Beispiel #1
0
 def update_kinematics(self, q, dq):
     """
     Update kinematics using values from physics engine
     @param q A list of joint angles
     @param dq A list of joint velocities
     """
     self.kine_dyn.mbc.alpha = [
         [],
         [dq[0]],
         [dq[1]],
         [dq[2]],
         [dq[3]],
         [dq[4]],
         [dq[5]],
         [dq[6]],
     ]
     self.update_poses(q)
     rbd.forwardVelocity(self.kine_dyn.mb, self.kine_dyn.mbc)
Beispiel #2
0
    def update_kinematics(self, q, dq):
        """
        Update kinematics using values from physics engine
        @param q A list of joint angles
        @param dq A list of joint velocities
        """
        # self.kine_dyn.mbc.q = []
        # self.kine_dyn.mbc.alpha = []
        # self.kine_dyn.mbc.q.append([])
        # self.kine_dyn.mbc.alpha.append([])
        # for i in range(len(q)):
        #     self.kine_dyn.mbc.q.append([q[i]])
        #     self.kine_dyn.mbc.alpha.append([dq[i]])
        self.kine_dyn.mbc.q = [
            [],
            [q[0]],
            [q[1]],
            [q[2]],
            [q[3]],
            [q[4]],
            [q[5]],
            [q[6]],
        ]
        self.kine_dyn.mbc.alpha = [
            [],
            [dq[0]],
            [dq[1]],
            [dq[2]],
            [dq[3]],
            [dq[4]],
            [dq[5]],
            [dq[6]],
        ]

        # forward kinematics
        rbd.forwardKinematics(self.kine_dyn.mb, self.kine_dyn.mbc)
        rbd.forwardVelocity(self.kine_dyn.mb, self.kine_dyn.mbc)
Beispiel #3
0
  def test(self):
    mb1, mbc1Init = arms.makeZXZArm(True, sva.PTransformd(sva.RotZ(-math.pi/4), eigen.Vector3d(-0.5, 0, 0)))
    rbdyn.forwardKinematics(mb1, mbc1Init)
    rbdyn.forwardVelocity(mb1, mbc1Init)

    mb2, mbc2Init = arms.makeZXZArm(False, sva.PTransformd(sva.RotZ(math.pi/2), eigen.Vector3d(0.5, 0, 0)))
    rbdyn.forwardKinematics(mb2, mbc2Init)
    rbdyn.forwardVelocity(mb2, mbc2Init)

    if not LEGACY:
      mbs = rbdyn.MultiBodyVector([mb1, mb2])
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbs = [mb1, mb2]
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]

    solver = tasks.qp.QPSolver()

    if not LEGACY:
      posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 0.1, 10)
      posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 0.1, 10)
    else:
      posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2, 1)
    mrtt = tasks.qp.MultiRobotTransformTask(mbs, 0, 1, "b3", "b3", sva.PTransformd(sva.RotZ(-math.pi/8)), sva.PTransformd.Identity(), 100, 1000)
    if not LEGACY:
      mrtt.dimWeight(eigen.VectorXd(0, 0, 1, 1, 1, 0))
    else:
      mrtt.dimWeight(eigen.Vector6d(0, 0, 1, 1, 1, 0))

    solver.addTask(posture1Task)
    solver.addTask(posture2Task)
    solver.addTask(mrtt)

    solver.nrVars(mbs, [], [])
    solver.updateConstrSize()
    # 3 dof + 9 dof
    self.assertEqual(solver.nrVars(), 3 + 9)
    for i in range(2000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])
    self.assertAlmostEqual(mrtt.eval().norm(), 0, delta = 1e-3)

    solver.removeTask(posture1Task)
    solver.removeTask(posture2Task)
    solver.removeTask(mrtt)
Beispiel #4
0
  def test(self):
    mb1, mbc1Init = arms.makeZXZArm(True, sva.PTransformd(sva.RotZ(-math.pi/4), eigen.Vector3d(-0.5, 0, 0)))
    rbdyn.forwardKinematics(mb1, mbc1Init)
    rbdyn.forwardVelocity(mb1, mbc1Init)

