Beispiel #1
0
    def defining_polynomials(self):
        """
        Return the pair of products of cyclotomic polynomials.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).defining_polynomials()
            (x^2 + 1, x^2 - 2*x + 1)
        """
        up = prod(cyclotomic_polynomial(d) for d in self._cyclo_up)
        down = prod(cyclotomic_polynomial(d) for d in self._cyclo_down)
        return (up, down)
    def defining_polynomials(self):
        """
        Return the pair of products of cyclotomic polynomials.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: Hyp(alpha_beta=([1/4,3/4],[0,0])).defining_polynomials()
            (x^2 + 1, x^2 - 2*x + 1)
        """
        up = prod(cyclotomic_polynomial(d) for d in self._cyclo_up)
        down = prod(cyclotomic_polynomial(d) for d in self._cyclo_down)
        return (up, down)
Beispiel #3
0
    def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None):
        """
        Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order
        ``q`` with noise distribution ``D``.

        INPUT:

        - ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2)
        - ``q`` - modulus typically > N (integer > 0)
        - ``D`` - an error distribution such as an instance of
          :class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler`
        - ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the
          cyclotomic polynomial used (default: ``None``).
        - ``secret_dist`` - distribution of the secret. See documentation of
          :class:`LWE` for details (default='uniform')
        - ``m`` - number of allowed samples or ``None`` if no such limit exists
          (default: ``None``)

        EXAMPLES::

            sage: from sage.crypto.lwe import RingLWE
            sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
            sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
            sage: RingLWE(N=20, q=next_prime(800), D=D)
            RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)
        """
        self.N = ZZ(N)
        self.n = euler_phi(N)
        self.m = m
        self.__i = 0
        self.K = IntegerModRing(q)

        if self.n != D.n:
            raise ValueError("Noise distribution has dimensions %d != %d" %
                             (D.n, self.n))

        self.D = D
        self.q = q
        if poly is not None:
            self.poly = poly
        else:
            self.poly = cyclotomic_polynomial(self.N, 'x')

        self.R_q = self.K['x'].quotient(self.poly, 'x')

        self.secret_dist = secret_dist
        if secret_dist == 'uniform':
            self.__s = self.R_q.random_element()  # uniform sampling of secret
        elif secret_dist == 'noise':
            self.__s = self.D()
        else:
            raise TypeError("Parameter secret_dist=%s not understood." %
                            (secret_dist))
Beispiel #4
0
    def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None):
        """
        Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order
        ``q`` with noise distribution ``D``.

        INPUT:

        - ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2)
        - ``q`` - modulus typically > N (integer > 0)
        - ``D`` - an error distribution such as an instance of
          :class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler`
        - ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the
          cyclotomic polynomial used (default: ``None``).
        - ``secret_dist`` - distribution of the secret. See documentation of
          :class:`LWE` for details (default='uniform')
        - ``m`` - number of allowed samples or ``None`` if no such limit exists
          (default: ``None``)

        EXAMPLES::

            sage: from sage.crypto.lwe import RingLWE
            sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
            sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
            sage: RingLWE(N=20, q=next_prime(800), D=D)
            RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)
        """
        self.N  = ZZ(N)
        self.n = euler_phi(N)
        self.m =  m
        self.__i = 0
        self.K  = IntegerModRing(q)

        if self.n != D.n:
            raise ValueError("Noise distribution has dimensions %d != %d"%(D.n, self.n))

        self.D = D
        self.q = q
        if poly is not None:
            self.poly = poly
        else:
            self.poly = cyclotomic_polynomial(self.N, 'x')

        self.R_q = self.K['x'].quotient(self.poly, 'x')

        self.secret_dist = secret_dist
        if secret_dist == 'uniform':
            self.__s = self.R_q.random_element()  # uniform sampling of secret
        elif secret_dist == 'noise':
            self.__s = self.D()
        else:
            raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist))
Beispiel #5
0
def gen_lattice(type='modular', n=4, m=8, q=11, seed=None,
                quotient=None, dual=False, ntl=False, lattice=False):
    """
    This function generates different types of integral lattice bases
    of row vectors relevant in cryptography.

    Randomness can be set either with ``seed``, or by using
    :func:`sage.misc.randstate.set_random_seed`.

    INPUT:

    - ``type`` -- one of the following strings
        - ``'modular'`` (default) -- A class of lattices for which
          asymptotic worst-case to average-case connections hold. For
          more refer to [A96]_.
        - ``'random'`` -- Special case of modular (n=1). A dense class
          of lattice used for testing basis reduction algorithms
          proposed by Goldstein and Mayer [GM02]_.
        - ``'ideal'`` -- Special case of modular. Allows for a more
          compact representation proposed by [LM06]_.
        - ``'cyclotomic'`` -- Special case of ideal. Allows for
          efficient processing proposed by [LM06]_.
    - ``n`` -- Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`.
      For ideal lattices this is also the degree of the quotient polynomial.
    - ``m`` -- Lattice dimension, `L \subseteq Z^m`.
    - ``q`` -- Coefficient size, `q-Z^m \subseteq L`.
    - ``seed`` -- Randomness seed.
    - ``quotient`` -- For the type ideal, this determines the quotient
      polynomial. Ignored for all other types.
    - ``dual`` -- Set this flag if you want a basis for `q-dual(L)`, for example
      for Regev's LWE bases [R05]_.
    - ``ntl`` -- Set this flag if you want the lattice basis in NTL readable
      format.
    - ``lattice`` -- Set this flag if you want a
      :class:`FreeModule_submodule_with_basis_integer` object instead
      of an integer matrix representing the basis.

    OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left,
      dual: lower_right) basis of row vectors for the lattice in question.

    EXAMPLES:

    Modular basis::

        sage: sage.crypto.gen_lattice(m=10, seed=42)
        [11  0  0  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0  0  0]
        [ 2  4  3  5  1  0  0  0  0  0]
        [ 1 -5 -4  2  0  1  0  0  0  0]
        [-4  3 -1  1  0  0  1  0  0  0]
        [-2 -3 -4 -1  0  0  0  1  0  0]
        [-5 -5  3  3  0  0  0  0  1  0]
        [-4 -3  2 -5  0  0  0  0  0  1]

    Random basis::

        sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42)
        [14641     0     0     0     0     0     0     0     0     0]
        [  431     1     0     0     0     0     0     0     0     0]
        [-4792     0     1     0     0     0     0     0     0     0]
        [ 1015     0     0     1     0     0     0     0     0     0]
        [-3086     0     0     0     1     0     0     0     0     0]
        [-5378     0     0     0     0     1     0     0     0     0]
        [ 4769     0     0     0     0     0     1     0     0     0]
        [-1159     0     0     0     0     0     0     1     0     0]
        [ 3082     0     0     0     0     0     0     0     1     0]
        [-4580     0     0     0     0     0     0     0     0     1]

    Ideal bases with quotient x^n-1, m=2*n are NTRU bases::

        sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4 -2 -3 -3  1  0  0  0]
        [-3  4 -2 -3  0  1  0  0]
        [-3 -3  4 -2  0  0  1  0]
        [-2 -3 -3  4  0  0  0  1]

    Ideal bases also work with polynomials::

        sage: R.<t> = PolynomialRing(ZZ)
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=t^4-1)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4  1  4 -3  1  0  0  0]
        [-3  4  1  4  0  1  0  0]
        [ 4 -3  4  1  0  0  1  0]
        [ 1  4 -3  4  0  0  0  1]

    Cyclotomic bases with n=2^k are SWIFFT bases::

        sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4 -2 -3 -3  1  0  0  0]
        [ 3  4 -2 -3  0  1  0  0]
        [ 3  3  4 -2  0  0  1  0]
        [ 2  3  3  4  0  0  0  1]

    Dual modular bases are related to Regev's famous public-key
    encryption [R05]_::

        sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True)
        [ 0  0  0  0  0  0  0  0  0 11]
        [ 0  0  0  0  0  0  0  0 11  0]
        [ 0  0  0  0  0  0  0 11  0  0]
        [ 0  0  0  0  0  0 11  0  0  0]
        [ 0  0  0  0  0 11  0  0  0  0]
        [ 0  0  0  0 11  0  0  0  0  0]
        [ 0  0  0  1 -5 -2 -1  1 -3  5]
        [ 0  0  1  0 -3  4  1  4 -3 -2]
        [ 0  1  0  0 -4  5 -3  3  5  3]
        [ 1  0  0  0 -2 -1  4  2  5  4]

