def output(partId):
    # Random Test Cases
    X = np.sin(np.arange(1, 166)).reshape(15, 11, order='F')
    Z = np.cos(np.arange(1, 122)).reshape(11, 11, order='F')
    C = Z[:5, :]
    idx = np.arange(1, 16) % 3
    if partId == '1':
        idx = findClosestCentroids(X, C) + 1
        out = formatter('%0.5f ', idx.ravel('F'))
    elif partId == '2':
        centroids = computeCentroids(X, idx, 3)
        out = formatter('%0.5f ', centroids.ravel('F'))
    elif partId == '3':
        U, S = pca(X)
        out = formatter(
            '%0.5f ', np.abs(np.hstack([U.ravel('F'),
                                        np.diag(S).ravel('F')])))
    elif partId == '4':
        X_proj = projectData(X, Z, 5)
        out = formatter('%0.5f ', X_proj.ravel('F'))
    elif partId == '5':
        X_rec = recoverData(X[:, :5], Z, 5)
        out = formatter('%0.5f ', X_rec.ravel('F'))
    return out
Beispiel #2
0
#  first k eigenvectors. The code will then plot the data in this reduced
#  dimensional space.  This will show you what the data looks like when
#  using only the corresponding eigenvectors to reconstruct it.
#
#  You should complete the code in projectData.py and recoverData.py
#
print '\nDimension reduction on example dataset.\n'

#  Plot the normalized dataset (returned from pca)
plot(X_norm[:, 0], X_norm[:, 1], 'bo')
axis([-4, 3, -4, 3])
axis('equal')

#  Project the data onto K = 1 dimension
K = 1
Z = projectData(X_norm, U, K)
print 'Projection of the first example: %f' % Z[0]
print '\n(this value should be about 1.481274)\n'

X_rec = recoverData(Z, U, K)
print 'Approximation of the first example: %f %f' % (X_rec[0, 0], X_rec[0, 1])
print '\n(this value should be about  -1.047419 -1.047419)\n'

#  Draw lines connecting the projected points to the original points
hold(True)
plot(X_rec[:, 0], X_rec[:, 1], 'ro')
for i in range(size(X_norm, 0)):
    drawLine(X_norm[i, :], X_rec[i, :], '--k', linewidth=1)
hold(False)
fig.show()
Beispiel #3
0
#  first k eigenvectors. The code will then plot the data in this reduced
#  dimensional space.  This will show you what the data looks like when
#  using only the corresponding eigenvectors to reconstruct it.
#
#  You should complete the code in projectData.py and recoverData.py
#
print '\nDimension reduction on example dataset.\n'

#  Plot the normalized dataset (returned from pca)
plot(X_norm[:, 0], X_norm[:, 1], 'bo')
axis([-4, 3, -4, 3])
axis('equal')

#  Project the data onto K = 1 dimension
K = 1
Z = projectData(X_norm, U, K)
print 'Projection of the first example: %f' % Z[0]
print '\n(this value should be about 1.481274)\n'

X_rec  = recoverData(Z, U, K)
print 'Approximation of the first example: %f %f' % (X_rec[0,0], X_rec[0,1])
print '\n(this value should be about  -1.047419 -1.047419)\n'

#  Draw lines connecting the projected points to the original points
hold(True)
plot(X_rec[:, 0], X_rec[:, 1], 'ro')
for i in range(size(X_norm, 0)):
    drawLine(X_norm[i,:], X_rec[i,:], '--k', linewidth=1)
hold(False)
fig.show()
Beispiel #4
0
def ex7_pca():
    ## Machine Learning Online Class
    #  Exercise 7 | Principle Component Analysis and K-Means Clustering
    #
    #  Instructions
    #  ------------
    #
    #  This file contains code that helps you get started on the
    #  exercise. You will need to complete the following functions:
    #
    #     pca.m
    #     projectData.m
    #     recoverData.m
    #     computeCentroids.m
    #     findClosestCentroids.m
    #     kMeansInitCentroids.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## ================== Part 1: Load Example Dataset  ===================
    #  We start this exercise by using a small dataset that is easily to
    #  visualize
    #
    print('Visualizing example dataset for PCA.\n')