    mb2, mbc2Init = arms.makeZXZArm(False, sva.PTransformd(sva.RotZ(math.pi/2), eigen.Vector3d(0.5, 0, 0)))
    rbdyn.forwardKinematics(mb2, mbc2Init)
    rbdyn.forwardVelocity(mb2, mbc2Init)

    if not LEGACY:
      mbs = rbdyn.MultiBodyVector([mb1, mb2])
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbs = [mb1, mb2]
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]

    solver = tasks.qp.QPSolver()

    if not LEGACY:
      posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 0.1, 10)
      posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 0.1, 10)
    else:
      posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2, 1)
    mrtt = tasks.qp.MultiRobotTransformTask(mbs, 0, 1, "b3", "b3", sva.PTransformd(sva.RotZ(-math.pi/8)), sva.PTransformd.Identity(), 100, 1000)
    if not LEGACY:
      mrtt.dimWeight(eigen.VectorXd(0, 0, 1, 1, 1, 0))
    else:
      mrtt.dimWeight(eigen.Vector6d(0, 0, 1, 1, 1, 0))

    solver.addTask(posture1Task)
    solver.addTask(posture2Task)
    solver.addTask(mrtt)

    solver.nrVars(mbs, [], [])
    solver.updateConstrSize()
    # 3 dof + 9 dof
    self.assertEqual(solver.nrVars(), 3 + 9)
    for i in range(2000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])
    self.assertAlmostEqual(mrtt.eval().norm(), 0, delta = 1e-3)

    solver.removeTask(posture1Task)
    solver.removeTask(posture2Task)
    solver.removeTask(mrtt)
  import spacevecalg as sva

  from ik_tasks import BodyTask, PostureTask, CoMTask
  from robots import TutorialTree

  mbg, mb, mbc = TutorialTree()
  quat = e.Quaterniond(np.pi/3., e.Vector3d(0.1, 0.5, 0.3).normalized())
  mbc.q = [[],
           [3.*np.pi/4.],
           [np.pi/3.],
           [-3.*np.pi/4.],
           [0.],
           [quat.w(), quat.x(), quat.y(), quat.z()]]
  rbd.forwardKinematics(mb, mbc)
  rbd.forwardVelocity(mb, mbc)

  # target frame
  X_O_T = sva.PTransformd(sva.RotY(np.pi/2.), e.Vector3d(1.5, 0.5, 1.))
  X_b5_ef = sva.PTransformd(sva.RotX(-np.pi/2.), e.Vector3d(0., 0.2, 0.))

  # create the task
  bodyTask = BodyTask(mb, mbg.bodyIdByName("b5"), X_O_T, X_b5_ef)
  postureTask = PostureTask(mb, map(list, mbc.q))
  comTask = CoMTask(mb, rbd.computeCoM(mb, mbc) + e.Vector3d(0., 0.5, 0.))

  tasks = [(100., bodyTask), ((0., 10000., 0.), comTask), (1., postureTask)]
  q_res = None
  X_O_p_res = None
  alphaInfList = []
  for iterate, q, alpha, alphaInf in\
 def display_helper(self):
     rbd.eulerIntegration(self.hrp4W.mb, self.hrp4W.mbc, 0.005)
     rbd.forwardKinematics(self.hrp4W.mb, self.hrp4W.mbc)
     rbd.forwardVelocity(self.hrp4W.mb, self.hrp4W.mbc)
     rbd.forwardAcceleration(self.hrp4W.mb, self.hrp4W.mbc)
     self.hrp4WDisplayer.display()
    env = robots.robots[env_index]