    Relation of primal and dual bases::

        sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42)
        sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True)
        sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ)
        sage: B_dual_alt.hermite_form() == B_dual.hermite_form()
        True

    TESTS:

    Test some bad quotient polynomials::

        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=cos(x))
        Traceback (most recent call last):
        ...
        TypeError: unable to convert cos(x) to an integer
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=x^23-1)
        Traceback (most recent call last):
        ...
        ValueError: ideal basis requires n = quotient.degree()
        sage: R.<u,v> = ZZ[]
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=u+v)
        Traceback (most recent call last):
        ...
        TypeError: quotient should be a univariate polynomial

    We are testing output format choices::

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42)
        [11  0  0  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0  0  0]
        [ 2  4  3  5  1  0  0  0  0  0]
        [ 1 -5 -4  2  0  1  0  0  0  0]
        [-4  3 -1  1  0  0  1  0  0  0]
        [-2 -3 -4 -1  0  0  0  1  0  0]
        [-5 -5  3  3  0  0  0  0  1  0]
        [-4 -3  2 -5  0  0  0  0  0  1]

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, ntl=True)
        [
        [11 0 0 0 0 0 0 0 0 0]
        [0 11 0 0 0 0 0 0 0 0]
        [0 0 11 0 0 0 0 0 0 0]
        [0 0 0 11 0 0 0 0 0 0]
        [2 4 3 5 1 0 0 0 0 0]
        [1 -5 -4 2 0 1 0 0 0 0]
        [-4 3 -1 1 0 0 1 0 0 0]
        [-2 -3 -4 -1 0 0 0 1 0 0]
        [-5 -5 3 3 0 0 0 0 1 0]
        [-4 -3 2 -5 0 0 0 0 0 1]
        ]

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, lattice=True)
        Free module of degree 10 and rank 10 over Integer Ring
        User basis matrix:
        [ 0  0  1  1  0 -1 -1 -1  1  0]
        [-1  1  0  1  0  1  1  0  1  1]
        [-1  0  0  0 -1  1  1 -2  0  0]
        [-1 -1  0  1  1  0  0  1  1 -1]
        [ 1  0 -1  0  0  0 -2 -2  0  0]
        [ 2 -1  0  0  1  0  1  0  0 -1]
        [-1  1 -1  0  1 -1  1  0 -1 -2]
        [ 0  0 -1  3  0  0  0 -1 -1 -1]
        [ 0 -1  0 -1  2  0 -1  0  0  2]
        [ 0  1  1  0  1  1 -2  1 -1 -2]

    REFERENCES:

    .. [A96] Miklos Ajtai.
      Generating hard instances of lattice problems (extended abstract).
      STOC, pp. 99--108, ACM, 1996.

    .. [GM02] Daniel Goldstein and Andrew Mayer.
      On the equidistribution of Hecke points.
      Forum Mathematicum, 15:2, pp. 165--189, De Gruyter, 2003.

    .. [LM06] Vadim Lyubashevsky and Daniele Micciancio.
      Generalized compact knapsacks are collision resistant.
      ICALP, pp. 144--155, Springer, 2006.

    .. [R05] Oded Regev.
      On lattices, learning with errors, random linear codes, and cryptography.
      STOC, pp. 84--93, ACM, 2005.
    """
    from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
    from sage.matrix.constructor import identity_matrix, block_matrix
    from sage.matrix.matrix_space import MatrixSpace
    from sage.rings.integer_ring import IntegerRing
    if seed is not None:
        from sage.misc.randstate import set_random_seed
        set_random_seed(seed)

    if type == 'random':
        if n != 1: raise ValueError('random bases require n = 1')

    ZZ = IntegerRing()
    ZZ_q = IntegerModRing(q)
    A = identity_matrix(ZZ_q, n)

    if type == 'random' or type == 'modular':
        R = MatrixSpace(ZZ_q, m-n, n)
        A = A.stack(R.random_element())

    elif type == 'ideal':
        if quotient is None:
            raise ValueError('ideal bases require a quotient polynomial')
        try:
            quotient = quotient.change_ring(ZZ_q)
        except (AttributeError, TypeError):
            quotient = quotient.polynomial(base_ring=ZZ_q)

        P = quotient.parent()
        # P should be a univariate polynomial ring over ZZ_q
        if not is_PolynomialRing(P):
            raise TypeError("quotient should be a univariate polynomial")
        assert P.base_ring() is ZZ_q

        if quotient.degree() != n:
            raise ValueError('ideal basis requires n = quotient.degree()')
        R = P.quotient(quotient)
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    elif type == 'cyclotomic':
        from sage.arith.all import euler_phi
        from sage.misc.functional import cyclotomic_polynomial

        # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
        found = False
        for k in range(2*n,n,-1):
            if euler_phi(k) == n:
                found = True
                break
        if not found:
            raise ValueError("cyclotomic bases require that n "
                       "is an image of Euler's totient function")

        R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x')
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
    def minrep(a):
        if abs(a-q) < abs(a): return a-q
        else: return a
    A_prime = A[n:m].lift().apply_map(minrep)

    if not dual:
        B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ],
                         subdivide=False)
    else:
        B = block_matrix([[ZZ.one(), -A_prime.transpose()],
            [ZZ.zero(), ZZ(q)]], subdivide=False)
        for i in range(m//2):
            B.swap_rows(i,m-i-1)

    if ntl and lattice:
        raise ValueError("Cannot specify ntl=True and lattice=True "
                         "at the same time")

    if ntl:
        return B._ntl_()
    elif lattice:
        from sage.modules.free_module_integer import IntegerLattice
        return IntegerLattice(B)
    else:
        return B
Beispiel #6
0
def gen_lattice(type='modular', n=4, m=8, q=11, seed=None,
                quotient=None, dual=False, ntl=False, lattice=False):
    r"""
    This function generates different types of integral lattice bases
    of row vectors relevant in cryptography.

    Randomness can be set either with ``seed``, or by using
    :func:`sage.misc.randstate.set_random_seed`.

    INPUT:

    - ``type`` -- one of the following strings
        - ``'modular'`` (default) -- A class of lattices for which
          asymptotic worst-case to average-case connections hold. For
          more refer to [Aj1996]_.
        - ``'random'`` -- Special case of modular (n=1). A dense class
          of lattice used for testing basis reduction algorithms
          proposed by Goldstein and Mayer [GM2002]_.
        - ``'ideal'`` -- Special case of modular. Allows for a more
          compact representation proposed by [LM2006]_.
        - ``'cyclotomic'`` -- Special case of ideal. Allows for
          efficient processing proposed by [LM2006]_.
    - ``n`` -- Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`.
      For ideal lattices this is also the degree of the quotient polynomial.
    - ``m`` -- Lattice dimension, `L \subseteq Z^m`.
    - ``q`` -- Coefficient size, `q-Z^m \subseteq L`.
    - ``seed`` -- Randomness seed.
    - ``quotient`` -- For the type ideal, this determines the quotient
      polynomial. Ignored for all other types.
    - ``dual`` -- Set this flag if you want a basis for `q-dual(L)`, for example
      for Regev's LWE bases [Reg2005]_.
    - ``ntl`` -- Set this flag if you want the lattice basis in NTL readable
      format.
    - ``lattice`` -- Set this flag if you want a
      :class:`FreeModule_submodule_with_basis_integer` object instead
      of an integer matrix representing the basis.

    OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left,
      dual: lower_right) basis of row vectors for the lattice in question.

