Beispiel #1
0
    def build(cls, data_handler, matrix_params):
        """
        - "distance": Euclidean distance of the geometrical center of one body.
    
                "parameters":{
                    "fit_selection":  String,
                    "body_selection": String,
                }
    
                "fit_selection": The Prody selection string used to describe the atoms to be superposed.
                "body_selection": Another Prody selection string that describes the element that will be used
                to get the euclidean distances.
        
        """
        # Build calculator with fitting coordinate sets ...
        fit_selection_coordsets = data_handler.get_data(
        ).getFittingCoordinates()

        # and calculation coordsets (we want them to be moved along with the fitting ones)
        body_selection_coordsets = data_handler.get_data(
        ).getCalculationCoordinates()

        calculator = RMSDCalculator(
            calculatorType="QTRFIT_OMP_CALCULATOR",
            fittingCoordsets=fit_selection_coordsets,
            calculationCoordsets=body_selection_coordsets)

        # Superpose iteratively (will modify all coordinates)
        calculator.iterativeSuperposition()

        #centers = body_selection_coordsets.mean(1)
        from prody.measure import calcCenter
        centers = calcCenter(body_selection_coordsets)

        return centers
    def build(cls, trajectory_handler, matrix_creation_parameters):
        """
        Will generate the CondensedMatrix filled with the all vs all geometric center distances of the "body_selection" 
        coordinates (which will usually be a ligand).
        
        @param trajectory_handler: The handler containing selection strings, pdb info and coordsets.  
        @param matrix_creation_parameters: The creation parameters (from the initial script).
        
        @return: The created distances matrix.
        """
        
        # Build calculator with fitting coordinate sets ...
        fit_selection_coordsets = trajectory_handler.getSelection(matrix_creation_parameters["dist_fit_selection"])
        
        # and calculation coordsets (we want them to be moved along with the fitting ones)
        body_selection_string = matrix_creation_parameters["body_selection"]
        body_selection_coordsets = trajectory_handler.getSelection(body_selection_string)
        
        calculator = RMSDCalculator(calculatorType = "QTRFIT_OMP_CALCULATOR", 
                 fittingCoordsets = fit_selection_coordsets, 
                 calculationCoordsets = body_selection_coordsets)
        
        # Superpose iteratively (will modify all coordinates)
        calculator.iterativeSuperposition()

        # Working coordinates are changed to the body coordinates (to be used later for instance
        # with clustering metrics)        
        trajectory_handler.setWorkingCoordinates(body_selection_string)
        distances = cls.calculate_geom_center(body_selection_coordsets)
        matrix = CondensedMatrix(distances)
        return matrix
    def build(cls, trajectory_handler, matrix_creation_parameters):
        """
        Will generate the CondensedMatrix filled with the all vs all geometric center distances of the "body_selection"
        coordinates (which will usually be a ligand).

        @param trajectory_handler: The handler containing selection strings, pdb info and coordsets.
        @param matrix_creation_parameters: The creation parameters (from the initial script).

        @return: The created distances matrix.
        """

        # Build calculator with fitting coordinate sets ...
        fit_selection_coordsets = trajectory_handler.getSelection(
            trajectory_handler.fitting_selection)

        # and calculation coordsets (we want them to be moved along with the fitting ones)
        body_selection_coordsets = trajectory_handler.getSelection(
            trajectory_handler.calculation_selection)

        calculator = RMSDCalculator(
            calculatorType="QTRFIT_OMP_CALCULATOR",
            fittingCoordsets=fit_selection_coordsets,
            calculationCoordsets=body_selection_coordsets)

        # Superpose iteratively (will modify all coordinates)
        calculator.iterativeSuperposition()

        # Working coordinates are changed to the body coordinates (to be used later for instance
        # with clustering metrics)
        trajectory_handler.setWorkingCoordinates(
            trajectory_handler.calculation_selection)
        distances = cls.calculate_geom_center(body_selection_coordsets)
        matrix = CondensedMatrix(distances)
        return matrix
Beispiel #4
0
    def build(cls, data_handler, matrix_params):
        """
        - "distance": Euclidean distance of the geometrical center of one body.
    
                "parameters":{
                    "fit_selection":  String,
                    "body_selection": String,
                }
    
                "fit_selection": The Prody selection string used to describe the atoms to be superposed.
                "body_selection": Another Prody selection string that describes the element that will be used
                to get the euclidean distances.
        