    # compute foot position to be in contact with the ground
    rbd.forwardKinematics(hrp4.mb, hrp4.mbc)
    tz = -hrp4.surfaces['LeftFoot'].X_0_s(hrp4).translation().z()
    tx = -hrp4.surfaces['LeftFoot'].X_0_s(
        hrp4).translation().x()  #zero the feet surface for the wPG
    hrp4_q = rbdList(hrp4.mbc.q)

    hrp4_q[0] = [1., 0., 0., 0., tx, 0., tz]
    hrp4.mbc.q = hrp4_q
    #  print len(rbdList(hrp4.mbc.q))
    # compute init fk and fv
    for r in robots.robots:
        rbd.forwardKinematics(r.mb, r.mbc)
        rbd.forwardVelocity(r.mb, r.mbc)

    hrp4Jsp = JointStatePublisher(hrp4)

    # create stabilizer helper
    hrp4Stab = stabilizerMsg(hrp4)

    # create solver
    qpsolver = MRQPSolver(robots, timeStep)

    # add dynamics constraint to QPSolver
    # Use 50% of the velocity limits cf Sebastien Langagne.
    contactConstraint = ContactConstraint(timeStep, ContactConstraint.Position)
    #  contactConstraint = ContactConstraint(timeStep, ContactConstraint.Velocity)
    dynamicsConstraint1 = DynamicsConstraint(robots,
                                             hrp4_index,
  romeo = robots.robots[romeo_index]
  env = robots.robots[env_index]

  # compute foot position to be in contact with the ground
  rbd.forwardKinematics(romeo.mb, romeo.mbc)
  tz = -romeo.surfaces['Lfoot'].X_0_s(romeo).translation().z()
  tx = -romeo.surfaces['Lfoot'].X_0_s(romeo).translation().x() #zero the feet surface
  romeo_q = rbdList(romeo.mbc.q)

  romeo_q[0] = [1., 0., 0., 0., tx, 0., tz]
  romeo.mbc.q = romeo_q

  # compute init fk and fv
  for r in robots.robots:
    rbd.forwardKinematics(r.mb, r.mbc)
    rbd.forwardVelocity(r.mb, r.mbc)

  romeoJsp = JointStatePublisher(romeo)

  # create solver
  qpsolver = MRQPSolver(robots, timeStep)

  # add dynamics constraint to QPSolver
  # Use 50% of the velocity limits cf Sebastien Langagne.
  contactConstraint = ContactConstraint(timeStep, ContactConstraint.Position)
  dynamicsConstraint1 = DynamicsConstraint(robots, romeo_index, timeStep,
                                           damper=(0.1, 0.01, 0.5), velocityPercent=0.5)
  kinConstraint1 = KinematicsConstraint(robots, romeo_index, timeStep,
                                        damper=(0.1, 0.01, 0.5), velocityPercent=0.5)

  # Self-collision robot
Beispiel #9
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm(
            True, sva.PTransformd(eigen.Vector3d(-0.5, 0, 0)))
        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)

        mb2, mbc2Init = arms.makeZXZArm(
            True, sva.PTransformd(eigen.Vector3d(0.5, 0, 0)))
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        nrGen = 3
        solver = tasks.qp.QPSolver()

        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b3",
                                       [eigen.Vector3d.Zero()],
                                       sva.RotX(math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        if not LEGACY:
            posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
        else:
            posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2,
                                                1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2,
                                                1)
        comD = (rbdyn.computeCoM(mb1, mbc1Init) + rbdyn.computeCoM(
            mb2, mbc2Init)) / 2 + eigen.Vector3d(0, 0, 0.5)
        multiCoM = tasks.qp.MultiCoMTask(mbs, [0, 1], comD, 10, 500)
        multiCoM.updateInertialParameters(mbs)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

        solver.addTask(posture1Task)
        solver.addTask(posture2Task)

        solver.nrVars(mbs, contVec, [])

        solver.addTask(mbs, multiCoM)
        contCstrSpeed.addToSolver(mbs, solver)

        solver.updateConstrSize()

        self.assertEqual(solver.nrVars(), 3 + 3 + 1 * nrGen)

        for i in range(2000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])
            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(multiCoM.speed().norm(), 0, delta=1e-3)

        contCstrSpeed.removeFromSolver(solver)
        solver.removeTask(posture1Task)
        solver.removeTask(posture2Task)
        solver.removeTask(multiCoM)
Beispiel #10
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm()
        mb2, mbc2Init = arms.makeZXZArm()

