Beispiel #1
0
    def plan_pose_collision_free(self,
                                 pose_stamped,
                                 starting_state=None,
                                 ordered_collisions=None,
                                 timeout=15.0,
                                 bounds=None,
                                 planner_id='',
                                 ntries=3):
        '''
        **Deprecated.**  

        Use plan_collision_free.
        '''
        starting_state = self.get_closest_state_in_limits(
            robot_state=starting_state)
        goal = conv.pose_stamped_to_motion_plan_request(pose_stamped,
                                                        self.hand.hand_frame,
                                                        self.arm_name,
                                                        starting_state,
                                                        timeout=timeout,
                                                        bounds=bounds,
                                                        planner_id=planner_id)

        return self.plan_collision_free(goal,
                                        ordered_collisions=ordered_collisions,
                                        ntries=ntries)
 def _move_to_goal_using_move_arm(self, goal, planner_timeout, ordered_collisions, bounds, planner_id=''):
     '''
     Try using the MoveArm action to get to the goal.
     '''
     self._controller_manager.switch_controllers(start_controllers=[self._joint_controller])
     current_state = self._world_interface.get_robot_state()
     link_name = self._hand_description.hand_frame
     
     if type(goal) == JointState:
         mp_request = conversions.joint_state_to_motion_plan_request(
             goal, link_name, self._group_name, current_state,
             timeout=planner_timeout, bounds=bounds, planner_id=planner_id)
     elif type(goal) == PoseStamped:
         mp_request = conversions.pose_stamped_to_motion_plan_request(
             goal, link_name, self._group_name, starting_state=current_state, 
             timeout=planner_timeout, bounds=bounds, planner_id=planner_id)
     else:
         raise ValueError('Invalid goal type %s' % str(type(goal)))
     
     ma_goal = arm_navigation_msgs.msg.MoveArmGoal()
     ma_goal.motion_plan_request = mp_request
     if ordered_collisions:
         ma_goal.operations = ordered_collisions
     ma_goal.planner_service_name = DEFAULT_PLANNER_SERVICE_NAME
     
     # send goal to move arm
     res = self._call_action(self._move_arm_client, ma_goal)
     if res == None:
         raise ArmNavError('MoveArm failed without setting result')
     elif not res.error_code.val == ArmNavErrorCodes.SUCCESS:
         raise ArmNavError('MoveArm failed', res.error_code)
     else:
         self._current_handle._set_reached_goal(True)
Beispiel #3
0
    def plan_pose_collision_free(self, pose_stamped, starting_state=None, ordered_collisions=None, timeout=15.0, 
                                 bounds=None, planner_id='', ntries=3):
        '''
        **Deprecated.**  

        Use plan_collision_free.
        '''
        starting_state = self.get_closest_state_in_limits(robot_state=starting_state)
        goal = conv.pose_stamped_to_motion_plan_request(pose_stamped, self.hand.hand_frame, self.arm_name,
                                                        starting_state, timeout=timeout,
                                                        bounds=bounds, planner_id=planner_id)

        return self.plan_collision_free(goal, ordered_collisions=ordered_collisions, ntries=ntries)
    def _move_to_goal_using_move_arm(self,
                                     goal,
                                     planner_timeout,
                                     ordered_collisions,
                                     bounds,
                                     planner_id=''):
        '''
        Try using the MoveArm action to get to the goal.
        '''
        self._controller_manager.switch_controllers(
            start_controllers=[self._joint_controller])
        current_state = self._world_interface.get_robot_state()
        link_name = self._hand_description.hand_frame

        if type(goal) == JointState:
            mp_request = conversions.joint_state_to_motion_plan_request(
                goal,
                link_name,
                self._group_name,
                current_state,
                timeout=planner_timeout,
                bounds=bounds,
                planner_id=planner_id)
        elif type(goal) == PoseStamped:
            mp_request = conversions.pose_stamped_to_motion_plan_request(
                goal,
                link_name,
                self._group_name,
                starting_state=current_state,
                timeout=planner_timeout,
                bounds=bounds,
                planner_id=planner_id)
        else:
            raise ValueError('Invalid goal type %s' % str(type(goal)))

        ma_goal = arm_navigation_msgs.msg.MoveArmGoal()
        ma_goal.motion_plan_request = mp_request
        if ordered_collisions:
            ma_goal.operations = ordered_collisions
        ma_goal.planner_service_name = DEFAULT_PLANNER_SERVICE_NAME