        """
        # Build calculator with fitting coordinate sets ...
        fit_selection_coordsets = data_handler.get_data().getFittingCoordinates()

        # and calculation coordsets (we want them to be moved along with the fitting ones)
        body_selection_coordsets = data_handler.get_data().getCalculationCoordinates()

        calculator = RMSDCalculator(calculatorType = "QTRFIT_OMP_CALCULATOR",
                 fittingCoordsets = fit_selection_coordsets,
                 calculationCoordsets = body_selection_coordsets)

        # Superpose iteratively (will modify all coordinates)
        calculator.iterativeSuperposition()
        
        #centers = body_selection_coordsets.mean(1)
        from prody.measure import calcCenter
        centers = calcCenter(body_selection_coordsets)
        
        return centers
Beispiel #5
0
def superpose_and_calc_rmsf(ca_pdb_coordsets, cluster):
    # Pick the coordinates (ensuring that we are copying them)
    fitting_coordinates_of_this_cluster = ca_pdb_coordsets[cluster.all_elements]

    calculator = RMSDCalculator(calculatorType = "QTRFIT_SERIAL_CALCULATOR",
                                fittingCoordsets = fitting_coordinates_of_this_cluster)

    # Make an iterative superposition (to get the minimum RMSD of all with respect to a mean conformation)
    calculator.iterativeSuperposition()
    
    return list(calc_rmsf_of_cluster(fitting_coordinates_of_this_cluster, cluster))
Beispiel #6
0
def pairwise_rmsd(coords):
	"""
	Returns vector with all pairwise backbone RMSDs from given coordinates
	coords = numpy array of coordinates generated using ProDy
	"""
	calculator = RMSDCalculator("QCP_SERIAL_CALCULATOR", fittingCoordsets  = coords)
	t1 = time.time()
	rmsds = calculator.pairwiseRMSDMatrix()
	t2 = time.time()
	print "With QCP Serial calculator it took: ", t2-t1 ,"s."
	sys.stdout.flush()
	#rmsd_matrix = CondensedMatrix(rmsds)

	return rmsds
Beispiel #7
0
def superpose_and_calc_rmsf(ca_pdb_coordsets, cluster):
    # Pick the coordinates (ensuring that we are copying them)
    fitting_coordinates_of_this_cluster = ca_pdb_coordsets[
        cluster.all_elements]

    calculator = RMSDCalculator(
        calculatorType="QTRFIT_SERIAL_CALCULATOR",
        fittingCoordsets=fitting_coordinates_of_this_cluster)

    # Make an iterative superposition (to get the minimum RMSD of all with respect to a mean conformation)
    calculator.iterativeSuperposition()

    return list(
        calc_rmsf_of_cluster(fitting_coordinates_of_this_cluster, cluster))
Beispiel #8
0
    def evaluate(self, clustering):
        """
        Calculates the value of the PCA metric, which is the mean of the largest eigenvalue obtained from the PCA (the one corresponding
        to the axis of bigger variability) weighted by the cluster size.
        
        @param clustering: The clustering we want to calculate the metric.
        
        @return: the value of the metric.
        """
        # Pca for each one of the clusters
        pca_mean_val = 0.;
        MAX_ELEMENTS = 1000
        for c in clustering.clusters:
            # Pick the coordinates (ensuring that we are copying them)
            element_indexes = c.all_elements
            ###################
            # Performance hack
            ###################
            # As it can be very slow for big clusters (i.e. > 3k elements) we'll compress this clusters 
            # before calculating PCA. It should increase variance but will allow calculations.
            # It should use the kmedoids compressor
            if len(c.all_elements) > MAX_ELEMENTS:
                element_indexes = c.get_random_sample(MAX_ELEMENTS)
                print "[PCA] Random sampling too big cluster to improve performance (%d elements -> %d elements)."%(len(c.all_elements),MAX_ELEMENTS)
            ###################
            
            fitting_coordinates_of_this_cluster = self.fitting_coordinates[element_indexes]
            
            calculator = RMSDCalculator(calculatorType = "QTRFIT_SERIAL_CALCULATOR",
                                        fittingCoordsets = fitting_coordinates_of_this_cluster)
            
            if self.calculation_coordinates is not None:
                calculation_coordinates_of_this_cluster = self.calculation_coordinates[element_indexes]
                calculator = RMSDCalculator(calculatorType = "QTRFIT_SERIAL_CALCULATOR",
                                            fittingCoordsets = fitting_coordinates_of_this_cluster,
                                            calculationCoordsets = calculation_coordinates_of_this_cluster)
            