        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        # Test ContactAccConstr contraint and test PositionTask on the second robot
        solver = tasks.qp.QPSolver()

        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b3",
                                       [eigen.Vector3d.Zero()],
                                       sva.RotX(math.pi / 2), X_b1_b2, 3,
                                       math.tan(math.pi / 4))
        ]

        oriD = sva.RotZ(math.pi / 4)
        if not LEGACY:
            posD = oriD * mbc2Init.bodyPosW[-1].translation()
        else:
            posD = oriD * list(mbc2Init.bodyPosW)[-1].translation()
        posTask = tasks.qp.PositionTask(mbs, 1, "b3", posD)
        posTaskSp = tasks.qp.SetPointTask(mbs, 1, posTask, 1000, 1)

        contCstrAcc = tasks.qp.ContactAccConstr()

        contCstrAcc.addToSolver(solver)
        solver.addTask(posTaskSp)

        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()

        self.assertEqual(solver.nrVars(), 3 + 3 + 3)

        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(posTask.eval().norm(), 0, delta=1e-5)

        contCstrAcc.removeFromSolver(solver)
        solver.removeTask(posTaskSp)

        # Test ContactSpeedConstr constraint and OrientationTask on the second robot
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        oriTask = tasks.qp.OrientationTask(mbs, 1, "b3", oriD)
        oriTaskSp = tasks.qp.SetPointTask(mbs, 1, oriTask, 1000, 1)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)
        contCstrSpeed.addToSolver(solver)
        solver.addTask(oriTaskSp)

        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])
            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

        self.assertAlmostEqual(oriTask.eval().norm(), 0, delta=1e-5)
Beispiel #11
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm()
        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)

        mb2, mbc2Init = arms.makeZXZArm(False)
        if not LEGACY:
            mb2InitPos = mbc1Init.bodyPosW[-1].translation()
        else:
            mb2InitPos = list(mbc1Init.bodyPosW)[-1].translation()
        mb2InitOri = eigen.Quaterniond(sva.RotY(math.pi / 2))
        if not LEGACY:
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        # Test ContactAccConstr constraint and PositionTask on the second robot
        solver = tasks.qp.QPSolver()

        points = [
            eigen.Vector3d(0.1, 0, 0.1),
            eigen.Vector3d(0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, 0.1),
        ]

        biPoints = [
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
        ]

        nrGen = 4
        biFrames = [
            sva.RotX(math.pi / 4),
            sva.RotX(3 * math.pi / 4),
            sva.RotX(math.pi / 4) * sva.RotY(math.pi / 2),
            sva.RotX(3 * math.pi / 4) * sva.RotY(math.pi / 2),
        ]

        # The fixed robot can pull the other
        contVecFail = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(-math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot can push the other
        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot has non coplanar force apply on the other
        contVecBi = [
            tasks.qp.BilateralContact(tasks.qp.ContactId(0, 1, "b3", "b0"),
                                      biPoints, biFrames, X_b1_b2, nrGen, 1)
        ]

        if not LEGACY:
            posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
        else:
            posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2,
                                                1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2,
                                                1)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

        Inf = float("inf")
        torqueMin1 = [[], [-Inf], [-Inf], [-Inf]]
        torqueMax1 = [[], [Inf], [Inf], [Inf]]
        torqueMin2 = [[0, 0, 0, 0, 0, 0], [-Inf], [-Inf], [-Inf]]
        torqueMax2 = [[0, 0, 0, 0, 0, 0], [Inf], [Inf], [Inf]]
        motion1 = tasks.qp.MotionConstr(
            mbs, 0, tasks.TorqueBound(torqueMin1, torqueMax1))
        motion2 = tasks.qp.MotionConstr(
            mbs, 1, tasks.TorqueBound(torqueMin2, torqueMax2))
        plCstr = tasks.qp.PositiveLambda()

        motion1.addToSolver(solver)
        motion2.addToSolver(solver)
        plCstr.addToSolver(solver)

        contCstrSpeed.addToSolver(solver)
        solver.addTask(posture1Task)
        solver.addTask(posture2Task)

