def _expr_big(cls, z, n): if n.is_even: return (n - S.Half) * pi * I + log( sqrt(z) / 2) + I * asin(1 / sqrt(z)) else: return (n - S.Half) * pi * I + log( sqrt(z) / 2) - I * asin(1 / sqrt(z))
def test_C99CodePrinter__precision(): n = symbols('n', integer=True) f32_printer = C99CodePrinter(dict(type_aliases={real: float32})) f64_printer = C99CodePrinter(dict(type_aliases={real: float64})) f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)' assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)' assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)' for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']): def check(expr, ref): assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) check(Abs(n), 'abs(n)') check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})') check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))') check(exp(x*8.0), 'exp{s}(8.0{S}*x)') check(exp2(x), 'exp2{s}(x)') check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)') check(Mod(n, 2), '((n) % (2))') check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))') check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})') check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})') check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)') check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)') check(log2(x*8.0), 'log2{s}(8.0{S}*x)') check(log1p(x), 'log1p{s}(x)') check(2**x, 'pow{s}(2, x)') check(2.0**x, 'pow{s}(2.0{S}, x)') check(x**3, 'pow{s}(x, 3)') check(x**4.0, 'pow{s}(x, 4.0{S})') check(sqrt(3+x), 'sqrt{s}(x + 3)') check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})') check(hypot(x, y), 'hypot{s}(x, y)') check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})') check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})') check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})') check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})') check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})') check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})') check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)') check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})') check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})') check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})') check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})') check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})') check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})') check(erf(42.*x), 'erf{s}(42.0{S}*x)') check(erfc(42.*x), 'erfc{s}(42.0{S}*x)') check(gamma(x), 'tgamma{s}(x)') check(loggamma(x), 'lgamma{s}(x)') check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})") check(floor(x + 2.), "floor{s}(x + 2.0{S})") check(fma(x, y, -z), 'fma{s}(x, y, -z)') check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))') check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
def _expr_big(cls, z, n): if n.is_even: return (n - S(1)/2)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z)) else: return (n - S(1)/2)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
def _expr_small(cls, z): return asin(sqrt(z))/sqrt(z)
def _expr_small(cls, a, z): return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z)))
def test_jscode_functions(): assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))" assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)" assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)" assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)" assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral components """ f = sympify(f) if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One if not f.has(x): return indep * f * x rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.iteritems(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.iterkeys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): if g.is_Function: if g.func is exp: M = g.args[0].match(a * x**2) if M is not None: terms.add(erf(sqrt(-M[a]) * x)) M = g.args[0].match(a * x**2 + b * x + c) if M is not None: if M[a].is_positive: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erf(-sqrt(-M[a]) * x + M[b] / (2 * sqrt(-M[a])))) elif M[a].is_negative: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erf( sqrt(-M[a]) * x - M[b] / (2 * sqrt(-M[a])))) M = g.args[0].match(a * log(x)**2) if M is not None: if M[a].is_positive: terms.add(-I * erf(I * (sqrt(M[a]) * log(x) + 1 / (2 * sqrt(M[a]))))) if M[a].is_negative: terms.add( erf( sqrt(-M[a]) * log(x) - 1 / (2 * sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a * x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a] / M[b]) * x)) M = g.base.match(a * x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add((-M[b] / 2 * sqrt(-M[a]) * atan( sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b])) )) else: terms |= set(hints) for g in set(terms): terms |= components(cancel(g.diff(x)), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) mapping = dict(zip(terms, V)) rev_mapping = {} for k, v in mapping.iteritems(): rev_mapping[v] = k if mappings is None: # Pre-sort mapping in order of largest to smallest expressions (last is always x). def _sort_key(arg): return default_sort_key(arg[0].as_independent(x)[1]) mapping = sorted(mapping.items(), key=_sort_key, reverse=True) mappings = permutations(mapping) def _substitute(expr): return expr.subs(mapping) for mapping in mappings: # TODO: optimize this by not generating permutations where mapping[-1] != x. if mapping[-1][0] != x: continue mapping = list(mapping) diffs = [_substitute(cancel(g.diff(x))) for g in terms] denoms = [g.as_numer_denom()[1] for g in diffs] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints) if result is not None: return indep * result return None numers = [cancel(denom * g) for g in diffs] def _derivation(h): return Add(*[d * h.diff(v) for d, v in zip(numers, V)]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c) * gcd(q, q.diff(y)).as_expr() else: return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0] * q_split[0] * s, c_split[1] * q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + _substitute(term)**2] = False elif term.func is tanh: special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif term.func is C.LambertW: special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = list(v_split) + [u_split[0]] + special.keys() s = u_split[0] * Mul(*[k for k, v in special.iteritems() if v]) polified = [p.as_poly(*V) for p in [s, P, Q]] if None in polified: return None a, b, c = [p.total_degree() for p in polified] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([_exponent(h) for h in g.args]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = monomials(V, A + B - 1) else: monoms = monomials(V, A + B) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add( *[poly_coeffs[i] * monomial for i, monomial in enumerate(monoms)]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def _integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.atoms(Symbol): if z in V: break else: continue irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) for i, poly in enumerate(irreducibles): if poly.has(*V): log_coeffs.append(B[i]) log_part.append(log_coeffs[-1] * log(poly)) coeffs = poly_coeffs + log_coeffs candidate = poly_part / poly_denom + Add(*log_part) h = F - _derivation(candidate) / denom numer = h.as_numer_denom()[0].expand(force=True) equations = defaultdict(lambda: S.Zero) for term in Add.make_args(numer): coeff, dependent = term.as_independent(*V) equations[dependent] += coeff solution = solve(equations.values(), *coeffs) return (solution, candidate, coeffs) if solution else None if not (F.atoms(Symbol) - set(V)): result = _integrate('Q') if result is None: result = _integrate() else: result = _integrate() if result is not None: (solution, candidate, coeffs) = result antideriv = candidate.subs(solution) for coeff in coeffs: if coeff not in solution: antideriv = antideriv.subs(coeff, S.Zero) antideriv = antideriv.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep * antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1) if result is not None: return indep * result return None
def heurisch(f, x, **kwargs): """Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============ heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.risch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(1 + tan(x)**2)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. """ f = sympify(f) if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One if not f.has(x): return indep * f * x rewritables = { (sin, cos, cot) : tan, (sinh, cosh, coth) : tanh, } rewrite = kwargs.pop('rewrite', False) if rewrite: for candidates, rule in rewritables.iteritems(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.iterkeys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) hints = kwargs.get('hints', None) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) for g in set(terms): if g.is_Function: if g.func is exp: M = g.args[0].match(a*x**2) if M is not None: terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(-I*erf(I*(sqrt(M[a])*log(x)+1/(2*sqrt(M[a]))))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x)-1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add((-M[b]/2*sqrt(-M[a])*\ atan(sqrt(-M[a])*x/sqrt(M[a]*x**2-M[b])))) else: terms |= set(hints) for g in set(terms): terms |= components(cancel(g.diff(x)), x) V = _symbols('x', len(terms)) mapping = dict(zip(terms, V)) rev_mapping = {} for k, v in mapping.iteritems(): rev_mapping[v] = k def substitute(expr): return expr.subs(mapping) diffs = [ substitute(cancel(g.diff(x))) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] try: denom = reduce(lambda p, q: lcm(p, q, *V), denoms) except PolynomialError: # lcm can fail with this. See issue 1418. return None numers = [ cancel(denom * g) for g in diffs ] def derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def deflation(p): for y in V: if not p.has(y): continue if derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return deflation(c)*gcd(q, q.diff(y)).as_expr() else: return p def splitter(p): for y in V: if not p.has(y): continue if derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + substitute(term)**2] = False elif term.func is tanh: special[1 + substitute(term)] = False special[1 - substitute(term)] = False elif term.func is C.LambertW: special[substitute(term)] = True F = substitute(f) P, Q = F.as_numer_denom() u_split = splitter(denom) v_split = splitter(Q) polys = list(v_split) + [ u_split[0] ] + special.keys() s = u_split[0] * Mul(*[ k for k, v in