            # Make an iterative superposition (to get the minimum RMSD of all with respect to a mean conformation)
            calculator.iterativeSuperposition()

            # Calculate the covariance matrix
            if self.calculation_coordinates is None:
                covariance_matrix = PCAMetric.create_covariance_matrix(fitting_coordinates_of_this_cluster)
            else:
                covariance_matrix = PCAMetric.create_covariance_matrix(calculation_coordinates_of_this_cluster)
            
            # And then the eigenvalue we are interested in
            pca_mean_val += PCAMetric.calculate_biggest_eigenvalue(covariance_matrix)
        print "PCA finished"
        return  pca_mean_val /clustering.total_number_of_elements
Beispiel #9
0
    def build(cls, trajectory_handler, matrix_creation_parameters):
        """
        Generates a matrix with the method used in the handler creation.

        @param trajectory_handler:
        @param matrix_creation_parameters:

        @return: The created matrix.
        """

        fit_selection_string = matrix_creation_parameters["fit_selection"]
        fit_selection_coordsets = trajectory_handler.getSelection(
            fit_selection_string)
        trajectory_handler.setWorkingCoordinates(fit_selection_string)

        calculator_type = matrix_creation_parameters[
            "calculator_type"] if "calculator_type" in matrix_creation_parameters else "QTRFIT_OMP_CALCULATOR"

        calculator = RMSDCalculator(calculatorType=calculator_type,
                                    fittingCoordsets=fit_selection_coordsets)

        # Apply calculation selection if needed
        calc_selection_string = matrix_creation_parameters[
            "calc_selection"] if "calc_selection" in matrix_creation_parameters else ""
        if calc_selection_string != "" and calc_selection_string != fit_selection_string:
            calc_selection_coordsets = trajectory_handler.getSelection(
                calc_selection_string)
            trajectory_handler.setWorkingCoordinates(calc_selection_string)

            symm_groups = []
            if "symmetries" in matrix_creation_parameters:
                # Then prepare it to handle calculation symmetries
                # Description of equivalences must have the same number of atoms
                symm_groups = cls.process_symm_groups(
                    matrix_creation_parameters, trajectory_handler,
                    calc_selection_coordsets)
                print "Using symmetries", symm_groups

            calculator = RMSDCalculator(
                calculatorType=calculator_type,
                fittingCoordsets=fit_selection_coordsets,
                calculationCoordsets=calc_selection_coordsets,
                calcSymmetryGroups=symm_groups)

        rmsds = calculator.pairwiseRMSDMatrix()

        return CondensedMatrix(rmsds)
Beispiel #10
0
def coords_rmsf(ca_coords):
    calculator = RMSDCalculator(calculatorType="QTRFIT_OMP_CALCULATOR",
                                fittingCoordsets=ca_coords)

    calculator.setNumberOfOpenMPThreads(4)

    new_ca_coords = calculator.iterativeSuperposition()

    # Calculate the actual rmsf
    mean_conformation = new_ca_coords.mean(0)

    ssqf = numpy.zeros(mean_conformation.shape)

    for conf in new_ca_coords:
        ssqf += (conf - mean_conformation)**2

    return (ssqf.sum(1) / new_ca_coords.shape[0])**0.5
    def build(cls, data_handler, matrix_creation_parameters):
        """
        Generates a matrix with the method used in the handler creation.

        @param trajectory_handler:
        @param matrix_creation_parameters:

        @return: The created matrix.
        """
        calculator_type = matrix_creation_parameters.get_value("calculator_type", 
                                                               default_value = "QTRFIT_OMP_CALCULATOR")

        calculator_options = matrix_creation_parameters.get_value("calculator_options", 
                                                               default_value = ProtocolParameters({"number_of_threads":8,
                                                                                "blocks_per_grid":8,
                                                                                "threads_per_block":32}))
        calculator_options = ProtocolParameters(calculator_options)
        
        structure = data_handler.get_data()
        fit_selection_coordsets = structure.getFittingCoordinates()
        calc_selection_coordsets = structure.getCalculationCoordinates()
        
        if calc_selection_coordsets is None:
            calculator = RMSDCalculator(calculatorType = calculator_type,
                                        fittingCoordsets  = fit_selection_coordsets)
        else:
            symm_groups = []
            if "symmetries" in matrix_creation_parameters:
                # Then prepare it to handle calculation symmetries
                # Description of equivalences must have the same number of atoms
                symm_groups = cls.process_symm_groups(matrix_creation_parameters,
                                                      structure,
                                                      calc_selection_coordsets)
                print "Using symmetries", symm_groups
            