    EXAMPLES:

    Modular basis::

        sage: sage.crypto.gen_lattice(m=10, seed=42)
        [11  0  0  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0  0  0]
        [ 2  4  3  5  1  0  0  0  0  0]
        [ 1 -5 -4  2  0  1  0  0  0  0]
        [-4  3 -1  1  0  0  1  0  0  0]
        [-2 -3 -4 -1  0  0  0  1  0  0]
        [-5 -5  3  3  0  0  0  0  1  0]
        [-4 -3  2 -5  0  0  0  0  0  1]

    Random basis::

        sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42)
        [14641     0     0     0     0     0     0     0     0     0]
        [  431     1     0     0     0     0     0     0     0     0]
        [-4792     0     1     0     0     0     0     0     0     0]
        [ 1015     0     0     1     0     0     0     0     0     0]
        [-3086     0     0     0     1     0     0     0     0     0]
        [-5378     0     0     0     0     1     0     0     0     0]
        [ 4769     0     0     0     0     0     1     0     0     0]
        [-1159     0     0     0     0     0     0     1     0     0]
        [ 3082     0     0     0     0     0     0     0     1     0]
        [-4580     0     0     0     0     0     0     0     0     1]

    Ideal bases with quotient x^n-1, m=2*n are NTRU bases::

        sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [-2 -3 -3  4  1  0  0  0]
        [ 4 -2 -3 -3  0  1  0  0]
        [-3  4 -2 -3  0  0  1  0]
        [-3 -3  4 -2  0  0  0  1]

    Ideal bases also work with polynomials::

        sage: R.<t> = PolynomialRing(ZZ)
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=t^4-1)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 1  4 -3  3  1  0  0  0]
        [ 3  1  4 -3  0  1  0  0]
        [-3  3  1  4  0  0  1  0]
        [ 4 -3  3  1  0  0  0  1]

    Cyclotomic bases with n=2^k are SWIFFT bases::

        sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [-2 -3 -3  4  1  0  0  0]
        [-4 -2 -3 -3  0  1  0  0]
        [ 3 -4 -2 -3  0  0  1  0]
        [ 3  3 -4 -2  0  0  0  1]

    Dual modular bases are related to Regev's famous public-key
    encryption [Reg2005]_::

        sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True)
        [ 0  0  0  0  0  0  0  0  0 11]
        [ 0  0  0  0  0  0  0  0 11  0]
        [ 0  0  0  0  0  0  0 11  0  0]
        [ 0  0  0  0  0  0 11  0  0  0]
        [ 0  0  0  0  0 11  0  0  0  0]
        [ 0  0  0  0 11  0  0  0  0  0]
        [ 0  0  0  1 -5 -2 -1  1 -3  5]
        [ 0  0  1  0 -3  4  1  4 -3 -2]
        [ 0  1  0  0 -4  5 -3  3  5  3]
        [ 1  0  0  0 -2 -1  4  2  5  4]

    Relation of primal and dual bases::

        sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42)
        sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True)
        sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ)
        sage: B_dual_alt.hermite_form() == B_dual.hermite_form()
        True

    TESTS:

    Test some bad quotient polynomials::

        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=cos(x))
        Traceback (most recent call last):
        ...
        TypeError: unable to convert cos(x) to an integer
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=x^23-1)
        Traceback (most recent call last):
        ...
        ValueError: ideal basis requires n = quotient.degree()
        sage: R.<u,v> = ZZ[]
        sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=u+v)
        Traceback (most recent call last):
        ...
        TypeError: quotient should be a univariate polynomial

    We are testing output format choices::

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42)
        [11  0  0  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0  0  0]
        [ 2  4  3  5  1  0  0  0  0  0]
        [ 1 -5 -4  2  0  1  0  0  0  0]
        [-4  3 -1  1  0  0  1  0  0  0]
        [-2 -3 -4 -1  0  0  0  1  0  0]
        [-5 -5  3  3  0  0  0  0  1  0]
        [-4 -3  2 -5  0  0  0  0  0  1]

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, ntl=True)
        [
        [11 0 0 0 0 0 0 0 0 0]
        [0 11 0 0 0 0 0 0 0 0]
        [0 0 11 0 0 0 0 0 0 0]
        [0 0 0 11 0 0 0 0 0 0]
        [2 4 3 5 1 0 0 0 0 0]
        [1 -5 -4 2 0 1 0 0 0 0]
        [-4 3 -1 1 0 0 1 0 0 0]
        [-2 -3 -4 -1 0 0 0 1 0 0]
        [-5 -5 3 3 0 0 0 0 1 0]
        [-4 -3 2 -5 0 0 0 0 0 1]
        ]

        sage: sage.crypto.gen_lattice(m=10, q=11, seed=42, lattice=True)
        Free module of degree 10 and rank 10 over Integer Ring
        User basis matrix:
        [ 0  0  1  1  0 -1 -1 -1  1  0]
        [-1  1  0  1  0  1  1  0  1  1]
        [-1  0  0  0 -1  1  1 -2  0  0]
        [-1 -1  0  1  1  0  0  1  1 -1]
        [ 1  0 -1  0  0  0 -2 -2  0  0]
        [ 2 -1  0  0  1  0  1  0  0 -1]
        [-1  1 -1  0  1 -1  1  0 -1 -2]
        [ 0  0 -1  3  0  0  0 -1 -1 -1]
        [ 0 -1  0 -1  2  0 -1  0  0  2]
        [ 0  1  1  0  1  1 -2  1 -1 -2]
    """
    from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
    from sage.matrix.constructor import identity_matrix, block_matrix
    from sage.matrix.matrix_space import MatrixSpace
    from sage.rings.integer_ring import IntegerRing
    if seed is not None:
        from sage.misc.randstate import set_random_seed
        set_random_seed(seed)

    if type == 'random':
        if n != 1: raise ValueError('random bases require n = 1')

    ZZ = IntegerRing()
    ZZ_q = IntegerModRing(q)
    A = identity_matrix(ZZ_q, n)

    if type == 'random' or type == 'modular':
        R = MatrixSpace(ZZ_q, m-n, n)
        A = A.stack(R.random_element())

    elif type == 'ideal':
        if quotient is None:
            raise ValueError('ideal bases require a quotient polynomial')
        try:
            quotient = quotient.change_ring(ZZ_q)
        except (AttributeError, TypeError):
            quotient = quotient.polynomial(base_ring=ZZ_q)

        P = quotient.parent()
        # P should be a univariate polynomial ring over ZZ_q
        if not is_PolynomialRing(P):
            raise TypeError("quotient should be a univariate polynomial")
        assert P.base_ring() is ZZ_q

        if quotient.degree() != n:
            raise ValueError('ideal basis requires n = quotient.degree()')
        R = P.quotient(quotient)
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    elif type == 'cyclotomic':
        from sage.arith.all import euler_phi
        from sage.misc.functional import cyclotomic_polynomial

        # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
        found = False
        for k in range(2*n,n,-1):
            if euler_phi(k) == n:
                found = True
                break
        if not found:
            raise ValueError("cyclotomic bases require that n "
                       "is an image of Euler's totient function")

        R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x')
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
    def minrep(a):
        if abs(a-q) < abs(a): return a-q
        else: return a
    A_prime = A[n:m].lift().apply_map(minrep)

    if not dual:
        B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ],
                         subdivide=False)
    else:
        B = block_matrix([[ZZ.one(), -A_prime.transpose()],
            [ZZ.zero(), ZZ(q)]], subdivide=False)
        for i in range(m//2):
            B.swap_rows(i,m-i-1)

    if ntl and lattice:
        raise ValueError("Cannot specify ntl=True and lattice=True "
                         "at the same time")

    if ntl:
        return B._ntl_()
    elif lattice:
        from sage.modules.free_module_integer import IntegerLattice
        return IntegerLattice(B)
    else:
        return B
    def molien_series(self, chi=None, return_series=True, prec=20, variable='t'):
        r"""
        Compute the Molien series of this finite group with respect to the
        character ``chi``. It can be returned either as a rational function
        in one variable or a power series in one variable. The base field
        must be a finite field, the rationals, or a cyclotomic field.

        Note that the base field characteristic cannot divide the group
        order (i.e., the non-modular case).

        ALGORITHM:

        For a finite group `G` in characteristic zero we construct the Molien series as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\text{det}(I-tg)},

        where `I` is the identity matrix and `t` an indeterminate.