    #  The following command loads the dataset. You should now have the 
    #  variable X in your environment
    mat = scipy.io.loadmat('ex7data1.mat')
    X = mat['X']

    #  Visualize the example dataset
    plt.plot(X[:, 0], X[:, 1], 'wo', ms=10, mec='b', mew=1)
    plt.axis([0.5, 6.5, 2, 8])

    plt.savefig('figure1.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## =============== Part 2: Principal Component Analysis ===============
    #  You should now implement PCA, a dimension reduction technique. You
    #  should complete the code in pca.m
    #
    print('\nRunning PCA on example dataset.\n')

    #  Before running PCA, it is important to first normalize X
    X_norm, mu, sigma = featureNormalize(X)

    #  Run PCA
    U, S = pca(X_norm)

    #  Compute mu, the mean of the each feature

    #  Draw the eigenvectors centered at mean of data. These lines show the
    #  directions of maximum variations in the dataset.
    #hold on
    print(S)
    print(U)
    drawLine(mu, mu + 1.5 * np.dot(S[0], U[:,0].T))
    drawLine(mu, mu + 1.5 * np.dot(S[1], U[:,1].T))
    #hold off
    plt.savefig('figure2.png')

    print('Top eigenvector: ')
    print(' U(:,1) = %f %f ' % (U[0,0], U[1,0]))
    print('\n(you should expect to see -0.707107 -0.707107)')

    print('Program paused. Press enter to continue.')
    #pause


    ## =================== Part 3: Dimension Reduction ===================
    #  You should now implement the projection step to map the data onto the 
    #  first k eigenvectors. The code will then plot the data in this reduced 
    #  dimensional space.  This will show you what the data looks like when 
    #  using only the corresponding eigenvectors to reconstruct it.
    #
    #  You should complete the code in projectData.m
    #
    print('\nDimension reduction on example dataset.\n\n')

    #  Plot the normalized dataset (returned from pca)
    fig = plt.figure()
    plt.plot(X_norm[:, 0], X_norm[:, 1], 'bo')

    #  Project the data onto K = 1 dimension
    K = 1
    Z = projectData(X_norm, U, K)
    print('Projection of the first example: %f' % Z[0])
    print('\n(this value should be about 1.481274)\n')

    X_rec = recoverData(Z, U, K)
    print('Approximation of the first example: %f %f' % (X_rec[0, 0], X_rec[0, 1]))
    print('\n(this value should be about  -1.047419 -1.047419)\n')

    #  Draw lines connecting the projected points to the original points
    plt.plot(X_rec[:, 0], X_rec[:, 1], 'ro')
    for i in range(X_norm.shape[0]):
        drawLine(X_norm[i,:], X_rec[i,:])
    #end
    plt.savefig('figure3.png')

    print('Program paused. Press enter to continue.\n')
    #pause

    ## =============== Part 4: Loading and Visualizing Face Data =============
    #  We start the exercise by first loading and visualizing the dataset.
    #  The following code will load the dataset into your environment
    #
    print('\nLoading face dataset.\n\n')

    #  Load Face dataset
    mat = scipy.io.loadmat('ex7faces.mat')
    X = mat['X']

    #  Display the first 100 faces in the dataset
    displayData(X[:100, :])
    plt.savefig('figure4.png')

    print('Program paused. Press enter to continue.\n')
    #pause

    ## =========== Part 5: PCA on Face Data: Eigenfaces  ===================
    #  Run PCA and visualize the eigenvectors which are in this case eigenfaces
    #  We display the first 36 eigenfaces.
    #
    print('\nRunning PCA on face dataset.\n(this mght take a minute or two ...)\n')

    #  Before running PCA, it is important to first normalize X by subtracting 
    #  the mean value from each feature
    X_norm, mu, sigma = featureNormalize(X)

    #  Run PCA
    U, S = pca(X_norm)

    #  Visualize the top 36 eigenvectors found
    displayData(U[:, :36].T)
    plt.savefig('figure5.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## ============= Part 6: Dimension Reduction for Faces =================
    #  Project images to the eigen space using the top k eigenvectors 
    #  If you are applying a machine learning algorithm 
    print('\nDimension reduction for face dataset.\n')