            
            
            calculator = RMSDCalculator(calculatorType = calculator_type,
                                        fittingCoordsets  = fit_selection_coordsets,
                                        calculationCoordsets = calc_selection_coordsets,
                                        calcSymmetryGroups = symm_groups)
        
        try:
            calculator.setNumberOfOpenMPThreads(calculator_options.get_value("number_of_threads",
                                            default_value = 8))
        except KeyError:
            pass
        
        try:
            calculator.setCUDAKernelThreadsPerBlock(calculator_options.get_value("threads_per_block",
                                                                             default_value = 32), 
                                                calculator_options.get_value("blocks_per_grid",
                                                                             default_value = 8))
        except KeyError:
            pass
        
        rmsds = calculator.pairwiseRMSDMatrix()
        return CondensedMatrix(rmsds)
Beispiel #12
0
    def build(cls, trajectory_handler, matrix_creation_parameters):
        """
        Generates a matrix with the method used in the handler creation.

        @param trajectory_handler:
        @param matrix_creation_parameters:

        @return: The created matrix.
        """

        fit_selection_string = matrix_creation_parameters["fit_selection"]
        fit_selection_coordsets = trajectory_handler.getSelection(fit_selection_string)
        trajectory_handler.setWorkingCoordinates(fit_selection_string)

        calculator_type = matrix_creation_parameters["calculator_type"] if "calculator_type" in matrix_creation_parameters else "QTRFIT_OMP_CALCULATOR"

        calculator = RMSDCalculator(calculatorType = calculator_type,
                                    fittingCoordsets  = fit_selection_coordsets)

        # Apply calculation selection if needed
        calc_selection_string = matrix_creation_parameters["calc_selection"] if "calc_selection" in matrix_creation_parameters else  ""
        if calc_selection_string != "" and calc_selection_string != fit_selection_string:
            calc_selection_coordsets = trajectory_handler.getSelection(calc_selection_string)
            trajectory_handler.setWorkingCoordinates(calc_selection_string)

            symm_groups = []
            if "symmetries" in matrix_creation_parameters:
                # Then prepare it to handle calculation symmetries
                # Description of equivalences must have the same number of atoms
                symm_groups = cls.process_symm_groups(matrix_creation_parameters,
                                                      trajectory_handler,
                                                      calc_selection_coordsets)
                print "Using symmetries",symm_groups

            calculator = RMSDCalculator(calculatorType = calculator_type,
                                        fittingCoordsets  = fit_selection_coordsets,
                                        calculationCoordsets = calc_selection_coordsets,
                                        calcSymmetryGroups=symm_groups)

        rmsds = calculator.pairwiseRMSDMatrix()

        return CondensedMatrix(rmsds)
def process_after_perturb_max_and_mean_disp(data):
    number_of_sets = len(data["coords_before"])
    num_coords = len(data["coords_before"][0])
    
    coordsets_before = numpy.array(data["coords_before"])
    coordsets_before = numpy.reshape(coordsets_before, (number_of_sets, num_coords/3, 3))
    coordsets_after = numpy.array(data["coords_after"])
    coordsets_after = numpy.reshape(coordsets_after, (number_of_sets, num_coords/3, 3))
    
    superimposed_translations = []
    for i in range(number_of_sets):
        coords = numpy.array([coordsets_before[i], coordsets_after[i]])
        
        calculator = RMSDCalculator(calculatorType = "QTRFIT_OMP_CALCULATOR",
                                    fittingCoordsets = coords)
        _, rearranged_coords = calculator.oneVsTheOthers(0, get_superposed_coordinates = True)
        superimposed_translations.append(rearranged_coords[1]-rearranged_coords[0])
    translations = numpy.array(superimposed_translations)
    norms = numpy.array([norm(t) for t in translations])
    return numpy.max(norms, axis = 1), numpy.mean(norms, axis = 1)
def parse_decoys(decoy_dir, number_of_decoys = None):
	"""
	Extracts backbone coordinates from first n pdbs in the given directory and 
	returns their coordinates as a numpy array.	If not n is specified, 
	it considers every pdb file.
	decoy_dir = directory with decoys
	number_of_decoys = n (optional)
	"""
	decoy_list = []
	for file in os.listdir(decoy_dir):
		if file.endswith(".pdb"):
			decoy_list.append(os.path.join(decoy_dir,file))
	decoy_list = sorted(decoy_list)