        For characteristic `p` not dividing the order of `G`, let `k` be the base field
        and `N` the order of `G`. Define `\lambda` as a primitive `N`-th root of unity over `k`
        and `\omega` as a primitive `N`-th root of unity over `\QQ`. For each `g \in G`
        define `k_i(g)` to be the positive integer such that
        `e_i = \lambda^{k_i(g)}` for each eigenvalue `e_i` of `g`. Then the Molien series
        is computed as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\prod_{i=1}^n(1 - t\omega^{k_i(g)})},

        where `t` is an indeterminant. [Dec1998]_

        INPUT:

        - ``chi`` -- (default: trivial character) a linear group character of this group

        - ``return_series`` -- boolean (default: ``True``) if ``True``, then returns
          the Molien series as a power series, ``False`` as a rational function

        - ``prec`` -- integer (default: 20); power series default precision

        - ``variable`` -- string (default: ``'t'``); Variable name for the Molien series

        OUTPUT: single variable rational function or power series with integer coefficients

        EXAMPLES::

            sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: only implemented for finite groups
            sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: characteristic cannot divide group order

        Tetrahedral Group::

            sage: K.<i> = CyclotomicField(4)
            sage: Tetra =  MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
            sage: Tetra.molien_series(prec=30)
            1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
            sage: mol = Tetra.molien_series(return_series=False); mol
            (t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
            sage: mol.parent()
            Fraction Field of Univariate Polynomial Ring in t over Integer Ring
            sage: chi = Tetra.character(Tetra.character_table()[1])
            sage: Tetra.molien_series(chi, prec=30, variable='u')
            u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
            sage: chi = Tetra.character(Tetra.character_table()[2])
            sage: Tetra.molien_series(chi)
            t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)

        ::

            sage: S3 = MatrixGroup(SymmetricGroup(3))
            sage: mol = S3.molien_series(prec=10); mol
            1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^10)
            sage: mol.parent()
            Power Series Ring in t over Integer Ring

        Octahedral Group::

            sage: K.<v> = CyclotomicField(8)
            sage: a = v-v^3 #sqrt(2)
            sage: i = v^2
            sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,(1-i)/a])
            sage: Octa.molien_series(prec=30)
            1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)

        Icosahedral Group::

            sage: K.<v> = CyclotomicField(10)
            sage: z5 = v^2
            sage: i = z5^5
            sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
            sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]])
            sage: Ico.molien_series(prec=40)
            1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)

        ::

            sage: G = MatrixGroup(CyclicPermutationGroup(3))
            sage: chi = G.character(G.character_table()[1])
            sage: G.molien_series(chi, prec=10)
            t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10 + O(t^11)

        ::

            sage: K = GF(5)
            sage: S = MatrixGroup(SymmetricGroup(4))
            sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m in S.gens()])
            sage: G.molien_series(return_series=False)
            1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)

        ::

            sage: i = GF(7)(3)
            sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
            sage: chi = G.character(G.character_table()[4])
            sage: G.molien_series(chi)
            3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
        """
        if not self.is_finite():
            raise NotImplementedError("only implemented for finite groups")
        if chi is None:
            chi = self.trivial_character()
        M = self.matrix_space()
        R = FractionField(self.base_ring())
        N = self.order()
        if R.characteristic() == 0:
            P = PolynomialRing(R, variable)
            t = P.gen()
            #it is possible the character is over a larger cyclotomic field
            K = chi.values()[0].parent()
            if K.degree() != 1:
                if R.degree() != 1:
                    L = K.composite_fields(R)[0]
                else:
                    L = K
            else:
                L = R
            mol = P(0)
            for g in self:
                mol += L(chi(g)) / (M.identity_matrix()-t*g.matrix()).det().change_ring(L)
        elif R.characteristic().divides(N):
            raise NotImplementedError("characteristic cannot divide group order")
        else: #char p>0
            #find primitive Nth roots of unity over base ring and QQ
            F = cyclotomic_polynomial(N).change_ring(R)
            w = F.roots(ring=R.algebraic_closure(), multiplicities=False)[0]
            #don't need to extend further in this case since the order of
            #the roots of unity in the character divide the order of the group
            L = CyclotomicField(N, 'v')
            v = L.gen()
            #construct Molien series
            P = PolynomialRing(L, variable)
            t = P.gen()
            mol = P(0)
            for g in self:
                #construct Phi
                phi = L(chi(g))
                for e in g.matrix().eigenvalues():
                    #find power such that w**n  = e
                    n = 1
                    while w**n != e and n < N+1:
                        n += 1
                    #raise v to that power
                    phi *= (1-t*v**n)
                mol += P(1)/phi
        #We know the coefficients will be integers
        mol = mol.numerator().change_ring(ZZ) / mol.denominator().change_ring(ZZ)
        #divide by group order
        mol /= N
        if return_series:
            PS = PowerSeriesRing(ZZ, variable, default_prec=prec)
            return PS(mol)
        return mol
Beispiel #8
0
def gen_lattice(type='modular', n=4, m=8, q=11, seed=None, \
                quotient=None, dual=False, ntl=False):
    """
    This function generates different types of integral lattice bases
    of row vectors relevant in cryptography.

    Randomness can be set either with ``seed``, or by using
    :func:`sage.misc.randstate.set_random_seed`.

    INPUT:

    * ``type`` - one of the following strings
        * ``'modular'`` (default). A class of lattices for which
          asymptotic worst-case to average-case connections hold. For
          more refer to [A96]_.
        * ``'random'`` - Special case of modular (n=1). A dense class
          of lattice used for testing basis reduction algorithms
          proposed by Goldstein and Mayer [GM02]_.
        * ``'ideal'`` - Special case of modular. Allows for a more
          compact representation proposed by [LM06]_.
        * ``'cyclotomic'`` - Special case of ideal. Allows for
          efficient processing proposed by [LM06]_.
    * ``n`` - Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`.
      For ideal lattices this is also the degree of the quotient polynomial.
    * ``m`` - Lattice dimension, `L \subseteq Z^m`.
    * ``q`` - Coefficent size, `q*Z^m \subseteq L`.
    * ``seed`` - Randomness seed.
    * ``quotient`` - For the type ideal, this determines the quotient
      polynomial. Ignored for all other types.
    * ``dual`` - Set this flag if you want a basis for `q*dual(L)`, for example
      for Regev's LWE bases [R05]_.
    * ``ntl`` - Set this flag if you want the lattice basis in NTL readable
      format.

    OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left, 
      dual: lower_right) basis of row vectors for the lattice in question.

    EXAMPLES:

    * Modular basis ::

        sage: sage.crypto.gen_lattice(m=10, seed=42)
        [11  0  0  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0  0  0]
        [ 2  4  3  5  1  0  0  0  0  0]
        [ 1 -5 -4  2  0  1  0  0  0  0]
        [-4  3 -1  1  0  0  1  0  0  0]
        [-2 -3 -4 -1  0  0  0  1  0  0]
        [-5 -5  3  3  0  0  0  0  1  0]
        [-4 -3  2 -5  0  0  0  0  0  1]

    * Random basis ::

        sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42)
        [14641     0     0     0     0     0     0     0     0     0]
        [  431     1     0     0     0     0     0     0     0     0]
        [-4792     0     1     0     0     0     0     0     0     0]
        [ 1015     0     0     1     0     0     0     0     0     0]
        [-3086     0     0     0     1     0     0     0     0     0]
        [-5378     0     0     0     0     1     0     0     0     0]
        [ 4769     0     0     0     0     0     1     0     0     0]
        [-1159     0     0     0     0     0     0     1     0     0]
        [ 3082     0     0     0     0     0     0     0     1     0]
        [-4580     0     0     0     0     0     0     0     0     1]

    * Ideal bases with quotient x^n-1, m=2*n are NTRU bases ::

        sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4 -2 -3 -3  1  0  0  0]
        [-3  4 -2 -3  0  1  0  0]
        [-3 -3  4 -2  0  0  1  0]
        [-2 -3 -3  4  0  0  0  1]

    * Cyclotomic bases with n=2^k are SWIFFT bases ::

        sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4 -2 -3 -3  1  0  0  0]
        [ 3  4 -2 -3  0  1  0  0]
        [ 3  3  4 -2  0  0  1  0]
        [ 2  3  3  4  0  0  0  1]

    * Dual modular bases are related to Regev's famous public-key
      encryption [R05]_ ::

        sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True)
        [ 0  0  0  0  0  0  0  0  0 11]
        [ 0  0  0  0  0  0  0  0 11  0]
        [ 0  0  0  0  0  0  0 11  0  0]
        [ 0  0  0  0  0  0 11  0  0  0]
        [ 0  0  0  0  0 11  0  0  0  0]
        [ 0  0  0  0 11  0  0  0  0  0]
        [ 0  0  0  1 -5 -2 -1  1 -3  5]
        [ 0  0  1  0 -3  4  1  4 -3 -2]
        [ 0  1  0  0 -4  5 -3  3  5  3]
        [ 1  0  0  0 -2 -1  4  2  5  4]

    * Relation of primal and dual bases ::

        sage: B_primal=sage.crypto.gen_lattice(m=10, q=11, seed=42)
        sage: B_dual=sage.crypto.gen_lattice(m=10, q=11, seed=42, dual=True)
        sage: B_dual_alt=transpose(11*B_primal.inverse()).change_ring(ZZ)
        sage: B_dual_alt.hermite_form() == B_dual.hermite_form()
        True

    REFERENCES:

.. [A96] Miklos Ajtai.
   Generating hard instances of lattice problems (extended abstract).
   STOC, pp. 99--108, ACM, 1996.