        # Check the impossible motion
        solver.nrVars(mbs, contVecFail, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        self.assertFalse(solver.solve(mbs, mbcs))

        # Check the unilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        # Check the bilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        plCstr.removeFromSolver(solver)
        motion2.removeFromSolver(solver)
        motion1.removeFromSolver(solver)
        contCstrSpeed.removeFromSolver(solver)

        solver.removeTask(posture1Task)
        solver.removeTask(posture2Task)
Beispiel #12
0
  mbg.linkBodies("b1", to, "b2", _from, "j1")
  mbg.linkBodies("b2", to, "b3", _from, "j2")

  mb = mbg.makeMultiBody("b0", isFixed, X_base)

  mbc = rbdyn.MultiBodyConfig(mb)
  mbc.zero(mb)

  return mb,mbc

if __name__ == "__main__":
    nrIter = 10000
    mb, mbcInit = makeZXZArm()

    rbdyn.forwardKinematics(mb, mbcInit)
    rbdyn.forwardVelocity(mb, mbcInit)

    mbs = rbdyn.MultiBodyVector([mb])
    mbcs = rbdyn.MultiBodyConfigVector([mbcInit])

    solver = tasks.qp.QPSolver()

    solver.nrVars(mbs, [], [])

    solver.updateConstrSize()

    posD = eigen.Vector3d(0.707106, 0.707106, 0.0)
    posTask = tasks.qp.PositionTask(mbs, 0, "b3", posD)
    posTaskSp = tasks.qp.SetPointTask(mbs, 0, posTask, 10, 1)

    solver.addTask(posTaskSp)
Beispiel #13
0
  def test(self):
    mb1, mbc1Init = arms.makeZXZArm(True, sva.PTransformd(eigen.Vector3d(-0.5, 0, 0)))
    rbdyn.forwardKinematics(mb1, mbc1Init)
    rbdyn.forwardVelocity(mb1, mbc1Init)

    mb2, mbc2Init = arms.makeZXZArm(True, sva.PTransformd(eigen.Vector3d(0.5, 0, 0)))
    rbdyn.forwardKinematics(mb2, mbc2Init)
    rbdyn.forwardVelocity(mb2, mbc2Init)

    if not LEGACY:
      X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
      X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
    else:
      X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
      X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
    X_b1_b2 = X_0_b2*X_0_b1.inv()

    if not LEGACY:
      mbs = rbdyn.MultiBodyVector([mb1, mb2])
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbs = [mb1, mb2]
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]

    nrGen = 3
    solver = tasks.qp.QPSolver()

    contVec = [ tasks.qp.UnilateralContact(0, 1, "b3", "b3", [eigen.Vector3d.Zero()], sva.RotX(math.pi/2), X_b1_b2, nrGen, 0.7) ]

    if not LEGACY:
      posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
    else:
      posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2, 1)
    comD = (rbdyn.computeCoM(mb1, mbc1Init) + rbdyn.computeCoM(mb2, mbc2Init))/2 + eigen.Vector3d(0, 0, 0.5)
    multiCoM = tasks.qp.MultiCoMTask(mbs, [0,1], comD, 10, 500)
    multiCoM.updateInertialParameters(mbs)

    contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

    solver.addTask(posture1Task)
    solver.addTask(posture2Task)

    solver.nrVars(mbs, contVec, [])

    solver.addTask(mbs, multiCoM)
    contCstrSpeed.addToSolver(mbs, solver)

    solver.updateConstrSize()

    self.assertEqual(solver.nrVars(), 3 + 3 + 1*nrGen)

    for i in range(2000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])
      # Check that the link hold
      if not LEGACY:
        X_0_b1_post = mbcs[0].bodyPosW[-1]
        X_0_b2_post = mbcs[1].bodyPosW[-1]
      else:
        X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
        X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
      X_b1_b2_post = X_0_b2*X_0_b1.inv()
      self.assertAlmostEqual((X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(), 0, delta = 1e-5)