	#selecting first n decoys, if n is specified
	if number_of_decoys != None:
		decoys_considered = decoy_list[:number_of_decoys]
	else:	
        decoys_considered = decoy_list                                  # add pdb name to a list

	#using ProDy to parse PDBs
	pdb_ref = parsePDB(decoys_considered[0])
	#extracting C-alpha coordinates as numpy array
    coords_ref = np.array((pdb_ref.select("name CA C1").getCoordsets()))           # reference pose pdb0
    #####PRINT COORDS!
    rmsd_out=open("all_vs_all_rmsd.txt",'w')
    rmsd_out.write("ref:"+str(decoys_considered[0])+"\n")
    rmsd_out.close()
    for i in range(1,len(decoys_considered)):
        pdb = parsePDB(decoys_considered[i])
        coords_temp = np.array((pdb.select("name CA C1").getCoordsets()))  # get the pose2   pdb1
        coords = np.vstack((coords_ref, coords_temp))
        number_of_conformations = coords.shape[0]
        number_of_atoms = coords.shape[1]
        calculator = RMSDCalculator("QCP_SERIAL_CALCULATOR", fittingCoordsets  = coords)
        rmsds = calculator.pairwiseRMSDMatrix()
        sys.stdout.flush()
        rmsd_out=open("all_vs_all_rmsd.txt",'a')
        rmsd_out.write(str(i)+"\t"+str(rmsds)+"\n")
        rmsd_out.close()
Beispiel #15
0
    def evaluate(self, clustering):
        """
        Calculates the value of the PCA metric, which is the mean of the largest eigenvalue obtained from the PCA (the one corresponding
        to the axis of bigger variability) weighted by the cluster size.
        
        @param clustering: The clustering we want to calculate the metric.
        
        @return: the value of the metric.
        """
        # Pca for each one of the clusters
        pca_mean_val = 0.
        MAX_ELEMENTS = 1000
        for c in clustering.clusters:
            # Pick the coordinates (ensuring that we are copying them)
            element_indexes = c.all_elements
            ###################
            # Performance hack
            ###################
            # As it can be very slow for big clusters (i.e. > 3k elements) we'll compress this clusters
            # before calculating PCA. It should increase variance but will allow calculations.
            # It should use the kmedoids compressor
            if len(c.all_elements) > MAX_ELEMENTS:
                element_indexes = c.get_random_sample(MAX_ELEMENTS)
                print "[PCA] Random sampling too big cluster to improve performance (%d elements -> %d elements)." % (
                    len(c.all_elements), MAX_ELEMENTS)
            ###################

            fitting_coordinates_of_this_cluster = self.fitting_coordinates[
                element_indexes]

            calculator = RMSDCalculator(
                calculatorType="QTRFIT_SERIAL_CALCULATOR",
                fittingCoordsets=fitting_coordinates_of_this_cluster)

            if self.calculation_coordinates is not None:
                calculation_coordinates_of_this_cluster = self.calculation_coordinates[
                    element_indexes]
                calculator = RMSDCalculator(
                    calculatorType="QTRFIT_SERIAL_CALCULATOR",
                    fittingCoordsets=fitting_coordinates_of_this_cluster,
                    calculationCoordsets=calculation_coordinates_of_this_cluster
                )

            # Make an iterative superposition (to get the minimum RMSD of all with respect to a mean conformation)
            calculator.iterativeSuperposition()

            # Calculate the covariance matrix
            if self.calculation_coordinates is None:
                covariance_matrix = PCAMetric.create_covariance_matrix(
                    fitting_coordinates_of_this_cluster)
            else:
                covariance_matrix = PCAMetric.create_covariance_matrix(
                    calculation_coordinates_of_this_cluster)