.. [GM02] Daniel Goldstein and Andrew Mayer.
   On the equidistribution of Hecke points.
   Forum Mathematicum, 15:2, pp. 165--189, De Gruyter, 2003.

.. [LM06] Vadim Lyubashevsky and Daniele Micciancio.
   Generalized compact knapsacks are collision resistant.
   ICALP, pp. 144--155, Springer, 2006.

.. [R05] Oded Regev.
   On lattices, learning with errors, random linear codes, and cryptography.
   STOC, pp. 84--93, ACM, 2005.
    """
    from sage.rings.finite_rings.integer_mod_ring \
        import IntegerModRing
    from sage.matrix.constructor import matrix, \
        identity_matrix, block_matrix
    from sage.matrix.matrix_space import MatrixSpace
    from sage.rings.integer_ring import IntegerRing
    if seed != None:
        from sage.misc.randstate import set_random_seed
        set_random_seed(seed)

    if type == 'random':
        if n != 1: raise ValueError('random bases require n = 1')

    ZZ = IntegerRing()
    ZZ_q = IntegerModRing(q)
    A = identity_matrix(ZZ_q, n)

    if type == 'random' or type == 'modular':
        R = MatrixSpace(ZZ_q, m-n, n)
        A = A.stack(R.random_element())

    elif type == 'ideal':
        if quotient == None: raise \
            ValueError('ideal bases require a quotient polynomial')
        x = quotient.default_variable()
        if n != quotient.degree(x): raise \
            ValueError('ideal bases require n  = quotient.degree()')
        R = ZZ_q[x].quotient(quotient, x)
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    elif type == 'cyclotomic':
        from sage.rings.arith import euler_phi
        from sage.misc.functional import cyclotomic_polynomial

        # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
        found = False
        for k in range(2*n,n,-1):
            if euler_phi(k) == n:
                found = True
                break
        if not found: raise \
            ValueError('cyclotomic bases require that n is an image of' + \
                       'Euler\'s totient function')

        R = ZZ_q['x'].quotient(cyclotomic_polynomial(k, 'x'), 'x')
        for i in range(m//n):
            A = A.stack(R.random_element().matrix())

    # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
    def minrep(a):
        if abs(a-q) < abs(a): return a-q
        else: return a
    A_prime = A[n:m].lift().apply_map(minrep)

    if not dual:
        B = block_matrix([[ZZ(q), ZZ.zero()], [A_prime, ZZ.one()] ], \
                         subdivide=False)
    else:
        B = block_matrix([[ZZ.one(), -A_prime.transpose()], [ZZ.zero(), \
                         ZZ(q)]], subdivide=False)
        for i in range(m//2): B.swap_rows(i,m-i-1)

    if not ntl:
        return B
    else:
        return B._ntl_()
Beispiel #9
0
    def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
        r"""
        Creation of hypergeometric motives.

        INPUT:

        three possibilities are offered, each describing a quotient
        of products of cyclotomic polynomials.

        - ``cyclotomic`` -- a pair of lists of nonnegative integers,
          each integer `k` represents a cyclotomic polynomial `\Phi_k`

        - ``alpha_beta`` -- a pair of lists of rationals,
          each rational represents a root of unity

        - ``gamma_list`` -- a pair of lists of nonnegative integers,
          each integer `n` represents a polynomial `x^n - 1`

        In the last case, it is also allowed to send just one list of signed
        integers where signs indicate to which part the integer belongs to.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: Hyp(cyclotomic=([2],[1]))
            Hypergeometric data for [1/2] and [0]

            sage: Hyp(alpha_beta=([1/2],[0]))
            Hypergeometric data for [1/2] and [0]
            sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5],[0,0,0,0]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]

            sage: Hyp(gamma_list=([5],[1,1,1,1,1]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
            sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
        """
        if gamma_list is not None:
            if isinstance(gamma_list[0], (list, tuple)):
                pos, neg = gamma_list
                gamma_list = pos + [-u for u in neg]
            cyclotomic = gamma_list_to_cyclotomic(gamma_list)
        if cyclotomic is not None:
            cyclo_up, cyclo_down = cyclotomic
            if any(x in cyclo_up for x in cyclo_down):
                raise ValueError('overlapping parameters not allowed')
            deg = sum(euler_phi(x) for x in cyclo_down)
            up_deg = sum(euler_phi(x) for x in cyclo_up)
            if up_deg != deg:
                msg = 'not the same degree: {} != {}'.format(up_deg, deg)
                raise ValueError(msg)
            cyclo_up.sort()
            cyclo_down.sort()
            alpha = cyclotomic_to_alpha(cyclo_up)
            beta = cyclotomic_to_alpha(cyclo_down)
        elif alpha_beta is not None:
            alpha, beta = alpha_beta
            if len(alpha) != len(beta):
                raise ValueError('alpha and beta not of the same length')
            alpha = sorted(u - floor(u) for u in alpha)
            beta = sorted(u - floor(u) for u in beta)
            cyclo_up = alpha_to_cyclotomic(alpha)
            cyclo_down = alpha_to_cyclotomic(beta)
            deg = sum(euler_phi(x) for x in cyclo_down)

        self._cyclo_up = tuple(cyclo_up)
        self._cyclo_down = tuple(cyclo_down)
        self._alpha = tuple(alpha)
        self._beta = tuple(beta)
        self._deg = deg
        self._gamma_array = cyclotomic_to_gamma(cyclo_up, cyclo_down)
        self._trace_coeffs = {}
        up = QQ.prod(capital_M(d) for d in cyclo_up)
        down = QQ.prod(capital_M(d) for d in cyclo_down)
        self._M_value = up / down
        if 0 in alpha:
            self._swap = HypergeometricData(alpha_beta=(beta, alpha))
        if self.weight() % 2:
            self._sign_param = 1
        else:
            if (deg % 2) != (0 in alpha):
                self._sign_param = prod(cyclotomic_polynomial(v).disc()
                                        for v in cyclo_down)
            else:
                self._sign_param = prod(cyclotomic_polynomial(v).disc()
                                        for v in cyclo_up)
Beispiel #10
0
def _exceptionals(E, L, patience=1000):
    r"""
    Determine which primes in L are exceptional for E, using Proposition 19
    of Section 2.8 of Serre's ``Proprietes Galoisiennes des Points d'Ordre
    Fini des Courbes Elliptiques'' [Serre72].

    INPUT:

    - ``E`` - EllipticCurve - over a number field.

    - ``L`` - list - a list of prime numbers.

    - ``patience`` - int (a bound on the number of traces of Frobenius to
                          use while trying to prove surjectivity).

    OUTPUT: list - The list of all primes l in L for which the mod l image
                   might fail to be surjective.

    EXAMPLES::

        sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
        sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
        sage: sage.schemes.elliptic_curves.gal_reps_number_field._exceptionals(E, [29, 31])
        [29]
    """

    E = _over_numberfield(E)
    K = E.base_field()

    output = []

    L = list(set(L)) # Remove duplicates from L.

    for l in L:
        if l == 2: # c.f. Section 5.3(a) of [Serre72].
            if (E.j_invariant() - 1728).is_square():
                output.append(2)
            elif not E.division_polynomial(2).is_irreducible():
                output.append(2)

        elif l == 3: # c.f. Section 5.3(b) of [Serre72].
            if K(-3).is_square():
                output.append(3)
            elif not (K['x'].gen()**3 - E.j_invariant()).is_irreducible():
                output.append(3)
            elif not E.division_polynomial(3).is_irreducible():
                output.append(3)

        elif (K.discriminant() % l) == 0:
            if not K['x'](cyclotomic_polynomial(l)).is_irreducible():
                # I.E. if the action on lth roots of unity is not surjective
                # (We want this since as a Galois module, \wedge^2 E[l]
                # is isomorphic to the lth roots of unity.)
                output.append(l)

    for l in output:
        L.remove(l)
    if 2 in L:
        L.remove(2)
    if 3 in L:
        L.remove(3)

    # If the image is not surjective, then it is contained in one of the
    # maximal subgroups. So, we start by creating a dictionary between primes
    # l in L and possible maximal subgroups in which the mod l image could
    # be contained. This information is stored as a triple whose elements
    # are True/False according to whether the mod l image could be contained
    # in:
    #      0. A Borel or normalizer of split Cartan subgroup.
    #      1. A nonsplit Cartan subgroup or its normalizer.
    #      2. An exceptional subgroup of GL_2.