        # send goal to move arm
        res = self._call_action(self._move_arm_client, ma_goal)
        if res == None:
            raise ArmNavError('MoveArm failed without setting result')
        elif not res.error_code.val == ArmNavErrorCodes.SUCCESS:
            raise ArmNavError('MoveArm failed', res.error_code)
        else:
            self._current_handle._set_reached_goal(True)
Beispiel #5
0
    def plan_interpolated_ik(self,
                             pose_stamped,
                             starting_pose=None,
                             ordered_collisions=None,
                             bounds=None,
                             starting_state=None,
                             min_acceptable_distance=None,
                             collision_aware=True,
                             reverse=False,
                             resolution=0.005,
                             nsteps=0,
                             consistent_angle=np.pi / 6.0,
                             steps_before_abort=0,
                             collision_check_resolution=2,
                             max_joint_vels=None,
                             max_joint_accs=None):
        '''
        Plans a path that follows a straight line in Cartesian space.  
        
        This function is useful for tasks like grasping where it is necessary to ensure that the gripper moves in a
        straight line relative to the world.  The trajectory returned from this function is safe to execute.  
        This function may alter the planning scene during planning, but returns it to its initial state when 
        finished.

        There are a lot of possible arguments to this function but in general the defaults work well.

        **Args:**

            **pose_stamped (geomety_msgs.msg.PoseStamped):** The ending pose for the hand frame defined in hand (see
            hand_description.py)

            *starting_pose (geometry_msgs.msg.PoseStamped):* The starting pose of the hand frame.  If None, this will
            use the current pose of the hand frame in the starting state

            *ordered_collisions (arm_navigation_msgs.msg.OrderedCollisionOperations):* Any additional collision
            operations besides those in the planning scene interface you want to use during planning.

            *bounds ([double]):* Acceptable errors for the goal position as (x, y, z, roll, pitch, yaw).  If nothing
            is passed in, uses the defaults defined in conversions.py

            *starting_state (arm_navigation_msgs.msg.RobotState):* The state of the robot at the start of the plan if
            reverse is False and at the end of the plan if reverse is True.  If you pass in a starting_pose that 
            does not match the starting state, the planner will use the starting_pose not the stating_state.  If you
            pass in a starting state and no starting pose, the planner will use the hand frame pose in the starting 
            state.  If you pass in no starting state, but you do pass in a starting_pose, the planner will solve for 
            a collision free IK solution for the starting state.  If you pass in no starting state or starting pose,
            the planner will use the current robot state in the planning scene interface.  If reverse is False, the 
            starting state will be appended to the front of the trajectory.

            *min_acceptable_distance (double):* If the planner finds a path of at least this distance (in meters), 
            it is a success.  This must be greater than zero; to disable, set to None.  

            *collision_aware (boolean):* Set to False if you want no collision checking to be done

            *reverse (boolean):* Set to True if you want the planner to start planning at pose_stamped and try to
            plan towards starting_pose.  The trajectory returned will still end at pose_stamped.

            *resolution (double):* The resolution in centimeters between points on the trajectory in Carteisan space.
            Will only be used if nsteps=0.

            *nsteps (int):* The number of steps you want on the trajectory.  If nsteps is set, resolution will be
            ignored.
            
            *consistent_angle (double):* If any joint angle between two points on this trajectory changes by more 
            than this amount, the planning will fail.
            
            *steps_before_abort (int):* The number of invalid steps (no IK solution etc) allowed before the planning
            fails.
            