            # And then the eigenvalue we are interested in
            pca_mean_val += PCAMetric.calculate_biggest_eigenvalue(
                covariance_matrix)
        print "PCA finished"
        return pca_mean_val / clustering.total_number_of_elements
Beispiel #16
0
def superimpose_coordinates(all_coordsets, iterpose=True):
    all_superimposed_coordsets = []
    for coordsets in all_coordsets:
        calculator = RMSDCalculator(calculatorType="QTRFIT_OMP_CALCULATOR",
                                    fittingCoordsets=coordsets)
        calculator.setNumberOfOpenMPThreads(4)

        if iterpose:
            print "\t- Using iterposition on trajectory (shape ", coordsets.shape, ")"
            calculator.iterativeSuperposition()
            all_superimposed_coordsets.append(coordsets)
        else:
            print "\t- Superimposing with first trajectory frame (shape ", coordsets.shape, ")"
            _, superimposed_coordsets = calculator.oneVsTheOthers(
                0, get_superposed_coordinates=True)
            all_superimposed_coordsets.append(superimposed_coordsets)
    return all_superimposed_coordsets
def superimpose_coordinates(all_coordsets, iterpose = True):
    all_superimposed_coordsets = []
    for coordsets in all_coordsets:
        calculator = RMSDCalculator(calculatorType = "QTRFIT_OMP_CALCULATOR",
                                fittingCoordsets = coordsets)
        calculator.setNumberOfOpenMPThreads(4)
        
        if iterpose:
            print "\t- Using iterposition on trajectory (shape ", coordsets.shape, ")"
            calculator.iterativeSuperposition()
            all_superimposed_coordsets.append(coordsets)
        else:
            print "\t- Superimposing with first trajectory frame (shape ", coordsets.shape, ")"
            _, superimposed_coordsets = calculator.oneVsTheOthers(0, get_superposed_coordinates = True)
            all_superimposed_coordsets.append(superimposed_coordsets)
    return all_superimposed_coordsets
def print_matrix(input_coordsets, output):
    # Generate the matrix and print it
    calculator = RMSDCalculator(calculatorType="QCP_OMP_CALCULATOR", fittingCoordsets = input_coordsets)
    matrixToImage(CondensedMatrix(calculator.pairwiseRMSDMatrix()), output + ".png")
            coords = [coord for coord in atom.coord]
            structure_coords.append(numpy.array(coords))
        coordinates.append(numpy.array(structure_coords))
    coordinates = numpy.array(coordinates, dtype=numpy.float64)

    # Computation with Biopython
    start_t = time.time()
    biopython_rmsd_values = []
    super_imposer = Bio.PDB.Superimposer()
    for i in range(0, len(structures) - 1):
        reference = structures[i]
        for j in range(i + 1, len(structures)):
            mobile = structures[j]
            super_imposer.set_atoms(list(reference.get_atoms()),
                                    list(mobile.get_atoms()))
            biopython_rmsd_values.append(super_imposer.rms)
    stop_t = time.time()
    print "Biopython's computation time:", stop_t - start_t

    # Computation with pyRMSD, Biopython uses KABSCH's
    start_t = time.time()
    pyrmsd_rmsd_values = RMSDCalculator(
        coordinates, "KABSCH_SERIAL_CALCULATOR").pairwiseRMSDMatrix()
    stop_t = time.time()
    print "pyRMSD's computation time:", stop_t - start_t

    # Comparison
    numpy.testing.assert_array_almost_equal(biopython_rmsd_values,
                                            pyrmsd_rmsd_values, 12)
    print "Done"
Beispiel #20
0
    def build(cls, data_handler, matrix_creation_parameters):
        """
        Generates a matrix with the method used in the handler creation.

        @param trajectory_handler:
        @param matrix_creation_parameters:

        @return: The created matrix.
        """
        calculator_type = matrix_creation_parameters.get_value(
            "calculator_type", default_value="QTRFIT_OMP_CALCULATOR")

        calculator_options = matrix_creation_parameters.get_value(
            "calculator_options",
            default_value=ProtocolParameters({
                "number_of_threads": 8,
                "blocks_per_grid": 8,
                "threads_per_block": 32
            }))
        calculator_options = ProtocolParameters(calculator_options)

        structure = data_handler.get_data()
        fit_selection_coordsets = structure.getFittingCoordinates()
        calc_selection_coordsets = structure.getCalculationCoordinates()