    D = {}
    for l in L:
        D[l] = [True, True, True]

    for P in K.primes_of_degree_one_iter():
        try:
            trace = E.change_ring(P.residue_field()).trace_of_frobenius()
        except ArithmeticError: # Bad reduction at P.
            continue

        patience -= 1

        determinant = P.norm()
        discriminant = trace**2 - 4 * determinant

        unexc = [] # Primes we discover are unexceptional go here.

        for l in D.iterkeys():
            tr = GF(l)(trace)
            det = GF(l)(determinant)
            disc = GF(l)(discriminant)

            if tr == 0:
                # I.E. if Frob_P could be contained in the normalizer of
                # a Cartan subgroup, but not in the Cartan subgroup.
                continue

            if disc == 0:
                # I.E. If the matrix might be non-diagonalizable over F_{p^2}.
                continue

            if legendre_symbol(disc, l) == 1:
                # If the matrix is diagonalizable over F_p, it can't be
                # contained in a non-split Cartan subgroup. Since we've
                # gotten rid of the case where it is contained in the
                # of a nonsplit Cartan subgroup but not the Cartan subgroup,
                D[l][1] = False
            else:
                # If the matrix is not diagonalizable over F_p, it can't
                # be contained Borel subgroup.
                D[l][0] = False

            if det != 0: # c.f. [Serre72], Section 2.8, Prop. 19
                u = trace**2 / det
                if u not in (1, 2, 4) and u**2 - 3 * u + 1 != 0:
                    D[l][2] = False


            if D[l] == [False, False, False]:
                unexc.append(l)

        for l in unexc:
            D.pop(l)
        unexc = []

        if (D == {}) or (patience == 0):
            break

    for l in D.iterkeys():
        output.append(l)

    output.sort()
    return output
Beispiel #11
0
    def molien_series(self,
                      chi=None,
                      return_series=True,
                      prec=20,
                      variable='t'):
        r"""
        Compute the Molien series of this finite group with respect to the
        character ``chi``. It can be returned either as a rational function
        in one variable or a power series in one variable. The base field
        must be a finite field, the rationals, or a cyclotomic field.

        Note that the base field characteristic cannot divide the group
        order (i.e., the non-modular case).

        ALGORITHM:

        For a finite group `G` in characteristic zero we construct the Molien series as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\text{det}(I-tg)},

        where `I` is the identity matrix and `t` an indeterminate.

        For characteristic `p` not dividing the order of `G`, let `k` be the base field
        and `N` the order of `G`. Define `\lambda` as a primitive `N`-th root of unity over `k`
        and `\omega` as a primitive `N`-th root of unity over `\QQ`. For each `g \in G`
        define `k_i(g)` to be the positive integer such that
        `e_i = \lambda^{k_i(g)}` for each eigenvalue `e_i` of `g`. Then the Molien series
        is computed as

        .. MATH::

            \frac{1}{|G|}\sum_{g \in G} \frac{\chi(g)}{\prod_{i=1}^n(1 - t\omega^{k_i(g)})},

        where `t` is an indeterminant. [Dec1998]_

        INPUT:

        - ``chi`` -- (default: trivial character) a linear group character of this group

        - ``return_series`` -- boolean (default: ``True``) if ``True``, then returns
          the Molien series as a power series, ``False`` as a rational function

        - ``prec`` -- integer (default: 20); power series default precision

        - ``variable`` -- string (default: ``'t'``); Variable name for the Molien series

        OUTPUT: single variable rational function or power series with integer coefficients

        EXAMPLES::

            sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: only implemented for finite groups
            sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
            Traceback (most recent call last):
            ...
            NotImplementedError: characteristic cannot divide group order

        Tetrahedral Group::

            sage: K.<i> = CyclotomicField(4)
            sage: Tetra =  MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [0,i, -i,0])
            sage: Tetra.molien_series(prec=30)
            1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
            sage: mol = Tetra.molien_series(return_series=False); mol
            (t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
            sage: mol.parent()
            Fraction Field of Univariate Polynomial Ring in t over Integer Ring
            sage: chi = Tetra.character(Tetra.character_table()[1])
            sage: Tetra.molien_series(chi, prec=30, variable='u')
            u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
            sage: chi = Tetra.character(Tetra.character_table()[2])
            sage: Tetra.molien_series(chi)
            t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)

        ::

            sage: S3 = MatrixGroup(SymmetricGroup(3))
            sage: mol = S3.molien_series(prec=10); mol
            1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^10)
            sage: mol.parent()
            Power Series Ring in t over Integer Ring

        Octahedral Group::

            sage: K.<v> = CyclotomicField(8)
            sage: a = v-v^3 #sqrt(2)
            sage: i = v^2
            sage: Octa = MatrixGroup([(-1+i)/2,(-1+i)/2, (1+i)/2,(-1-i)/2], [(1+i)/a,0, 0,(1-i)/a])
            sage: Octa.molien_series(prec=30)
            1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)

        Icosahedral Group::

            sage: K.<v> = CyclotomicField(10)
            sage: z5 = v^2
            sage: i = z5^5
            sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
            sage: Ico = MatrixGroup([[z5^3,0, 0,z5^2], [0,1, -1,0], [(z5^4-z5)/a, (z5^2-z5^3)/a, (z5^2-z5^3)/a, -(z5^4-z5)/a]])
            sage: Ico.molien_series(prec=40)
            1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)

        ::

            sage: G = MatrixGroup(CyclicPermutationGroup(3))
            sage: chi = G.character(G.character_table()[1])
            sage: G.molien_series(chi, prec=10)
            t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^10 + O(t^11)

        ::

            sage: K = GF(5)
            sage: S = MatrixGroup(SymmetricGroup(4))
            sage: G = MatrixGroup([matrix(K,4,4,[K(y) for u in m.list() for y in u])for m in S.gens()])
            sage: G.molien_series(return_series=False)
            1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)

        ::

            sage: i = GF(7)(3)
            sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
            sage: chi = G.character(G.character_table()[4])
            sage: G.molien_series(chi)
            3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
        """
        if not self.is_finite():
            raise NotImplementedError("only implemented for finite groups")
        if chi is None:
            chi = self.trivial_character()
        M = self.matrix_space()
        R = FractionField(self.base_ring())
        N = self.order()
        if R.characteristic() == 0:
            P = PolynomialRing(R, variable)
            t = P.gen()
            #it is possible the character is over a larger cyclotomic field
            K = chi.values()[0].parent()
            if K.degree() != 1:
                if R.degree() != 1:
                    L = K.composite_fields(R)[0]
                else:
                    L = K
            else:
                L = R
            mol = P(0)
            for g in self:
                mol += L(chi(g)) / (M.identity_matrix() -
                                    t * g.matrix()).det().change_ring(L)
        elif R.characteristic().divides(N):
            raise NotImplementedError(
                "characteristic cannot divide group order")
        else:  #char p>0
            #find primitive Nth roots of unity over base ring and QQ
            F = cyclotomic_polynomial(N).change_ring(R)
            w = F.roots(ring=R.algebraic_closure(), multiplicities=False)[0]
            #don't need to extend further in this case since the order of
            #the roots of unity in the character divide the order of the group
            L = CyclotomicField(N, 'v')
            v = L.gen()
            #construct Molien series
            P = PolynomialRing(L, variable)
            t = P.gen()
            mol = P(0)
            for g in self:
                #construct Phi
                phi = L(chi(g))
                for e in g.matrix().eigenvalues():
                    #find power such that w**n  = e
                    n = 1
                    while w**n != e and n < N + 1:
                        n += 1
                    #raise v to that power
                    phi *= (1 - t * v**n)
                mol += P(1) / phi
        #We know the coefficients will be integers
        mol = mol.numerator().change_ring(ZZ) / mol.denominator().change_ring(
            ZZ)
        #divide by group order
        mol /= N
        if return_series:
            PS = PowerSeriesRing(ZZ, variable, default_prec=prec)
            return PS(mol)
        return mol
def _exceptionals(E, L, patience=1000):
    r"""
    Determine which primes in L are exceptional for E, using Proposition 19
    of Section 2.8 of Serre's ``Proprietes Galoisiennes des Points d'Ordre
    Fini des Courbes Elliptiques'' [Serre72].

