Beispiel #1
0
class MNISTTrainer(object):
    def __init__(self, gui_worker=None):

        print('----> Loading cases...')

        training_set = load_all_flat_cases('training')
        testing_set = load_all_flat_cases('testing')

        provided_datasets = [
            training_set,
            testing_set
        ]

        self.net = Ann(
            structure=[784, 200, 40, 10],
            datasets=provided_datasets,
            activation_function=[T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
            learning_rate=0.2,
            regression_layer=SumOfSquaredErrors,
            gui_worker=gui_worker
        )

        self.gui_worker = gui_worker

    def train(self, epochs=80):
        self.net.train(epochs)

    def test(self):
        minor_demo(self.net)
Beispiel #2
0
    def __init__(self, structure=None, provided_datasets=None,
                 activation_function=None, regression_layer=None,
                 learning_rate=None, gui_worker=None):

        if not provided_datasets:
            min_tile = None
            heuristic = None
            num_cases = None

            if gui_worker:
                min_tile = gui_worker.gui.min_save_tiles
                heuristic = gui_worker.gui.heuristic
                num_cases = gui_worker.gui.num_cases
            else:
                print('----> Loading cases...')

            training_set, testing_set = load_2048_example(min_tile, heuristic, num_cases)

            provided_datasets = [
                training_set,
                testing_set
            ]

        self.net = Ann(
            gui_worker=gui_worker,
            structure=structure if structure else [17, 300, 60, 4],
            datasets=provided_datasets,
            activation_function=activation_function if activation_function else [T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
            learning_rate=learning_rate,
            regression_layer=regression_layer,
            normalize=process_states
        )

        self.gui_worker = gui_worker
Beispiel #3
0
class Ann2048Trainer(object):
    def __init__(self, structure=None, provided_datasets=None,
                 activation_function=None, regression_layer=None,
                 learning_rate=None, gui_worker=None):

        if not provided_datasets:
            min_tile = None
            heuristic = None
            num_cases = None

            if gui_worker:
                min_tile = gui_worker.gui.min_save_tiles
                heuristic = gui_worker.gui.heuristic
                num_cases = gui_worker.gui.num_cases
            else:
                print('----> Loading cases...')

            training_set, testing_set = load_2048_example(min_tile, heuristic, num_cases)

            provided_datasets = [
                training_set,
                testing_set
            ]

        self.net = Ann(
            gui_worker=gui_worker,
            structure=structure if structure else [17, 300, 60, 4],
            datasets=provided_datasets,
            activation_function=activation_function if activation_function else [T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
            learning_rate=learning_rate,
            regression_layer=regression_layer,
            normalize=process_states
        )

        self.gui_worker = gui_worker

    def save(self, path=None):
        if not path:
            path = res.play2048s.anns.__path__[0] + "/trained-ann-2048"

        file = open(path, 'wb')
        pickle.dump(self.net, file, protocol=pickle.HIGHEST_PROTOCOL)
        file.close()

    def train(self, epochs=100):
        self.net.train(epochs)
Beispiel #4
0
    def __init__(self, gui_worker=None):

        print('----> Loading cases...')

        training_set = load_all_flat_cases('training')
        testing_set = load_all_flat_cases('testing')

        provided_datasets = [
            training_set,
            testing_set
        ]

        self.net = Ann(
            structure=[784, 200, 40, 10],
            datasets=provided_datasets,
            activation_function=[T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
            learning_rate=0.2,
            regression_layer=SumOfSquaredErrors,
            gui_worker=gui_worker
        )

        self.gui_worker = gui_worker
Beispiel #5
0
if __name__ == '__main__':
    print('----> Loading cases...')

    training_set = load_all_flat_cases('training')
    testing_set = load_all_flat_cases('testing')

    provided_datasets = [
        training_set,
        testing_set
    ]

    net1 = Ann(
        structure=[784, 150, 10],
        datasets=provided_datasets,
        activation_function=[T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
        learning_rate=0.1,
        regression_layer=SumOfSquaredErrors
    )

    net1.train(100)
    minor_demo(net1)

    net2 = Ann(
        structure=[784, 150, 10],
        datasets=provided_datasets,
        activation_function=[T.nnet.sigmoid, T.nnet.sigmoid, T.nnet.sigmoid],
        learning_rate=0.2,
        regression_layer=SumOfSquaredErrors
    )