            *collision_check_resolution (int):* Collisions will be checked every collision_check_resolution steps
            
            *max_joint_vels ([double]):* Maximum allowed joint velocities.  If not passed in, will be set to 0.1 for
            all joints.
            
            *max_joint_accs ([double]):* Maximum allowed joint accelerations.  If not passed in, only velocity
            constraints will be used.

        **Returns:**
            A trajectory_msgs.msg.JointTrajectory that is safe to execute in which the hand frame moves in a straight
            line in Cartesian space.
           
        **Raises:**
        
            **exceptions.ArmNavError:** if no plan can be found.

            **rospy.ServiceException:** if there is a problem with the call to the planning or parameter service
        '''
        #prior_state = self._psi.get_robot_state()
        self._psi.add_ordered_collisions(ordered_collisions)
        #if starting_state:
        #starting_state = self.get_closest_state_in_limits(robot_state=starting_state)
        #self._psi.set_robot_state(starting_state)
        if not starting_pose:
            starting_pose = self.get_hand_frame_pose(
                robot_state=starting_state,
                frame_id=pose_stamped.header.frame_id)
        else:
            starting_pose = self._psi.transform_pose_stamped(
                pose_stamped.header.frame_id, starting_pose)
        if starting_state:
            #check that it matches
            if not reverse:
                chk_pose = starting_pose
            else:
                chk_pose = pose_stamped
            starting_fk = self.get_hand_frame_pose(
                robot_state=starting_state, frame_id=chk_pose.header.frame_id)
            if not gt.near(starting_fk.pose, chk_pose.pose):
                rospy.logwarn(
                    'Input starting state does not match starting pose.  ' +
                    'Solving for an IK solution instead')
                rospy.logdebug('Starting FK is\n' + str(starting_fk) +
                               '\nCheck pose is\n' + str(chk_pose))
                rospy.logdebug(
                    'Euclidean distance is: ' + str(
                        gt.euclidean_distance(starting_fk.pose.position,
                                              chk_pose.pose.position)) +
                    ', angular distance is: ' + str(
                        gt.quaternion_distance(starting_fk.pose.orientation,
                                               chk_pose.pose.orientation)))
                starting_state = None
        if not starting_state:
            if reverse:
                ik_sol = self.get_ik(pose_stamped,
                                     collision_aware=collision_aware)
            else:
                ik_sol = self.get_ik(starting_pose,
                                     collision_aware=collision_aware)
            if ik_sol.error_code.val != ik_sol.error_code.SUCCESS:
                rospy.logerr(
                    'Starting pose for interpolated IK had IK error ' +
                    str(ik_sol.error_code.val))
                raise ArmNavError(
                    'Starting pose for interpolated IK had no IK solution',
                    error_code=ik_sol.error_code)
            starting_state = ik_sol.solution
            #self._psi.set_robot_state(starting_state)
        rospy.logdebug('Planning interpolated IK from\n' + str(starting_pose) +
                       '\nto\n' + str(pose_stamped))
        init_state = RobotState()
        init_state.joint_state = starting_state.joint_state
        init_state.multi_dof_joint_state.frame_ids.append(
            starting_pose.header.frame_id)
        init_state.multi_dof_joint_state.child_frame_ids.append(
            self.hand.hand_frame)
        init_state.multi_dof_joint_state.poses.append(starting_pose.pose)
        goal = conv.pose_stamped_to_motion_plan_request(pose_stamped,
                                                        self.hand.hand_frame,
                                                        self.arm_name,
                                                        init_state,