    INPUT:

    - ``E`` - EllipticCurve - over a number field.

    - ``L`` - list - a list of prime numbers.

    - ``patience`` - int (a bound on the number of traces of Frobenius to
                          use while trying to prove surjectivity).

    OUTPUT: list - The list of all primes l in L for which the mod l image
                   might fail to be surjective.

    EXAMPLES::

        sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
        sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
        sage: sage.schemes.elliptic_curves.gal_reps_number_field._exceptionals(E, [29, 31])
        [29]
    """

    E = _over_numberfield(E)
    K = E.base_field()

    output = []

    L = list(set(L))  # Remove duplicates from L.

    for l in L:
        if l == 2:  # c.f. Section 5.3(a) of [Serre72].
            if (E.j_invariant() - 1728).is_square():
                output.append(2)
            elif not E.division_polynomial(2).is_irreducible():
                output.append(2)

        elif l == 3:  # c.f. Section 5.3(b) of [Serre72].
            if K(-3).is_square():
                output.append(3)
            elif not (K['x'].gen()**3 - E.j_invariant()).is_irreducible():
                output.append(3)
            elif not E.division_polynomial(3).is_irreducible():
                output.append(3)

        elif (K.discriminant() % l) == 0:
            if not K['x'](cyclotomic_polynomial(l)).is_irreducible():
                # I.E. if the action on lth roots of unity is not surjective
                # (We want this since as a Galois module, \wedge^2 E[l]
                # is isomorphic to the lth roots of unity.)
                output.append(l)

    for l in output:
        L.remove(l)
    if 2 in L:
        L.remove(2)
    if 3 in L:
        L.remove(3)

    # If the image is not surjective, then it is contained in one of the
    # maximal subgroups. So, we start by creating a dictionary between primes
    # l in L and possible maximal subgroups in which the mod l image could
    # be contained. This information is stored as a triple whose elements
    # are True/False according to whether the mod l image could be contained
    # in:
    #      0. A Borel or normalizer of split Cartan subgroup.
    #      1. A nonsplit Cartan subgroup or its normalizer.
    #      2. An exceptional subgroup of GL_2.

    D = {}
    for l in L:
        D[l] = [True, True, True]

    for P in K.primes_of_degree_one_iter():
        try:
            trace = E.change_ring(P.residue_field()).trace_of_frobenius()
        except ArithmeticError:  # Bad reduction at P.
            continue

        patience -= 1

        determinant = P.norm()
        discriminant = trace**2 - 4 * determinant

        unexc = []  # Primes we discover are unexceptional go here.

        for l in D.iterkeys():
            tr = GF(l)(trace)
            det = GF(l)(determinant)
            disc = GF(l)(discriminant)

            if tr == 0:
                # I.E. if Frob_P could be contained in the normalizer of
                # a Cartan subgroup, but not in the Cartan subgroup.
                continue

            if disc == 0:
                # I.E. If the matrix might be non-diagonalizable over F_{p^2}.
                continue

            if legendre_symbol(disc, l) == 1:
                # If the matrix is diagonalizable over F_p, it can't be
                # contained in a non-split Cartan subgroup. Since we've
                # gotten rid of the case where it is contained in the
                # of a nonsplit Cartan subgroup but not the Cartan subgroup,
                D[l][1] = False
            else:
                # If the matrix is not diagonalizable over F_p, it can't
                # be contained Borel subgroup.
                D[l][0] = False

            if det != 0:  # c.f. [Serre72], Section 2.8, Prop. 19
                u = trace**2 / det
                if u not in (1, 2, 4) and u**2 - 3 * u + 1 != 0:
                    D[l][2] = False

            if D[l] == [False, False, False]:
                unexc.append(l)

        for l in unexc:
            D.pop(l)
        unexc = []

        if (D == {}) or (patience == 0):
            break

    for l in D.iterkeys():
        output.append(l)

    output.sort()
    return output
Beispiel #13
0
 
 
 
    from sage.arith.all import euler_phi
    from sage.misc.functional import cyclotomic_polynomial
 
    # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
    found = False
    for k in range(2*n,n,-1):
        if euler_phi(k) == n:
            found = True
            break
        if not found:
            raise ValueError("cyclotomic bases require that n "
                                 "is an image of Euler's totient function")
    R = ZZ_q['x'].quotient(cyclotomic_polynomial(2*n, 'x'), 'x')
    g=x**(n/2)+1
    T=ZZ_q['x'].quotient(x**(n/2)+1)
 
   
    a_pol=R.random_element()

    s_pol=sample_noise(R)
    e_pol=sample_noise(R)
 
    s_pol2=T((s_pol))
    e_pol2=T((e_pol))
    print("s={0},e={1}".format(T(s_pol),T(e_pol)))

    
    Z_mat=e_pol2.matrix().augment(s_pol2.matrix())
    def __init__(self, cyclotomic=None, alpha_beta=None, gamma_list=None):
        r"""
        Creation of hypergeometric motives.

        INPUT:

        three possibilities are offered, each describing a quotient
        of products of cyclotomic polynomials.

        - ``cyclotomic`` -- a pair of lists of nonnegative integers,
          each integer `k` represents a cyclotomic polynomial `\Phi_k`

        - ``alpha_beta`` -- a pair of lists of rationals,
          each rational represents a root of unity

        - ``gamma_list`` -- a pair of lists of nonnegative integers,
          each integer `n` represents a polynomial `x^n - 1`

        In the last case, it is also allowed to send just one list of signed
        integers where signs indicate to which part the integer belongs to.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: Hyp(cyclotomic=([2],[1]))
            Hypergeometric data for [1/2] and [0]

            sage: Hyp(alpha_beta=([1/2],[0]))
            Hypergeometric data for [1/2] and [0]
            sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5],[0,0,0,0]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]

            sage: Hyp(gamma_list=([5],[1,1,1,1,1]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
            sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1]))
            Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
        """
        if gamma_list is not None:
            if isinstance(gamma_list[0], (list, tuple)):
                pos, neg = gamma_list
                gamma_list = pos + [-u for u in neg]
            cyclotomic = gamma_list_to_cyclotomic(gamma_list)
        if cyclotomic is not None:
            cyclo_up, cyclo_down = cyclotomic
            if any(x in cyclo_up for x in cyclo_down):
                raise ValueError('overlapping parameters not allowed')
            deg = sum(euler_phi(x) for x in cyclo_down)
            up_deg = sum(euler_phi(x) for x in cyclo_up)
            if up_deg != deg:
                msg = 'not the same degree: {} != {}'.format(up_deg, deg)
                raise ValueError(msg)
            cyclo_up.sort()
            cyclo_down.sort()
            alpha = cyclotomic_to_alpha(cyclo_up)
            beta = cyclotomic_to_alpha(cyclo_down)
        elif alpha_beta is not None:
            alpha, beta = alpha_beta
            if len(alpha) != len(beta):
                raise ValueError('alpha and beta not of the same length')
            alpha = sorted(u - floor(u) for u in alpha)
            beta = sorted(u - floor(u) for u in beta)
            cyclo_up = alpha_to_cyclotomic(alpha)
            cyclo_down = alpha_to_cyclotomic(beta)
            deg = sum(euler_phi(x) for x in cyclo_down)

        self._cyclo_up = cyclo_up
        self._cyclo_down = cyclo_down
        self._alpha = alpha
        self._beta = beta
        self._deg = deg
        if self.weight() % 2:
            self._sign_param = 1
        else:
            if deg % 2:
                self._sign_param = prod(cyclotomic_polynomial(v).disc()
                                        for v in cyclo_down)
            else:
                self._sign_param = prod(cyclotomic_polynomial(v).disc()
                                        for v in cyclo_up)
Beispiel #15
0
def my_gen_lattice2(n=4, q=11, seed=None,
                quotient=None, dual=False, ntl=False, lattice=False, GuessStuff=True):
    """
    This is a modification of the code for the gen_lattice function from Sage
 
    Randomness can be set either with ``seed``, or by using
    :func:`sage.misc.randstate.set_random_seed`.
 
