Beispiel #1
0
    def test_sqrt(self):
        from pyaudi import gdual_double as gdual
        from pyaudi import sqrt
        x = gdual(2.3, "x",3);
        y = gdual(1.5, "y",3);

        p1 = x*x*y - x*y*x*x*x + 3*y*y*y*y*x*y*x;  # positive p0
        p2 = x*x*y - x*y*x*x*x - 3*y*y*y*y*x*y*x;  # negative coefficient
        self.assertTrue((sqrt(p1)*sqrt(p1) - p1).is_zero(1e-12))
        self.assertTrue((sqrt(p2)*sqrt(p2) - p2).is_zero(1e-12))
Beispiel #2
0
    def test_sqrt(self):
        from pyaudi import gdual_double as gdual
        from pyaudi import sqrt
        x = gdual(2.3, "x", 3)
        y = gdual(1.5, "y", 3)

        p1 = x * x * y - x * y * x * x * x + 3 * \
            y * y * y * y * x * y * x  # positive p0
        p2 = x * x * y - x * y * x * x * x - 3 * y * \
            y * y * y * x * y * x  # negative coefficient
        self.assertTrue((sqrt(p1) * sqrt(p1) - p1).is_zero(1e-12))
        self.assertTrue((sqrt(p2) * sqrt(p2) - p2).is_zero(1e-12))
Beispiel #3
0
def some_complex_irrational_f(x, y, z):
    from pyaudi import exp, log, cos, sin, tan, sqrt, cbrt, cos, sin, tan, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, atanh
    from pyaudi import abs as gd_abs
    from pyaudi import sin_and_cos, sinh_and_cosh
    f = (x + y + z) / 10.
    retval = exp(f) + log(f) + f**2 + sqrt(f) + cbrt(f) + cos(f) + sin(f)
    retval += tan(f) + acos(f) + asin(f) + atan(f) + cosh(f) + sinh(f)
    retval += tanh(f) + acosh(f) + asinh(f) + atanh(f)
    a = sin_and_cos(f)
    b = sinh_and_cosh(f)
    retval += a[0] + a[1] + b[0] + b[1]
    return retval
Beispiel #4
0
def some_complex_irrational_f(x,y,z):
    from pyaudi import exp, log, cos, sin, tan, sqrt, cbrt, cos, sin, tan, acos, asin, atan, cosh, sinh, tanh, acosh, asinh, atanh
    from pyaudi import abs as gd_abs
    from pyaudi import sin_and_cos, sinh_and_cosh
    f = (x+y+z) / 10.
    retval = exp(f) + log(f) + f**2 + sqrt(f) + cbrt(f) + cos(f) + sin(f)
    retval += tan(f) + acos(f) + asin(f) + atan(f)  + cosh(f) + sinh(f)
    retval += tanh(f) + acosh(f) + asinh(f) + atanh(f)
    a = sin_and_cos(f)
    b = sinh_and_cosh(f)
    retval+=a[0]+a[1]+b[0]+b[1]
    return retval
Beispiel #5
0
 def do(self, x1, x2):
     import pyaudi as pd
     res = x2.sqrt()
     assert (res == pd.sqrt(x2))