    self.assertAlmostEqual(multiCoM.speed().norm(), 0, delta = 1e-3)

    contCstrSpeed.removeFromSolver(solver)
    solver.removeTask(posture1Task)
    solver.removeTask(posture2Task)
    solver.removeTask(multiCoM)
Beispiel #14
0
  def test(self):
    mb1, mbc1Init = arms.makeZXZArm()
    mb2, mbc2Init = arms.makeZXZArm()

    rbdyn.forwardKinematics(mb1, mbc1Init)
    rbdyn.forwardVelocity(mb1, mbc1Init)
    rbdyn.forwardKinematics(mb2, mbc2Init)
    rbdyn.forwardVelocity(mb2, mbc2Init)

    if not LEGACY:
      X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
      X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
    else:
      X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
      X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
    X_b1_b2 = X_0_b2*X_0_b1.inv()

    if not LEGACY:
      mbs = rbdyn.MultiBodyVector([mb1, mb2])
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbs = [mb1, mb2]
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]

    # Test ContactAccConstr contraint and test PositionTask on the second robot
    solver = tasks.qp.QPSolver()

    contVec = [ tasks.qp.UnilateralContact(0, 1, "b3", "b3", [eigen.Vector3d.Zero()], sva.RotX(math.pi/2), X_b1_b2, 3, math.tan(math.pi/4)) ]

    oriD = sva.RotZ(math.pi/4)
    if not LEGACY:
      posD = oriD*mbc2Init.bodyPosW[-1].translation()
    else:
      posD = oriD*list(mbc2Init.bodyPosW)[-1].translation()
    posTask = tasks.qp.PositionTask(mbs, 1, "b3", posD)
    posTaskSp = tasks.qp.SetPointTask(mbs, 1, posTask, 1000, 1)

    contCstrAcc = tasks.qp.ContactAccConstr()

    contCstrAcc.addToSolver(solver)
    solver.addTask(posTaskSp)

    solver.nrVars(mbs, contVec, [])
    solver.updateConstrSize()

    self.assertEqual(solver.nrVars(), 3 + 3 + 3)

    for i in range(1000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])

      # Check that the link hold
      if not LEGACY:
        X_0_b1_post = mbcs[0].bodyPosW[-1]
        X_0_b2_post = mbcs[1].bodyPosW[-1]
      else:
        X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
        X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
      X_b1_b2_post = X_0_b2*X_0_b1.inv()
      self.assertAlmostEqual((X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(), 0, delta = 1e-5)

    self.assertAlmostEqual(posTask.eval().norm(), 0, delta = 1e-5)

    contCstrAcc.removeFromSolver(solver)
    solver.removeTask(posTaskSp)

    # Test ContactSpeedConstr constraint and OrientationTask on the second robot
    if not LEGACY:
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]
    oriTask = tasks.qp.OrientationTask(mbs, 1, "b3", oriD)
    oriTaskSp = tasks.qp.SetPointTask(mbs, 1, oriTask, 1000, 1)

    contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)
    contCstrSpeed.addToSolver(solver)
    solver.addTask(oriTaskSp)

    solver.nrVars(mbs, contVec, [])
    solver.updateConstrSize()
    for i in range(1000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])
      # Check that the link hold
      if not LEGACY:
        X_0_b1_post = mbcs[0].bodyPosW[-1]
        X_0_b2_post = mbcs[1].bodyPosW[-1]
      else:
        X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
        X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
      X_b1_b2_post = X_0_b2*X_0_b1.inv()
      self.assertAlmostEqual((X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(), 0, delta = 1e-5)

    self.assertAlmostEqual(oriTask.eval().norm(), 0, delta = 1e-5)
Beispiel #15
0
  def test(self):
    mb1, mbc1Init = arms.makeZXZArm()
    rbdyn.forwardKinematics(mb1, mbc1Init)
    rbdyn.forwardVelocity(mb1, mbc1Init)