    INPUT:
 
    - ``type`` -- one of the following strings
        - ``'cyclotomic'`` -- Special case of ideal. Allows for
          efficient processing proposed by [LM2006]_.
    - ``n`` -- Determinant size, primal:`det(L) = q^n`, dual:`det(L) = q^{m-n}`.
      For ideal lattices this is also the degree of the quotient polynomial.
    - ``m`` -- Lattice dimension, `L \subseteq Z^m`.
    - ``q`` -- Coefficient size, `q-Z^m \subseteq L`.
    - ``t`` -- BKZ Block Size
    - ``seed`` -- Randomness seed.
    - ``quotient`` -- For the type ideal, this determines the quotient
      polynomial. Ignored for all other types.
    - ``dual`` -- Set this flag if you want a basis for `q-dual(L)`, for example
      for Regev's LWE bases [Reg2005]_.
    - ``ntl`` -- Set this flag if you want the lattice basis in NTL readable
      format.
    - ``lattice`` -- Set this flag if you want a
      :class:`FreeModule_submodule_with_basis_integer` object instead
      of an integer matrix representing the basis.
 
    OUTPUT: ``B`` a unique size-reduced triangular (primal: lower_left,
      dual: lower_right) basis of row vectors for the lattice in question.
 
    EXAMPLES:
 
 
 
    Cyclotomic bases with n=2^k are SWIFFT bases::
 
        sage: sage.crypto.gen_lattice(type='cyclotomic', seed=42)
        [11  0  0  0  0  0  0  0]
        [ 0 11  0  0  0  0  0  0]
        [ 0  0 11  0  0  0  0  0]
        [ 0  0  0 11  0  0  0  0]
        [ 4 -2 -3 -3  1  0  0  0]
        [ 3  4 -2 -3  0  1  0  0]
        [ 3  3  4 -2  0  0  1  0]
        [ 2  3  3  4  0  0  0  1]
 
    Dual modular bases are related to Regev's famous public-key
    encryption [Reg2005]_::
 
        sage: sage.crypto.gen_lattice(type='modular', m=10, seed=42, dual=True)
        [ 0  0  0  0  0  0  0  0  0 11]
        [ 0  0  0  0  0  0  0  0 11  0]
        [ 0  0  0  0  0  0  0 11  0  0]
        [ 0  0  0  0  0  0 11  0  0  0]
        [ 0  0  0  0  0 11  0  0  0  0]
        [ 0  0  0  0 11  0  0  0  0  0]
        [ 0  0  0  1 -5 -2 -1  1 -3  5]
        [ 0  0  1  0 -3  4  1  4 -3 -2]
        [ 0  1  0  0 -4  5 -3  3  5  3]
        [ 1  0  0  0 -2 -1  4  2  5  4]
 
 
    """
    from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
    from sage.matrix.constructor import identity_matrix, block_matrix
    from sage.matrix.matrix_space import MatrixSpace
    from sage.rings.integer_ring import IntegerRing
    from sage.modules.free_module_integer import IntegerLattice
       
    if seed is not None:
        from sage.misc.randstate import set_random_seed
        set_random_seed(seed)
 
 
    m=n+1
    ZZ = IntegerRing()
    ZZ_q = IntegerModRing(q)
 
 
 
    from sage.arith.all import euler_phi
    from sage.misc.functional import cyclotomic_polynomial
 
    # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n
    found = False
    for k in range(2*n,n,-1):
        if euler_phi(k) == n:
            found = True
            break
        if not found:
            raise ValueError("cyclotomic bases require that n "
                                 "is an image of Euler's totient function")
    R = ZZ_q['x'].quotient(cyclotomic_polynomial(2*n, 'x'), 'x')
    g=x**(n/2)+1
    T=ZZ_q['x'].quotient(x**(n/2)+1)
 
   
    a_pol=R.random_element()

    s_pol=sample_noise(R)
    e_pol=sample_noise(R)
 
    s_pol2=T((s_pol))
    e_pol2=T((e_pol))
    print("s={0},e={1}".format(T(s_pol),T(e_pol)))

    
    Z_mat=e_pol2.matrix().augment(s_pol2.matrix())
    Z_mattop=Z_mat[0:1].augment(matrix(1,1,[ZZ.one()*-1]))
  
  
    b_pol=(a_pol*s_pol+e_pol)
    print("s_pol={0}\ne_pol={1}".format((s_pol2).list(),(e_pol2).list()))
    # Does a linear mapping change the shortest vector size for the rest?/
    a_pol=a_pol#*x_pol
    b_pol=b_pol#*x_pol

    a_pol2 = T(a_pol.list())# % S(g.list())
    b_pol2 = T((b_pol).list())# % S(g.list())
#    print("a={0}\nb={1}".format(a_pol2,b_pol2))
    A=identity_matrix(ZZ_q,n/2)
    A=A.stack(a_pol2.matrix())
    
    
    b_prime=b_pol2.matrix()[0:1]
    b_prime=b_prime - 11*A[8:9]
    A=A.stack(b_pol2.matrix()[0:1])

    
    
#    print("X=\n{0}".format(X))

#    A = A.stack(identity_matrix(ZZ_q, n/2))
 
    print("A=\n{0}\n".format(A))
    # switch from representatives 0,...,(q-1) to (1-q)/2,....,(q-1)/2
    def minrepnegative(a):
        if abs(a-q) < abs(a): return (a-q)*-1
        else: return a*-1
    def minrep(a):
        if abs(a-q) < abs(a): return (a-q)
        else: return a
    A_prime = A[(n/2):(n+1)].lift().apply_map(minrep)
#    b_neg= A[(n):(n+1)].lift().apply_map(minrepnegative)
    Z_fixed=Z_mattop.lift().apply_map(minrep)
    print("Z_fixed={0}\n||Z_fixed||={1}".format(Z_fixed,float(Z_fixed[0].norm())))
    print('Z_fixed*A={0}\n\n'.format(Z_fixed*A))

    print("z_fixed[0].norm()={0}".format(float(Z_fixed[0].norm())))
#    B=block_matrix([[ZZ(q),ZZ.zero()],[A_neg,ZZ.one()]], subdivide=False)
#    B = block_matrix([[ZZ.one(), -A_prime.transpose()],
#                     [ZZ.zero(), ZZ(q)]], subdivide=False)
    B = block_matrix([[ZZ(q), ZZ.zero()], [-A_prime, ZZ.one()]], subdivide=False)
#    for i in range(m//2):
#        B.swap_rows(i,m-i-1)
    #    print("{0}\n".format(A_neg))
 #   B=block_matrix([[ZZ(q), ZZ.zero(),ZZ.zero()],[ZZ.one(),A_neg,ZZ.zero() ],[ZZ.zero(),b_neg,ZZ.one()]],
                     #  subdivide=False)
    #print("B=\n{0}".format(B))
    print("B*A=\n{0}\n\n".format(B*A))
    #print("A=\n{0}\n".format(A))
    def remap(x):
        return minrep((x*251)%251)
    BL=B.BKZ(block_size=n/2.)
    y=(BL.solve_left(Z_fixed))#.apply_map(remap))

#   print("y*B={0}".format(y*B))
    print("y:=B.solve_left(Z_fixed)={0}".format(y))
#    BL=B.BKZ(block_size=n/2.)
    print(BL[0])
    print("shortest norm={0}".format(float(BL[0].norm())))
#    L = IntegerLattice(B)
#    p
#    v=L.shortest_vector()
#    print("L.shortest_vector={0}, norm={1}".format(v,float(v.norm())))
    if ntl and lattice:
        raise ValueError("Cannot specify ntl=True and lattice=True ")
    if ntl:
        return B._ntl_()
    elif lattice:
        from sage.modules.free_module_integer import IntegerLattice
        return IntegerLattice(B)
    else:
        return B