        if calc_selection_coordsets is None:
            calculator = RMSDCalculator(
                calculatorType=calculator_type,
                fittingCoordsets=fit_selection_coordsets)
        else:
            symm_groups = []
            if "symmetries" in matrix_creation_parameters:
                # Then prepare it to handle calculation symmetries
                # Description of equivalences must have the same number of atoms
                symm_groups = cls.process_symm_groups(
                    matrix_creation_parameters, structure,
                    calc_selection_coordsets)
                print "Using symmetries", symm_groups

            calculator = RMSDCalculator(
                calculatorType=calculator_type,
                fittingCoordsets=fit_selection_coordsets,
                calculationCoordsets=calc_selection_coordsets,
                calcSymmetryGroups=symm_groups)

        try:
            calculator.setNumberOfOpenMPThreads(
                calculator_options.get_value("number_of_threads",
                                             default_value=8))
        except KeyError:
            pass

        try:
            calculator.setCUDAKernelThreadsPerBlock(
                calculator_options.get_value("threads_per_block",
                                             default_value=32),
                calculator_options.get_value("blocks_per_grid",
                                             default_value=8))
        except KeyError:
            pass

        rmsds = calculator.pairwiseRMSDMatrix()
        return CondensedMatrix(rmsds)
        for protein in ordered_proteins:
            rmsd_results[protein] = {"Drug": [], "RMSD": [], "Motif": []}
            for drug in ["CMA", "CMC", "DMA"]:
                path = os.path.join(drug, "ca_%s_%s.pdb" % (protein, drug))
                print "Working with", path
                pdb = parsePDB(path, subset="ca", csets=range(1000))
                print "Loaded"
                for motif in ordered_motifs:
                    if motif in motifs[protein]:
                        cas = pdb.select("name CA")
                        motif_cas = pdb.select(
                            "resid %d to %d" % (motifs[protein][motif][0], motifs[protein][motif][1])
                        )
                        calculator = RMSDCalculator(
                            calculatorType="QCP_OMP_CALCULATOR",
                            fittingCoordsets=cas.getCoordsets(),
                            calculationCoordsets=motif_cas.getCoordsets(),
                        )
                        rmsds = calculator.oneVsFollowing(0)
                        rmsd_results[protein]["RMSD"].extend(rmsds)
                        rmsd_results[protein]["Drug"].extend([drug] * len(rmsds))
                        rmsd_results[protein]["Motif"].extend([motif] * len(rmsds))
                        del cas
                        del motif_cas
                del pdb

        pickle.dump(rmsd_results, open(os.path.join(options.results, "rmsd_results.pickle"), "w"))
    else:
        rmsd_results = pickle.load(open(options.data))

    f, axes = plt.subplots(3, 2, sharey="row")
Beispiel #22
0
def print_matrix(input_coordsets, output):
    # Generate the matrix and print it
    calculator = RMSDCalculator(calculatorType="QCP_OMP_CALCULATOR",
                                fittingCoordsets=input_coordsets)
    matrixToImage(CondensedMatrix(calculator.pairwiseRMSDMatrix()),
                  output + ".png")
Beispiel #23
0
        result = numpy.array(tmp_result)
        if options.skip_step:
            # skip first number
            result = result[:, 1:]

    if options.plot_type == "rmsd":
        v1, v2 = needs_two_files(options.input1, options.input2)
        v1, v2 = v1[:, 1:], v2[:, 1:]
        v1, v2 = can_have_different_numberof_rows(v1, v2)

        result = []
        for i in range(len(v1)):
            coordset1 = numpy.resize(v1[i], (len(v1[i]) / 3, 3))
            coordset2 = numpy.resize(v2[i], (len(v2[i]) / 3, 3))
            coordsets = numpy.array([coordset1, coordset2])
            calculator = RMSDCalculator("QCP_SERIAL_CALCULATOR", coordsets)
            result.append(calculator.pairwise(0, 1))

    elif options.plot_type == "normal":
        result = needs_one_file(options.input1)

        if options.skip_step:
            # skip first number
            result = result[:, 1:]

    if options.plot_type in ["ccdist", "absdiff", "diff", "normal"]:
        number_of_plots = options.to - options._from + 1
        subplot_shape = (number_of_plots, 1)
        plt.title('----')
        for i in range(number_of_plots):
            ax = plt.subplot2grid(subplot_shape, (i, 0))
Beispiel #24
0
    sequences = load_sequences(options.input + ".seq")
    original_coords = numpy.copy(coords[options.ref])
    original_sequence = sequences[options.ref]

