def _qr(mat): r""" Compute the R matrix in QR decomposition using Housholder reflections. This is an adoption of the implementation in mpmath by Andreas Strombergson. """ CC = mat.base_ring() mat = copy(mat) m = mat.nrows() n = mat.ncols() cur_row = 0 for j in range(0, n): if all(mat[i, j].contains_zero() for i in xrange(cur_row + 1, m)): if not mat[cur_row, j].contains_zero(): cur_row += 1 continue s = sum((abs(mat[i, j]))**2 for i in xrange(cur_row, m)) if s.contains_zero(): raise RuntimeError( "Cannot handle imprecise sums of elements that are too precise" ) p = sqrt(s) if (s - p * mat[cur_row, j]).contains_zero(): raise RuntimeError( "Cannot handle imprecise sums of elements that are too precise" ) kappa = 1 / (s - p * mat[cur_row, j]) mat[cur_row, j] -= p for k in range(j + 1, n): y = sum(mat[i, j].conjugate() * mat[i, k] for i in xrange(cur_row, m)) * kappa for i in range(cur_row, m): mat[i, k] -= mat[i, j] * y mat[cur_row, j] = p for i in range(cur_row + 1, m): mat[i, j] = CC(0) cur_row += 1 return mat
def dimension__jacobi_scalar(k, m) : raise RuntimeError( "There is a bug in the implementation" ) m = ZZ(m) dimension = 0 for d in (m // m.squarefree_part()).isqrt().divisors() : m_d = m // d**2 dimension += sum ( dimension__jacobi_scalar_f(k, m_d, f) for f in m_d.divisors() ) return dimension
def dimension__jacobi_scalar(k, m): raise RuntimeError("There is a bug in the implementation") m = ZZ(m) dimension = 0 for d in (m // m.squarefree_part()).isqrt().divisors(): m_d = m // d**2 dimension += sum( dimension__jacobi_scalar_f(k, m_d, f) for f in m_d.divisors()) return dimension
def _qr(mat) : r""" Compute the R matrix in QR decomposition using Housholder reflections. This is an adoption of the implementation in mpmath by Andreas Strombergson. """ CC = mat.base_ring() mat = copy(mat) m = mat.nrows() n = mat.ncols() cur_row = 0 for j in range(0, n) : if all( mat[i,j].contains_zero() for i in xrange(cur_row + 1, m) ) : if not mat[cur_row,j].contains_zero() : cur_row += 1 continue s = sum( (abs(mat[i,j]))**2 for i in xrange(cur_row, m) ) if s.contains_zero() : raise RuntimeError( "Cannot handle imprecise sums of elements that are too precise" ) p = sqrt(s) if (s - p * mat[cur_row,j]).contains_zero() : raise RuntimeError( "Cannot handle imprecise sums of elements that are too precise" ) kappa = 1 / (s - p * mat[cur_row,j]) mat[cur_row,j] -= p for k in range(j + 1, n) : y = sum(mat[i,j].conjugate() * mat[i,k] for i in xrange(cur_row, m)) * kappa for i in range(cur_row, m): mat[i,k] -= mat[i,j] * y mat[cur_row,j] = p for i in range(cur_row + 1, m) : mat[i,j] = CC(0) cur_row += 1 return mat
def dimension__jacobi_scalar_f(k, m, f) : if moebius(f) != (-1)**k : return 0 ## We use chapter 6 of Skoruppa's thesis ts = filter(lambda t: gcd(t, m // t) == 1, m.divisors()) ## Eisenstein part eis_dimension = 0 for t in ts : eis_dimension += moebius(gcd(m // t, f)) \ * (t // t.squarefree_part()).isqrt() \ * (2 if (m // t) % 4 == 0 else 1) eis_dimension = eis_dimension // len(ts) if k == 2 and f == 1 : eis_dimension -= len( (m // m.squarefree_part()).isqrt().divisors() ) ## Cuspidal part cusp_dimension = 0 tmp = ZZ(0) for t in ts : tmp += moebius(gcd(m // t, f)) * t tmp = tmp / len(ts) cusp_dimension += tmp * (2 * k - 3) / ZZ(12) print "1: ", cusp_dimension if m % 2 == 0 : tmp = ZZ(0) for t in ts : tmp += moebius(gcd(m // t, f)) * kronecker_symbol(-4, t) tmp = tmp / len(ts) cusp_dimension += 1/ZZ(2) * kronecker_symbol(8, 2 * k - 1) * tmp print "2: ", 1/ZZ(2) * kronecker_symbol(8, 2 * k - 1) * tmp tmp = ZZ(0) for t in ts : tmp += moebius(gcd(m // t, f)) * kronecker_symbol(t, 3) tmp = tmp / len(ts) if m % 3 != 0 : cusp_dimension += 1 / ZZ(3) * kronecker_symbol(k, 3) * tmp print ": ", 1 / ZZ(3) * kronecker_symbol(k, 3) * tmp elif k % 3 == 0 : cusp_dimension += 2 / ZZ(3) * (-1)**k * tmp print "3: ", 2 / ZZ(3) * (-1)**k * tmp else : cusp_dimension += 1 / ZZ(3) * (kronecker_symbol(k, 3) + (-1)**(k - 1)) * tmp print "3: ", 1 / ZZ(3) * (kronecker_symbol(k, 3) + (-1)**(k - 1)) * tmp tmp = ZZ(0) for t in ts : tmp += moebius(gcd(m // t, f)) \ * (t // t.squarefree_part()).isqrt() \ * (2 if (m // t) % 4 == 0 else 1) tmp = tmp / len(ts) cusp_dimension -= 1 / ZZ(2) * tmp print "4: ", -1 / ZZ(2) * tmp tmp = ZZ(0) for t in ts : tmp += moebius(gcd(m // t, f)) \ * sum( (( len(BinaryQF_reduced_representatives(-d, True)) if d not in [3, 4] else ( 1 / ZZ(3) if d == 3 else 1 / ZZ(2) )) if d % 4 == 0 or d % 4 == 3 else 0 ) * kronecker_symbol(-d, m // t) * ( 1 if (m // t) % 2 != 0 else ( 4 if (m // t) % 4 == 0 else 2 * kronecker_symbol(-d, 2) )) for d in (4 * m).divisors() ) tmp = tmp / len(ts) cusp_dimension -= 1 / ZZ(2) * tmp print "5: ", -1 / ZZ(2) * tmp if k == 2 : cusp_dimension += len( (m // f // (m // f).squarefree_part()).isqrt().divisors() ) return eis_dimension + cusp_dimension
def dimension__vector_valued(k, L, conjugate = False) : r""" Compute the dimension of the space of weight `k` vector valued modular forms for the Weil representation (or its conjugate) attached to the lattice `L`. See [Borcherds, Borcherds - Reflection groups of Lorentzian lattices] for a proof of the formula that we use here. INPUT: - `k` -- A half-integer. - ``L`` -- An quadratic form. - ``conjugate`` -- A boolean; If ``True``, then compute the dimension for the conjugated Weil representation. OUTPUT: An integer. TESTS:: sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 1, 1, 2]))) 1 sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 0, 0, 2]))) 1 sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 0, 0, 4]))) 1 """ if 2 * k not in ZZ : raise ValueError( "Weight must be half-integral" ) if k <= 0 : return 0 if k < 2 : raise NotImplementedError( "Weight <2 is not implemented." ) if L.matrix().rank() != L.matrix().nrows() : raise ValueError( "The lattice (={0}) must be non-degenerate.".format(L) ) L_dimension = L.matrix().nrows() if L_dimension % 2 != ZZ(2 * k) % 2 : return 0 plus_basis = ZZ(L_dimension + 2 * k) % 4 == 0 ## The bilinear and the quadratic form attached to L quadratic = lambda x: L(x) // 2 bilinear = lambda x,y: L(x + y) - L(x) - L(y) ## A dual basis for L (elementary_divisors, dual_basis_pre, _) = L.matrix().smith_form() elementary_divisors = elementary_divisors.diagonal() dual_basis = map(operator.div, list(dual_basis_pre), elementary_divisors) L_level = ZZ(lcm([ b.denominator() for b in dual_basis ])) (elementary_divisors, _, discriminant_basis_pre) = (L_level * matrix(dual_basis)).change_ring(ZZ).smith_form() elementary_divisors = filter( lambda d: d not in ZZ, (elementary_divisors / L_level).diagonal() ) elementary_divisors_inv = map(ZZ, [ed**-1 for ed in elementary_divisors]) discriminant_basis = matrix(map( operator.mul, discriminant_basis_pre.inverse().rows()[:len(elementary_divisors)], elementary_divisors )).transpose() ## This is a form over QQ, so that we cannot use an instance of QuadraticForm discriminant_form = discriminant_basis.transpose() * L.matrix() * discriminant_basis if conjugate : discriminant_form = - discriminant_form if prod(elementary_divisors_inv) > 100 : disc_den = discriminant_form.denominator() disc_bilinear_pre = \ cython_lambda( ', '.join( ['int a{0}'.format(i) for i in range(discriminant_form.nrows())] + ['int b{0}'.format(i) for i in range(discriminant_form.nrows())] ), ' + '.join('{0} * a{1} * b{2}'.format(disc_den * discriminant_form[i,j], i, j) for i in range(discriminant_form.nrows()) for j in range(discriminant_form.nrows())) ) disc_bilinear = lambda *a: disc_bilinear_pre(*a) / disc_den else : disc_bilinear = lambda *xy: vector(ZZ, xy[:discriminant_form.nrows()]) * discriminant_form * vector(ZZ, xy[discriminant_form.nrows():]) disc_quadratic = lambda *a: disc_bilinear(*(2 * a)) / 2 ## red gives a normal form for elements in the discriminant group red = lambda x : map(operator.mod, x, elementary_divisors_inv) def is_singl(x) : y = red(map(operator.neg, x)) for (e, f) in zip(x, y) : if e < f : return -1 elif e > f : return 1 return 0 ## singls and pairs are elements of the discriminant group that are, respectively, ## fixed and not fixed by negation. singls = list() pairs = list() for x in mrange(elementary_divisors_inv) : si = is_singl(x) if si == 0 : singls.append(x) elif si == 1 : pairs.append(x) if plus_basis : subspace_dimension = len(singls + pairs) else : subspace_dimension = len(pairs) ## 200 bits are, by far, sufficient to distinguish 12-th roots of unity ## by increasing the precision by 4 for each additional dimension, we ## compensate, by far, the errors introduced by the QR decomposition, ## which are of the size of (absolute error) * dimension CC = ComplexIntervalField(200 + subspace_dimension * 4) zeta_order = ZZ(lcm([8, 12] + map(lambda ed: 2 * ed, elementary_divisors_inv))) zeta = CC(exp(2 * pi * I / zeta_order)) sqrt2 = CC(sqrt(2)) drt = CC(sqrt(L.det())) Tmat = diagonal_matrix(CC, [zeta**(zeta_order*disc_quadratic(*a)) for a in (singls + pairs if plus_basis else pairs)]) if plus_basis : Smat = zeta**(zeta_order / 8 * L_dimension) / drt \ * matrix( CC, [ [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in singls] + [sqrt2 * zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in pairs] for gamma in singls] \ + [ [sqrt2 * zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in singls] + [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) + zeta**(-zeta_order * disc_bilinear(*(gamma + map(operator.neg, delta)))) for delta in pairs] for gamma in pairs] ) else : Smat = zeta**(zeta_order / 8 * L_dimension) / drt \ * matrix( CC, [ [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) - zeta**(-zeta_order * disc_bilinear(*(gamma + map(operator.neg,delta)))) for delta in pairs] for gamma in pairs ] ) STmat = Smat * Tmat ## This function overestimates the number of eigenvalues, if it is not correct def eigenvalue_multiplicity(mat, ev) : mat = matrix(CC, mat - ev * identity_matrix(subspace_dimension)) return len(filter( lambda row: all( e.contains_zero() for e in row), _qr(mat).rows() )) rti = CC(exp(2 * pi * I / 8)) S_ev_multiplicity = [eigenvalue_multiplicity(Smat, rti**n) for n in range(8)] ## Together with the fact that eigenvalue_multiplicity overestimates the multiplicities ## this asserts that the computed multiplicities are correct assert sum(S_ev_multiplicity) == subspace_dimension rho = CC(exp(2 * pi * I / 12)) ST_ev_multiplicity = [eigenvalue_multiplicity(STmat, rho**n) for n in range(12)] ## Together with the fact that eigenvalue_multiplicity overestimates the multiplicities ## this asserts that the computed multiplicities are correct assert sum(ST_ev_multiplicity) == subspace_dimension T_evs = [ ZZ((zeta_order * disc_quadratic(*a)) % zeta_order) / zeta_order for a in (singls + pairs if plus_basis else pairs) ] return subspace_dimension * (1 + QQ(k) / 12) \ - ZZ(sum( (ST_ev_multiplicity[n] * ((-2 * k - n) % 12)) for n in range(12) )) / 12 \ - ZZ(sum( (S_ev_multiplicity[n] * ((2 * k + n) % 8)) for n in range(8) )) / 8 \ - sum(T_evs)
def dimension__jacobi_scalar_f(k, m, f): if moebius(f) != (-1)**k: return 0 ## We use chapter 6 of Skoruppa's thesis ts = filter(lambda t: gcd(t, m // t) == 1, m.divisors()) ## Eisenstein part eis_dimension = 0 for t in ts: eis_dimension += moebius(gcd(m // t, f)) \ * (t // t.squarefree_part()).isqrt() \ * (2 if (m // t) % 4 == 0 else 1) eis_dimension = eis_dimension // len(ts) if k == 2 and f == 1: eis_dimension -= len((m // m.squarefree_part()).isqrt().divisors()) ## Cuspidal part cusp_dimension = 0 tmp = ZZ(0) for t in ts: tmp += moebius(gcd(m // t, f)) * t tmp = tmp / len(ts) cusp_dimension += tmp * (2 * k - 3) / ZZ(12) print "1: ", cusp_dimension if m % 2 == 0: tmp = ZZ(0) for t in ts: tmp += moebius(gcd(m // t, f)) * kronecker_symbol(-4, t) tmp = tmp / len(ts) cusp_dimension += 1 / ZZ(2) * kronecker_symbol(8, 2 * k - 1) * tmp print "2: ", 1 / ZZ(2) * kronecker_symbol(8, 2 * k - 1) * tmp tmp = ZZ(0) for t in ts: tmp += moebius(gcd(m // t, f)) * kronecker_symbol(t, 3) tmp = tmp / len(ts) if m % 3 != 0: cusp_dimension += 1 / ZZ(3) * kronecker_symbol(k, 3) * tmp print ": ", 1 / ZZ(3) * kronecker_symbol(k, 3) * tmp elif k % 3 == 0: cusp_dimension += 2 / ZZ(3) * (-1)**k * tmp print "3: ", 2 / ZZ(3) * (-1)**k * tmp else: cusp_dimension += 1 / ZZ(3) * (kronecker_symbol(k, 3) + (-1)**(k - 1)) * tmp print "3: ", 1 / ZZ(3) * (kronecker_symbol(k, 3) + (-1)**(k - 1)) * tmp tmp = ZZ(0) for t in ts: tmp += moebius(gcd(m // t, f)) \ * (t // t.squarefree_part()).isqrt() \ * (2 if (m // t) % 4 == 0 else 1) tmp = tmp / len(ts) cusp_dimension -= 1 / ZZ(2) * tmp print "4: ", -1 / ZZ(2) * tmp tmp = ZZ(0) for t in ts: tmp += moebius(gcd(m // t, f)) \ * sum( (( len(BinaryQF_reduced_representatives(-d, True)) if d not in [3, 4] else ( 1 / ZZ(3) if d == 3 else 1 / ZZ(2) )) if d % 4 == 0 or d % 4 == 3 else 0 ) * kronecker_symbol(-d, m // t) * ( 1 if (m // t) % 2 != 0 else ( 4 if (m // t) % 4 == 0 else 2 * kronecker_symbol(-d, 2) )) for d in (4 * m).divisors() ) tmp = tmp / len(ts) cusp_dimension -= 1 / ZZ(2) * tmp print "5: ", -1 / ZZ(2) * tmp if k == 2: cusp_dimension += len( (m // f // (m // f).squarefree_part()).isqrt().divisors()) return eis_dimension + cusp_dimension
