Beispiel #1
0
# Rex =
u_inf = 30  # m/s\
p_inf = 101e3
rho_inf = p_inf / (287 * temp_air)

ap = AeroProblem(name='fc_therm', V=u_inf, T=temp_air,
                 P=p_inf, areaRef=1.0, chordRef=1.0, evalFuncs=['heatflux'],
                 alpha=0.0, beta=0.00, xRef=0.0, yRef=0.0, zRef=0.0)


# Create the solver

CFDSolver = ADFLOW(options=options, debug=False)
#

res = CFDSolver.getResidual(ap)
# CFDSolver.callMasterRoutine(ap)
# CFDSolver(ap)

# # Create a common set of seeds
wDot = CFDSolver.getStatePerturbation(314)
xVDot = CFDSolver.getSpatialPerturbation(314)
dwBar = CFDSolver.getStatePerturbation(314)
fBar = CFDSolver.getSurfacePerturbation(314)
hfBar = CFDSolver.getSurfacePerturbation(314)[:, 1].reshape((len(fBar), 1))

# wBar = CFDSolver.computeJacobianVectorProductBwd(resBar=dwBar, wDeriv=True)

# CFDSolver.computeDotProductTest(fBar=True, xVDot=True)
# CFDSolver.computeDotProductTest(hfBar=True, xVDot=True)
# CFDSolver.computeDotProductTest(hfBar=True, wDot=True)
Beispiel #2
0
    def regression_test(self, handler, solve=False):
        '''
        This is where the actual testing happens.
        '''

        gridFile = 'input_files/conic_conv_nozzle_mb.cgns'
        integrationSurf = 'input_files/integration_plane_viscous.fmt'

        options = copy.copy(adflowDefOpts)
        options.update({
            'gridfile':
            gridFile,
            'equationType':
            'euler',
            'smoother':
            'dadi',
            'nsubiter':
            3,
            'CFL':
            4.0,
            'CFLCoarse':
            1.25,
            'MGCycle':
            'sg',
            'MGStartLevel':
            -1,
            'nCyclesCoarse':
            250,
            'nCycles':
            1000,
            'nkcfl0':
            1e10,
            'monitorvariables': ['cpu', 'resrho', 'cl', 'cd'],
            'volumevariables': ['blank'],
            'surfacevariables': ['mach', 'cp', 'vx', 'vy', 'vz', 'blank'],
            'useNKSolver':
            True,
            'nkswitchtol':
            .01,
            'nkadpc':
            True,
            'nkjacobianlag':
            5,
            'nkouterpreconits':
            3,
            'nkinnerpreconits':
            2,
            'L2Convergence':
            1e-10,
            'L2ConvergenceCoarse':
            1e-4,
            'adjointl2convergence':
            1e-6,
            'forcesAsTractions':
            True,
            'debugzipper':
            True,
            'nearwalldist':
            .001,
            'nkls':
            'none',
            'solutionprecision':
            'double',
            'adjointsubspacesize':
            200,
            'outerpreconits':
            3,
            'zipperSurfaceFamily':
            'output_fam',
            'flowtype':
            'internal',
        })

        if not solve:
            options['restartfile'] = gridFile

        # Setup aeroproblem
        ap = AeroProblem(name='nozzle',
                         alpha=90.0,
                         mach=0.5,
                         altitude=0,
                         areaRef=1.0,
                         chordRef=1.0,
                         R=287.87,
                         evalFuncs=[
                             'mdot_up',
                             'mdot_down',
                             'mdot_plane',
                             'mavgptot_up',
                             'mavgptot_down',
                             'mavgptot_plane',
                             'aavgptot_up',
                             'aavgptot_down',
                             'aavgptot_plane',
                             'mavgttot_up',
                             'mavgttot_down',
                             'mavgttot_plane',
                             'mavgps_up',
                             'mavgps_down',
                             'mavgps_plane',
                             'aavgps_up',
                             'aavgps_down',
                             'aavgps_plane',
                         ])

        # ap.setBCVar('Pressure',  79326.7, 'downstream')
        # ap.addDV('Pressure', family='downstream')

        # ap.setBCVar('PressureStagnation',  100000.0, 'upstream')
        # ap.addDV('PressureStagnation', family='upstream')

        # ap.setBCVar('TemperatureStagnation',  500.0, 'upstream')
        # ap.addDV('TemperatureStagnation', family='upstream')

        # Create the solver
        CFDSolver = ADFLOW(options=options)
        # CFDSolver.addIntegrationSurface(integrationSurf, 'viscous_plane')
        # CFDSolver.finalizeUserIntegrationSurfaces()

        CFDSolver.addFamilyGroup('upstream', ['inlet'])
        CFDSolver.addFamilyGroup('downstream', ['outlet'])
        CFDSolver.addFamilyGroup('all_flow', ['inlet', 'outlet'])
        CFDSolver.addFamilyGroup('output_fam', ['all_flow', 'allWalls'])

        CFDSolver.addFunction('mdot', 'upstream', name="mdot_up")
        CFDSolver.addFunction('mdot', 'downstream', name="mdot_down")
        # CFDSolver.addFunction('mdot', 'viscous_plane', name="mdot_plane")

        CFDSolver.addFunction('mavgptot', 'downstream', name="mavgptot_down")
        CFDSolver.addFunction('mavgptot', 'upstream', name="mavgptot_up")
        # CFDSolver.addFunction('mavgptot', 'viscous_plane', name="mavgptot_plane")

        CFDSolver.addFunction('aavgptot', 'downstream', name="aavgptot_down")
        CFDSolver.addFunction('aavgptot', 'upstream', name="aavgptot_up")
        # CFDSolver.addFunction('aavgptot', 'viscous_plane', name="aavgptot_plane")

        CFDSolver.addFunction('mavgttot', 'downstream', name="mavgttot_down")
        CFDSolver.addFunction('mavgttot', 'upstream', name="mavgttot_up")
        # CFDSolver.addFunction('mavgttot', 'viscous_plane', name="mavgttot_plane")

        CFDSolver.addFunction('mavgps', 'downstream', name="mavgps_down")
        CFDSolver.addFunction('mavgps', 'upstream', name="mavgps_up")
        # CFDSolver.addFunction('mavgps', 'viscous_plane', name="mavgps_plane")

        CFDSolver.addFunction('aavgps', 'downstream', name="aavgps_down")
        CFDSolver.addFunction('aavgps', 'upstream', name="aavgps_up")
        # CFDSolver.addFunction('aavgps', 'viscous_plane', name="aavgps_plane")

        CFDSolver.setOption('ncycles', 1000)

        # Run test
        # CFDSolver(ap)

        # Check the residual
        # CFDSolver.setAeroProblem(ap)
        res = CFDSolver.getResidual(ap)
        # totalR0, totalRStart, totalRFinal = CFDSolver.getResNorms()
        # res /= totalR0

        handler.par_add_norm(res, 1e-10, 1e-10)

        # Get and check the states
        handler.par_add_norm(CFDSolver.getStates(), 1e-10, 1e-10)

        funcs = {}
        CFDSolver.evalFunctions(ap, funcs)
        handler.root_add_dict(funcs, 1e-10, 1e-10)