    K = 100
    Z = projectData(X_norm, U, K)

    print('The projected data Z has a size of: ')
    print(formatter('%d ', Z.shape))

    print('\n\nProgram paused. Press enter to continue.')
    #pause

    ## ==== Part 7: Visualization of Faces after PCA Dimension Reduction ====
    #  Project images to the eigen space using the top K eigen vectors and 
    #  visualize only using those K dimensions
    #  Compare to the original input, which is also displayed

    print('\nVisualizing the projected (reduced dimension) faces.\n')

    K = 100
    X_rec  = recoverData(Z, U, K)

    # Display normalized data
    #subplot(1, 2, 1)
    displayData(X_norm[:100,:])
    plt.gcf().suptitle('Original faces')
    #axis square

    plt.savefig('figure6.a.png')

    # Display reconstructed data from only k eigenfaces
    #subplot(1, 2, 2)
    displayData(X_rec[:100,:])
    plt.gcf().suptitle('Recovered faces')
    #axis square

    plt.savefig('figure6.b.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization ===
    #  One useful application of PCA is to use it to visualize high-dimensional
    #  data. In the last K-Means exercise you ran K-Means on 3-dimensional 
    #  pixel colors of an image. We first visualize this output in 3D, and then
    #  apply PCA to obtain a visualization in 2D.

    #close all; close all; clc

    # Re-load the image from the previous exercise and run K-Means on it
    # For this to work, you need to complete the K-Means assignment first
    A = matplotlib.image.imread('bird_small.png')

    # If imread does not work for you, you can try instead
    #   load ('bird_small.mat')

    A = A / 255
    X = A.reshape(-1, 3)
    K = 16
    max_iters = 10
    initial_centroids = kMeansInitCentroids(X, K)
    centroids, idx = runkMeans('7', X, initial_centroids, max_iters)

    #  Sample 1000 random indexes (since working with all the data is
    #  too expensive. If you have a fast computer, you may increase this.
    sel = np.random.choice(X.shape[0], size=1000)

    #  Setup Color Palette
    #palette = hsv(K)
    #colors = palette(idx(sel), :)

    #  Visualize the data and centroid memberships in 3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(X[sel, 0], X[sel, 1], X[sel, 2], cmap='rainbow', c=idx[sel], s=8**2)
    ax.set_title('Pixel dataset plotted in 3D. Color shows centroid memberships')
    plt.savefig('figure8.png')

    print('Program paused. Press enter to continue.')
    #pause

    ## === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization ===
    # Use PCA to project this cloud to 2D for visualization

    # Subtract the mean to use PCA
    X_norm, mu, sigma = featureNormalize(X)

    # PCA and project the data to 2D
    U, S = pca(X_norm)
    Z = projectData(X_norm, U, 2)

    # Plot in 2D
    fig = plt.figure()
    plotDataPoints(Z[sel, :], [idx[sel]], K, 0)
    plt.title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction')
    plt.savefig('figure9.png')
    print('Program paused. Press enter to continue.\n')
# print(np.shape(data))
# print(np.shape(data_modified))
displayData(data_modified[0:100], None)
[X_norm, mu, sigma] = featureNormalize(data_modified)

[u, s] = pca(X_norm)
u = np.transpose(u)
displayData(u[:36], None)

k = 100
# print('----------------------')
# print(m)
# print(n)
# print(np.shape(u))
# print(np.shape(u[:36]))
z = projectData(X_norm, u, k)
X_rec = recoverData(z, u, k)
print(np.shape(data))
print(np.shape(X_rec))
displayData(X_rec[:100], None)

# =============== Optional (ungraded) Exercise: PCA for Visualization =============
# print('Applying K-Means to compress an image.')
# fname = "bird_small.png"
# image1 = np.array(plt.imread(fname))
# image = image1/255
# image_size = image.size
# # print(image)
# # print(image_size)
# # print(image.shape)
# x = image.shape[0]