def dimension__vector_valued(k, L, conjugate=False): r""" Compute the dimension of the space of weight `k` vector valued modular forms for the Weil representation (or its conjugate) attached to the lattice `L`. See [Borcherds, Borcherds - Reflection groups of Lorentzian lattices] for a proof of the formula that we use here. INPUT: - `k` -- A half-integer. - ``L`` -- An quadratic form. - ``conjugate`` -- A boolean; If ``True``, then compute the dimension for the conjugated Weil representation. OUTPUT: An integer. TESTS:: sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 1, 1, 2]))) 1 sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 0, 0, 2]))) 1 sage: dimension__vector_valued(3, QuadraticForm(-matrix(2, [2, 0, 0, 4]))) 1 """ if 2 * k not in ZZ: raise ValueError("Weight must be half-integral") if k <= 0: return 0 if k < 2: raise NotImplementedError("Weight <2 is not implemented.") if L.matrix().rank() != L.matrix().nrows(): raise ValueError( "The lattice (={0}) must be non-degenerate.".format(L)) L_dimension = L.matrix().nrows() if L_dimension % 2 != ZZ(2 * k) % 2: return 0 plus_basis = ZZ(L_dimension + 2 * k) % 4 == 0 ## The bilinear and the quadratic form attached to L quadratic = lambda x: L(x) // 2 bilinear = lambda x, y: L(x + y) - L(x) - L(y) ## A dual basis for L (elementary_divisors, dual_basis_pre, _) = L.matrix().smith_form() elementary_divisors = elementary_divisors.diagonal() dual_basis = map(operator.div, list(dual_basis_pre), elementary_divisors) L_level = ZZ(lcm([b.denominator() for b in dual_basis])) (elementary_divisors, _, discriminant_basis_pre) = ( L_level * matrix(dual_basis)).change_ring(ZZ).smith_form() elementary_divisors = filter(lambda d: d not in ZZ, (elementary_divisors / L_level).diagonal()) elementary_divisors_inv = map(ZZ, [ed**-1 for ed in elementary_divisors]) discriminant_basis = matrix( map(operator.mul, discriminant_basis_pre.inverse().rows()[:len(elementary_divisors)], elementary_divisors)).transpose() ## This is a form over QQ, so that we cannot use an instance of QuadraticForm discriminant_form = discriminant_basis.transpose() * L.matrix( ) * discriminant_basis if conjugate: discriminant_form = -discriminant_form if prod(elementary_divisors_inv) > 100: disc_den = discriminant_form.denominator() disc_bilinear_pre = \ cython_lambda( ', '.join( ['int a{0}'.format(i) for i in range(discriminant_form.nrows())] + ['int b{0}'.format(i) for i in range(discriminant_form.nrows())] ), ' + '.join('{0} * a{1} * b{2}'.format(disc_den * discriminant_form[i,j], i, j) for i in range(discriminant_form.nrows()) for j in range(discriminant_form.nrows())) ) disc_bilinear = lambda *a: disc_bilinear_pre(*a) / disc_den else: disc_bilinear = lambda *xy: vector(ZZ, xy[:discriminant_form.nrows( )]) * discriminant_form * vector(ZZ, xy[discriminant_form.nrows():]) disc_quadratic = lambda *a: disc_bilinear(*(2 * a)) / 2 ## red gives a normal form for