            labels.append(subset.name)

            for t in target_ds:
                subset = dsp.subset(
                    bound,
                    t,
                    subregion_name="R{}_{}".format(bound_count, t.name)
                )
                results.append(utils.calc_time_series(subset))
                labels.append(subset.name)

            plots.draw_time_series(np.array(results),
                                   ref_ds.times,
                                   labels,
                                   'R{}'.format(bound_count),
                                   **plot_config.get('optional_args', {}))

    else:
        results = []
        labels = []

        results.append(utils.calc_time_series(ref_ds))
        labels.append(ref_ds.name)

        for t in target_ds:
            results.append(utils.calc_time_series(t))
            labels.append(t.name)

        plots.draw_time_series(np.array(results),
                               ref_ds.times,
                               labels,
                               'time_series',
                               **plot_config.get('optional_args', {}))