    # Extract the coordinates we know
    known_residues = get_seq_positions_with_known_residues(sequences)

    # Extraer bien las coordenadas
    known_coords = extract_coordinates_from_known_residues(
        known_residues, coords)

    # Do an iterative superposition of that coordinates, but move all coordinates
    known_coords = numpy.reshape(
        known_coords, (known_coords.shape[0], known_coords.shape[1] / 3, 3))
    coords = numpy.reshape(coords, (coords.shape[0], coords.shape[1] / 3, 3))
    calculator = RMSDCalculator("QTRFIT_SERIAL_CALCULATOR", known_coords,
                                coords)
    calculator.iterativeSuperposition()

    # Reshape iterposed coordinates
    coords = numpy.reshape(coords, (coords.shape[0], coords.shape[1] * 3))

    # Calculate known coordinates mean
    known_mean_coords = calc_mean_of_known_atoms(sequences, coords)

    # Change unknown coordinates by mean
    change_unknown_by_mean(sequences, coords, known_mean_coords)
    numpy.savetxt("coords_mean", coords, fmt="%.4f")

    # Recalc mean for all values
    recalcd_mean = numpy.mean(coords, axis=0)
    numpy.savetxt("mean", recalcd_mean, fmt="%.4f")
    create_dir("selections")

    # Generate all selections
    pdb = prody.parsePDB("%s" % datum["pdb_traj"])
    selections = {}
    for selection in datum["selection"]:
        print selection
        selections[selection] = pdb.select(datum["selection"][selection])
        prody.writePDB(os.path.join("selections", selection), selections[selection])

    #############################
    # Motif VS Helix Distance
    #############################
    calculator = RMSDCalculator(
        calculatorType="QCP_OMP_CALCULATOR",
        fittingCoordsets=selections["motif_all"].getCoordsets(),
        calculationCoordsets=selections["motif_backbone"].getCoordsets(),
    )

    motif_rmsd = calculator.oneVsTheOthers(conformation_number=0, get_superposed_coordinates=False)

    residue_distances = []
    for conf in selections["arg131_leu272"].getCoordsets():
        arg131 = conf[0]
        leu272 = conf[1]
        residue_distances.append(distance(arg131, leu272))
    exp_motif_rmsd = [0] + list(motif_rmsd)
    matplotlib.pyplot.scatter(residue_distances, exp_motif_rmsd)
    matplotlib.pyplot.savefig(os.path.join("plots", "motif_vs_helix_dist.svg"))
    matplotlib.pyplot.close()
Beispiel #26
0
        open("data/expect_script",
             "r").readlines())) % (TRAJECTORY_FILE, TRAJECTORY_FILE)
    open("data/expect_script_tmp", "w").write(expect_script_str)
    # Use 'expect' to spawn the program
    start_t = time.time()
    subprocess.call(["expect", "data/expect_script_tmp"])
    # Load the matrix
    g_rmsd_matrix = XPMConverter().convert(open("data/matrix.xpm", "r"))
    stop_t = time.time()
    print "g_rms's computation time:", stop_t - start_t
    os.system("rm data/matrix.xpm data/rmsd.xvg data/expect_script_tmp")

    # Computation with pyRMSD, g_rms uses KABSCH's
    start_t = time.time()
    coordinates = Reader().readThisFile(TRAJECTORY_FILE).read()
    RMSDCalculator(coordinates, "KABSCH_SERIAL_CALCULATOR").oneVsFollowing(
        0)  # This is to mimic g_rmsd pipeline
    pyrmsd_rmsd_values = RMSDCalculator(
        coordinates, "QTRFIT_SERIAL_CALCULATOR").pairwiseRMSDMatrix()
    stop_t = time.time()
    print "pyRMSD's computation time:", stop_t - start_t

    # Convert g_rmsd matrix to 'condensed'
    dim = len(g_rmsd_matrix)
    c_m_values = []
    for i in range(dim - 1):
        for j in range(i + 1, dim):
            c_m_values.append(g_rmsd_matrix[i][j])

    rmsd = numpy.sqrt((
        (numpy.array(c_m_values) - numpy.array(pyrmsd_rmsd_values))**2).sum() /
                      len(c_m_values))