                                                        bounds=bounds)
        dist = gt.euclidean_distance(pose_stamped.pose.position,
                                     starting_pose.pose.position)
        if nsteps == 0:
            if resolution == 0:
                rospy.logwarn(
                    'Resolution and steps were both zero in interpolated IK.  '
                    + 'Using default resolution of 0.005')
                resolution = 0.005
            nsteps = int(dist / resolution)
        res = dist / nsteps
        req = SetInterpolatedIKMotionPlanParamsRequest()
        req.num_steps = nsteps
        req.consistent_angle = consistent_angle
        req.collision_check_resolution = collision_check_resolution
        req.steps_before_abort = steps_before_abort
        req.collision_aware = collision_aware
        req.start_from_end = reverse
        if max_joint_vels:
            req.max_joint_vels = max_joint_vels
        if max_joint_accs:
            req.max_joint_accs = max_joint_accs
        self._interpolated_ik_parameter_service(req)
        rospy.loginfo(
            'Calling interpolated ik motion planning service.  Expecting ' +
            str(nsteps) + ' steps')
        rospy.logdebug('Sending goal\n' + str(goal))
        ik_resp = self._interpolated_ik_planning_service(goal)
        self._psi.remove_ordered_collisions(ordered_collisions)
        #self._psi.set_robot_state(prior_state)
        traj = ik_resp.trajectory.joint_trajectory
        first_index = 0
        rospy.logdebug('Trajectory error codes are ' +
                       str([e.val for e in ik_resp.trajectory_error_codes]))
        if reverse:
            for first_index in range(len(ik_resp.trajectory_error_codes)):
                e = ik_resp.trajectory_error_codes[first_index]
                if e.val == e.SUCCESS:
                    break
        last_index = 0
        e = ArmNavigationErrorCodes()
        e.val = e.SUCCESS
        for last_index in range(first_index,
                                len(ik_resp.trajectory_error_codes) + 1):
            if last_index == len(ik_resp.trajectory_error_codes):
                #the whole trajectory works
                break
            e = ik_resp.trajectory_error_codes[last_index]
            if e.val != e.SUCCESS:
                rospy.logerr('Interpolated IK failed with error ' +
                             str(e.val) + ' on step ' + str(last_index) +
                             ' after distance ' +
                             str((last_index + 1 - first_index) * res))
                last_index -= 1
                break
        rospy.logdebug('First index = ' + str(first_index) +
                       ', last index = ' + str(last_index))
        distance = (last_index - first_index) * res
        traj.points = traj.points[first_index:max(0, last_index)]
        rospy.loginfo('Interpolated IK returned trajectory with ' +
                      str(len(traj.points)) + ' points')
        if e.val != e.SUCCESS and (not min_acceptable_distance
                                   or distance < min_acceptable_distance):
            raise ArmNavError(
                'Interpolated IK failed after ' +
                str(last_index - first_index) + ' steps.',
                error_code=e,
                trajectory_error_codes=ik_resp.trajectory_error_codes,
                trajectory=traj)
        if not reverse or not traj.points:
            return tt.add_state_to_front_of_joint_trajectory(
                self.arm_joint_state(robot_state=starting_state), traj)
        return traj
Beispiel #6
0
    def plan_interpolated_ik(self, pose_stamped, starting_pose=None, ordered_collisions=None, bounds = None, 
                             starting_state=None, min_acceptable_distance=None, collision_aware=True,
                             reverse=False, resolution=0.005, nsteps=0, consistent_angle=np.pi/6.0, 
                             steps_before_abort=0, collision_check_resolution=2, max_joint_vels=None, 
                             max_joint_accs=None):
        '''
        Plans a path that follows a straight line in Cartesian space.  
        