    mb2, mbc2Init = arms.makeZXZArm(False)
    if not LEGACY:
      mb2InitPos = mbc1Init.bodyPosW[-1].translation()
    else:
      mb2InitPos = list(mbc1Init.bodyPosW)[-1].translation()
    mb2InitOri = eigen.Quaterniond(sva.RotY(math.pi/2))
    if not LEGACY:
      mbc2Init.q[0] = [mb2InitOri.w(), mb2InitOri.x(), mb2InitOri.y(), mb2InitOri.z(), mb2InitPos.x(), mb2InitPos.y() + 1, mb2InitPos.z()]
      mbc2Init.q[0] = [mb2InitOri.w(), mb2InitOri.x(), mb2InitOri.y(), mb2InitOri.z(), mb2InitPos.x(), mb2InitPos.y() + 1, mb2InitPos.z()]
    rbdyn.forwardKinematics(mb2, mbc2Init)
    rbdyn.forwardVelocity(mb2, mbc2Init)

    if not LEGACY:
      X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
      X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
    else:
      X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
      X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
    X_b1_b2 = X_0_b2*X_0_b1.inv()

    if not LEGACY:
      mbs = rbdyn.MultiBodyVector([mb1, mb2])
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbs = [mb1, mb2]
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]

    # Test ContactAccConstr constraint and PositionTask on the second robot
    solver = tasks.qp.QPSolver()

    points = [
      eigen.Vector3d(0.1, 0, 0.1),
      eigen.Vector3d(0.1, 0, -0.1),
      eigen.Vector3d(-0.1, 0, -0.1),
      eigen.Vector3d(-0.1, 0, 0.1),
    ]

    biPoints = [
      eigen.Vector3d.Zero(),
      eigen.Vector3d.Zero(),
      eigen.Vector3d.Zero(),
      eigen.Vector3d.Zero(),
    ]

    nrGen = 4
    biFrames = [
      sva.RotX(math.pi/4),
      sva.RotX(3*math.pi/4),
      sva.RotX(math.pi/4)*sva.RotY(math.pi/2),
      sva.RotX(3*math.pi/4)*sva.RotY(math.pi/2),
    ]

    # The fixed robot can pull the other
    contVecFail = [ tasks.qp.UnilateralContact(0, 1, "b3", "b0", points, sva.RotX(-math.pi/2), X_b1_b2, nrGen, 0.7) ]

    # The fixed robot can push the other
    contVec = [ tasks.qp.UnilateralContact(0, 1, "b3", "b0", points, sva.RotX(math.pi/2), X_b1_b2, nrGen, 0.7) ]

    # The fixed robot has non coplanar force apply on the other
    contVecBi = [ tasks.qp.BilateralContact(tasks.qp.ContactId(0, 1, "b3", "b0"), biPoints, biFrames, X_b1_b2, nrGen, 1) ]

    if not LEGACY:
      posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
    else:
      posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2, 1)
      posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2, 1)

    contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

    Inf = float("inf")
    torqueMin1 = [[], [-Inf], [-Inf], [-Inf]]
    torqueMax1 = [[], [Inf], [Inf], [Inf]]
    torqueMin2 = [[0,0,0,0,0,0], [-Inf], [-Inf], [-Inf]]
    torqueMax2 = [[0,0,0,0,0,0], [Inf], [Inf], [Inf]]
    motion1 = tasks.qp.MotionConstr(mbs, 0, tasks.TorqueBound(torqueMin1, torqueMax1))
    motion2 = tasks.qp.MotionConstr(mbs, 1, tasks.TorqueBound(torqueMin2, torqueMax2))
    plCstr = tasks.qp.PositiveLambda()

    motion1.addToSolver(solver)
    motion2.addToSolver(solver)
    plCstr.addToSolver(solver)

    contCstrSpeed.addToSolver(solver)
    solver.addTask(posture1Task)
    solver.addTask(posture2Task)