elements in the discriminant group red = lambda x: map(operator.mod, x, elementary_divisors_inv) def is_singl(x): y = red(map(operator.neg, x)) for (e, f) in zip(x, y): if e < f: return -1 elif e > f: return 1 return 0 ## singls and pairs are elements of the discriminant group that are, respectively, ## fixed and not fixed by negation. singls = list() pairs = list() for x in mrange(elementary_divisors_inv): si = is_singl(x) if si == 0: singls.append(x) elif si == 1: pairs.append(x) if plus_basis: subspace_dimension = len(singls + pairs) else: subspace_dimension = len(pairs) ## 200 bits are, by far, sufficient to distinguish 12-th roots of unity ## by increasing the precision by 4 for each additional dimension, we ## compensate, by far, the errors introduced by the QR decomposition, ## which are of the size of (absolute error) * dimension CC = ComplexIntervalField(200 + subspace_dimension * 4) zeta_order = ZZ( lcm([8, 12] + map(lambda ed: 2 * ed, elementary_divisors_inv))) zeta = CC(exp(2 * pi * I / zeta_order)) sqrt2 = CC(sqrt(2)) drt = CC(sqrt(L.det())) Tmat = diagonal_matrix(CC, [ zeta**(zeta_order * disc_quadratic(*a)) for a in (singls + pairs if plus_basis else pairs) ]) if plus_basis: Smat = zeta**(zeta_order / 8 * L_dimension) / drt \ * matrix( CC, [ [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in singls] + [sqrt2 * zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in pairs] for gamma in singls] \ + [ [sqrt2 * zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) for delta in singls] + [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) + zeta**(-zeta_order * disc_bilinear(*(gamma + map(operator.neg, delta)))) for delta in pairs] for gamma in pairs] ) else: Smat = zeta**(zeta_order / 8 * L_dimension) / drt \ * matrix( CC, [ [zeta**(-zeta_order * disc_bilinear(*(gamma + delta))) - zeta**(-zeta_order * disc_bilinear(*(gamma + map(operator.neg,delta)))) for delta in pairs] for gamma in pairs ] ) STmat = Smat * Tmat ## This function overestimates the number of eigenvalues, if it is not correct def eigenvalue_multiplicity(mat, ev): mat = matrix(CC, mat - ev * identity_matrix(subspace_dimension)) return len( filter(lambda row: all(e.contains_zero() for e in row), _qr(mat).rows())) rti = CC(exp(2 * pi * I / 8)) S_ev_multiplicity = [ eigenvalue_multiplicity(Smat, rti**n) for n in range(8) ] ## Together with the fact that eigenvalue_multiplicity overestimates the multiplicities ## this asserts that the computed multiplicities are correct assert sum(S_ev_multiplicity) == subspace_dimension rho = CC(exp(2 * pi * I / 12)) ST_ev_multiplicity = [ eigenvalue_multiplicity(STmat, rho**n) for n in range(12) ] ## Together with the fact that eigenvalue_multiplicity overestimates the multiplicities ## this asserts that the computed multiplicities are correct assert sum(ST_ev_multiplicity) == subspace_dimension T_evs = [ ZZ((zeta_order * disc_quadratic(*a)) % zeta_order) / zeta_order for a in (singls + pairs if plus_basis else pairs) ] return subspace_dimension * (1 + QQ(k) / 12) \ - ZZ(sum( (ST_ev_multiplicity[n] * ((-2 * k - n) % 12)) for n in range(12) )) / 12 \ - ZZ(sum( (S_ev_multiplicity[n] * ((2 * k + n) % 8)) for n in range(8) )) / 8 \ - sum(T_evs)