        This function is useful for tasks like grasping where it is necessary to ensure that the gripper moves in a
        straight line relative to the world.  The trajectory returned from this function is safe to execute.  
        This function may alter the planning scene during planning, but returns it to its initial state when 
        finished.

        There are a lot of possible arguments to this function but in general the defaults work well.

        **Args:**

            **pose_stamped (geomety_msgs.msg.PoseStamped):** The ending pose for the hand frame defined in hand (see
            hand_description.py)

            *starting_pose (geometry_msgs.msg.PoseStamped):* The starting pose of the hand frame.  If None, this will
            use the current pose of the hand frame in the starting state

            *ordered_collisions (arm_navigation_msgs.msg.OrderedCollisionOperations):* Any additional collision
            operations besides those in the planning scene interface you want to use during planning.

            *bounds ([double]):* Acceptable errors for the goal position as (x, y, z, roll, pitch, yaw).  If nothing
            is passed in, uses the defaults defined in conversions.py

            *starting_state (arm_navigation_msgs.msg.RobotState):* The state of the robot at the start of the plan if
            reverse is False and at the end of the plan if reverse is True.  If you pass in a starting_pose that 
            does not match the starting state, the planner will use the starting_pose not the stating_state.  If you
            pass in a starting state and no starting pose, the planner will use the hand frame pose in the starting 
            state.  If you pass in no starting state, but you do pass in a starting_pose, the planner will solve for 
            a collision free IK solution for the starting state.  If you pass in no starting state or starting pose,
            the planner will use the current robot state in the planning scene interface.  If reverse is False, the 
            starting state will be appended to the front of the trajectory.

            *min_acceptable_distance (double):* If the planner finds a path of at least this distance (in meters), 
            it is a success.  This must be greater than zero; to disable, set to None.  

            *collision_aware (boolean):* Set to False if you want no collision checking to be done

            *reverse (boolean):* Set to True if you want the planner to start planning at pose_stamped and try to
            plan towards starting_pose.  The trajectory returned will still end at pose_stamped.

            *resolution (double):* The resolution in centimeters between points on the trajectory in Carteisan space.
            Will only be used if nsteps=0.

            *nsteps (int):* The number of steps you want on the trajectory.  If nsteps is set, resolution will be
            ignored.
            
            *consistent_angle (double):* If any joint angle between two points on this trajectory changes by more 
            than this amount, the planning will fail.
            
            *steps_before_abort (int):* The number of invalid steps (no IK solution etc) allowed before the planning
            fails.
            
            *collision_check_resolution (int):* Collisions will be checked every collision_check_resolution steps
            
            *max_joint_vels ([double]):* Maximum allowed joint velocities.  If not passed in, will be set to 0.1 for
            all joints.
            
            *max_joint_accs ([double]):* Maximum allowed joint accelerations.  If not passed in, only velocity
            constraints will be used.

        **Returns:**
            A trajectory_msgs.msg.JointTrajectory that is safe to execute in which the hand frame moves in a straight
            line in Cartesian space.
           