    # Check the impossible motion
    solver.nrVars(mbs, contVecFail, [])
    solver.updateConstrSize()
    self.assertEqual(solver.nrVars(), 3 + 9 + 4*nrGen)
    self.assertFalse(solver.solve(mbs, mbcs))

    # Check the unilateral motion
    if not LEGACY:
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]
    solver.nrVars(mbs, contVec, [])
    solver.updateConstrSize()
    for i in range(1000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])

      # Check that the link hold
      if not LEGACY:
        X_0_b1_post = mbcs[0].bodyPosW[-1]
        X_0_b2_post = mbcs[1].bodyPosW[-1]
      else:
        X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
        X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
      X_b1_b2_post = X_0_b2*X_0_b1.inv()
      self.assertAlmostEqual((X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(), 0, delta = 1e-5)

      # Force in the world frame must be the same
      f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
      f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
      self.assertAlmostEqual((f1+f2).norm(), 0, delta = 1e-5)

    # Check the bilateral motion
    if not LEGACY:
      mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
    else:
      mbcs = [rbdyn.MultiBodyConfig(mbc1Init), rbdyn.MultiBodyConfig(mbc2Init)]
    solver.nrVars(mbs, contVec, [])
    solver.updateConstrSize()
    self.assertEqual(solver.nrVars(), 3 + 9 + 4*nrGen)
    for i in range(1000):
      if not LEGACY:
        self.assertTrue(solver.solve(mbs, mbcs))
      else:
        self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
        solver.updateMbc(mbcs[0], 0)
        solver.updateMbc(mbcs[1], 1)
      for i in range(2):
        rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
        rbdyn.forwardKinematics(mbs[i], mbcs[i])
        rbdyn.forwardVelocity(mbs[i], mbcs[i])

      # Check that the link hold
      if not LEGACY:
        X_0_b1_post = mbcs[0].bodyPosW[-1]
        X_0_b2_post = mbcs[1].bodyPosW[-1]
      else:
        X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
        X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
      X_b1_b2_post = X_0_b2*X_0_b1.inv()
      self.assertAlmostEqual((X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(), 0, delta = 1e-5)

      # Force in the world frame must be the same
      f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
      f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
      self.assertAlmostEqual((f1+f2).norm(), 0, delta = 1e-5)

    plCstr.removeFromSolver(solver)
    motion2.removeFromSolver(solver)
    motion1.removeFromSolver(solver)
    contCstrSpeed.removeFromSolver(solver)

    solver.removeTask(posture1Task)
    solver.removeTask(posture2Task)
Beispiel #16
0
if __name__ == '__main__':
    import sys
    sys.path += [".."]

    import spacevecalg as sva

    from ik_tasks import BodyTask, PostureTask, CoMTask
    from robots import TutorialTree

    mbg, mb, mbc = TutorialTree()
    quat = e.Quaterniond(np.pi / 3., e.Vector3d(0.1, 0.5, 0.3).normalized())
    mbc.q = [[], [3. * np.pi / 4.], [np.pi / 3.], [-3. * np.pi / 4.], [0.],
             [quat.w(), quat.x(), quat.y(),
              quat.z()]]
    rbd.forwardKinematics(mb, mbc)
    rbd.forwardVelocity(mb, mbc)

    # target frame
    X_O_T = sva.PTransformd(sva.RotY(np.pi / 2.), e.Vector3d(1.5, 0.5, 1.))
    X_b5_ef = sva.PTransformd(sva.RotX(-np.pi / 2.), e.Vector3d(0., 0.2, 0.))

    # create the task
    bodyTask = BodyTask(mb, mbg.bodyIdByName("b5"), X_O_T, X_b5_ef)
    postureTask = PostureTask(mb, map(list, mbc.q))
    comTask = CoMTask(mb, rbd.computeCoM(mb, mbc) + e.Vector3d(0., 0.5, 0.))

    tasks = [(100., bodyTask), ((0., 10000., 0.), comTask), (1., postureTask)]
    q_res = None
    X_O_p_res = None
    alphaInfList = []
    for iterate, q, alpha, alphaInf in\