        **Raises:**
        
            **exceptions.ArmNavError:** if no plan can be found.

            **rospy.ServiceException:** if there is a problem with the call to the planning or parameter service
        '''
        #prior_state = self._psi.get_robot_state()
        self._psi.add_ordered_collisions(ordered_collisions)
        #if starting_state:
            #starting_state = self.get_closest_state_in_limits(robot_state=starting_state)
            #self._psi.set_robot_state(starting_state)
        if not starting_pose:
            starting_pose = self.get_hand_frame_pose(robot_state=starting_state, frame_id=pose_stamped.header.frame_id)
        else:
            starting_pose = self._psi.transform_pose_stamped(pose_stamped.header.frame_id, starting_pose)
        if starting_state:
            #check that it matches
            if not reverse:
                chk_pose = starting_pose
            else:
                chk_pose = pose_stamped
            starting_fk = self.get_hand_frame_pose(robot_state=starting_state, 
                                                   frame_id=chk_pose.header.frame_id)
            if not gt.near(starting_fk.pose, chk_pose.pose):
                rospy.logwarn('Input starting state does not match starting pose.  '+
                              'Solving for an IK solution instead')
                rospy.logdebug('Starting FK is\n'+str(starting_fk)+'\nCheck pose is\n'+str(chk_pose))
                rospy.logdebug('Euclidean distance is: '+
                               str(gt.euclidean_distance(starting_fk.pose.position, chk_pose.pose.position))+
                               ', angular distance is: '+
                               str(gt.quaternion_distance(starting_fk.pose.orientation, chk_pose.pose.orientation)))
                starting_state = None
        if not starting_state:
            if reverse:
                ik_sol = self.get_ik(pose_stamped, collision_aware=collision_aware)
            else:
                ik_sol = self.get_ik(starting_pose, collision_aware=collision_aware)
            if ik_sol.error_code.val != ik_sol.error_code.SUCCESS:
                rospy.logerr('Starting pose for interpolated IK had IK error '+str(ik_sol.error_code.val))
                raise ArmNavError('Starting pose for interpolated IK had no IK solution', 
                                  error_code = ik_sol.error_code)
            starting_state = ik_sol.solution
            #self._psi.set_robot_state(starting_state)
        rospy.logdebug('Planning interpolated IK from\n'+str(starting_pose)+'\nto\n'+str(pose_stamped))
        init_state = RobotState()
        init_state.joint_state = starting_state.joint_state
        init_state.multi_dof_joint_state.frame_ids.append(starting_pose.header.frame_id)
        init_state.multi_dof_joint_state.child_frame_ids.append(self.hand.hand_frame)
        init_state.multi_dof_joint_state.poses.append(starting_pose.pose)
        goal = conv.pose_stamped_to_motion_plan_request(pose_stamped, self.hand.hand_frame, self.arm_name,
                                                        init_state, bounds=bounds)
        dist = gt.euclidean_distance(pose_stamped.pose.position, starting_pose.pose.position)
        if nsteps == 0:
            if resolution == 0:
                rospy.logwarn('Resolution and steps were both zero in interpolated IK.  '+
                              'Using default resolution of 0.005')
                resolution = 0.005
            nsteps = int(dist/resolution)
        res = dist/nsteps
        req = SetInterpolatedIKMotionPlanParamsRequest()
        req.num_steps = nsteps
        req.consistent_angle = consistent_angle
        req.collision_check_resolution = collision_check_resolution
        req.steps_before_abort = steps_before_abort
        req.collision_aware = collision_aware
        req.start_from_end = reverse
        if max_joint_vels:
            req.max_joint_vels = max_joint_vels
        if max_joint_accs:
            req.max_joint_accs = max_joint_accs
        self._interpolated_ik_parameter_service(req)
        rospy.loginfo('Calling interpolated ik motion planning service.  Expecting '+str(nsteps)+' steps')
        rospy.logdebug('Sending goal\n'+str(goal))
        ik_resp = self._interpolated_ik_planning_service(goal)
        self._psi.remove_ordered_collisions(ordered_collisions)
        #self._psi.set_robot_state(prior_state)
        traj = ik_resp.trajectory.joint_trajectory
        first_index = 0
        rospy.logdebug('Trajectory error codes are '+str([e.val for e in ik_resp.trajectory_error_codes]))
        if reverse:
            for first_index in range(len(ik_resp.trajectory_error_codes)):
                e = ik_resp.trajectory_error_codes[first_index]
                if e.val == e.SUCCESS:
                    break
	last_index = 0
	e = ArmNavigationErrorCodes()
	e.val = e.SUCCESS
        for last_index in range(first_index,len(ik_resp.trajectory_error_codes)+1):
            if last_index == len(ik_resp.trajectory_error_codes):
                #the whole trajectory works
                break
            e = ik_resp.trajectory_error_codes[last_index]
            if e.val != e.SUCCESS:
                rospy.logerr('Interpolated IK failed with error '+str(e.val)+' on step ' +str(last_index)+
                             ' after distance '+ str((last_index+1-first_index)*res))
                last_index -= 1
                break
        rospy.logdebug('First index = '+str(first_index)+', last index = '+str(last_index))
        distance = (last_index-first_index)*res
        traj.points = traj.points[first_index:max(0,last_index)]
        rospy.loginfo('Interpolated IK returned trajectory with '+str(len(traj.points))+' points')
        if e.val != e.SUCCESS and (not min_acceptable_distance or distance < min_acceptable_distance):
            raise ArmNavError('Interpolated IK failed after '+str(last_index-first_index)+' steps.', error_code=e,
                              trajectory_error_codes = ik_resp.trajectory_error_codes, trajectory=traj)
        if not reverse or not traj.points:
            return tt.add_state_to_front_of_joint_trajectory(self.arm_joint_state(robot_state=starting_state), traj)
        return traj