special.iteritems() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * deflation(v_split[1])).as_expr() def exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom: return max([ exponent(h) for h in g.args ]) else: return 1 A, B = exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = monomials(V, A + B - 1) else: monoms = monomials(V, A + B) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.atoms(Symbol): if z in V: break else: continue irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) for i, poly in enumerate(irreducibles): if poly.has(*V): log_coeffs.append(B[i]) log_part.append(log_coeffs[-1] * log(poly)) coeffs = poly_coeffs + log_coeffs candidate = poly_part/poly_denom + Add(*log_part) h = F - derivation(candidate) / denom numer = h.as_numer_denom()[0].expand() equations = {} for term in Add.make_args(numer): coeff, dependent = term.as_independent(*V) if dependent in equations: equations[dependent] += coeff else: equations[dependent] = coeff solution = solve(equations.values(), *coeffs) if solution is not None: return (solution, candidate, coeffs) else: return None if not (F.atoms(Symbol) - set(V)): result = integrate('Q') if result is None: result = integrate() else: result = integrate() if result is not None: (solution, candidate, coeffs) = result antideriv = candidate.subs(solution) for coeff in coeffs: if coeff not in solution: antideriv = antideriv.subs(coeff, S.Zero) antideriv = antideriv.subs(rev_mapping) antideriv = cancel(antideriv).expand() if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep * antideriv else: if not rewrite: result = heurisch(f, x, rewrite=True, **kwargs) if result is not None: return indep * result return None
def _expr_small(cls, a, z): return sqrt(z) / sqrt(1 - z) * sin(2 * a * asin(sqrt(z)))
def test_jscode_functions(): assert jscode(sin(x)**cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))" assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)" assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)" assert jscode(tanh(x) * acosh(y)) == "Math.tanh(x)*Math.acosh(y)" assert jscode(asin(x) - acos(y)) == "-Math.acos(y) + Math.asin(x)"
def test_C99CodePrinter__precision(): n = symbols("n", integer=True) f32_printer = C99CodePrinter(dict(type_aliases={real: float32})) f64_printer = C99CodePrinter(dict(type_aliases={real: float64})) f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f32_printer.doprint(sin(x + 2.1)) == "sinf(x + 2.1F)" assert f64_printer.doprint(sin(x + 2.1)) == "sin(x + 2.1000000000000001)" assert f80_printer.doprint(sin(x + Float("2.0"))) == "sinl(x + 2.0L)" for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ["f", "", "l"]): def check(expr, ref): assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) check(Abs(n), "abs(n)") check(Abs(x + 2.0), "fabs{s}(x + 2.0{S})") check( sin(x + 4.0) ** cos(x - 2.0), "pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))", ) check(exp(x * 8.0), "exp{s}(8.0{S}*x)") check(exp2(x), "exp2{s}(x)") check(expm1(x * 4.0), "expm1{s}(4.0{S}*x)") check(Mod(n, 2), "((n) % (2))") check(Mod(2 * n + 3, 3 * n + 5), "((2*n + 3) % (3*n + 5))") check(Mod(x + 2.0, 3.0), "fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})") check(Mod(x, 2.0 * x + 3.0), "fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})") check(log(x / 2), "log{s}((1.0{S}/2.0{S})*x)") check(log10(3 * x / 2), "log10{s}((3.0{S}/2.0{S})*x)") check(log2(x * 8.0), "log2{s}(8.0{S}*x)") check(log1p(x), "log1p{s}(x)") check(2 ** x, "pow{s}(2, x)") check(2.0 ** x, "pow{s}(2.0{S}, x)") check(x ** 3, "pow{s}(x, 3)") check(x ** 4.0, "pow{s}(x, 4.0{S})") check(sqrt(3 + x), "sqrt{s}(x + 3)") check(Cbrt(x - 2.0), "cbrt{s}(x - 2.0{S})") check(hypot(x, y), "hypot{s}(x, y)") check(sin(3.0 * x + 2.0), "sin{s}(3.0{S}*x + 2.0{S})") check(cos(3.0 * x - 1.0), "cos{s}(3.0{S}*x - 1.0{S})") check(tan(4.0 * y + 2.0), "tan{s}(4.0{S}*y + 2.0{S})") check(asin(3.0 * x + 2.0), "asin{s}(3.0{S}*x + 2.0{S})") check(acos(3.0 * x + 2.0), "acos{s}(3.0{S}*x + 2.0{S})") check(atan(3.0 * x + 2.0), "atan{s}(3.0{S}*x + 2.0{S})") check(atan2(3.0 * x, 2.0 * y), "atan2{s}(3.0{S}*x, 2.0{S}*y)") check(sinh(3.0 * x + 2.0), "sinh{s}(3.0{S}*x + 2.0{S})") check(cosh(3.0 * x - 1.0), "cosh{s}(3.0{S}*x - 1.0{S})") check(tanh(4.0 * y + 2.0), "tanh{s}(4.0{S}*y + 2.0{S})") check(asinh(3.0 * x + 2.0), "asinh{s}(3.0{S}*x + 2.0{S})") check(acosh(3.0 * x + 2.0), "acosh{s}(3.0{S}*x + 2.0{S})") check(atanh(3.0 * x + 2.0), "atanh{s}(3.0{S}*x + 2.0{S})") check(erf(42.0 * x), "erf{s}(42.0{S}*x)") check(erfc(42.0 * x), "erfc{s}(42.0{S}*x)") check(gamma(x), "tgamma{s}(x)") check(loggamma(x), "lgamma{s}(x)") check(ceiling(x + 2.0), "ceil{s}(x + 2.0{S})") check(floor(x + 2.0), "floor{s}(x + 2.0{S})") check(fma(x, y, -z), "fma{s}(x, y, -z)") check(Max(x, 8.0, x ** 4.0), "fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))") check(Min(x, 2.0), "fmin{s}(2.0{S}, x)")
def heurisch(f, x, **kwargs): """Compute indefinite integral using heuristic Risch algorithm. This is a huristic approach to indefinite integration in finite terms using extened heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specificaion ============ heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in antiderivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import * >>> x,y = symbols('xy') >>> heurisch(y*tan(x), x) y*log(1 + tan(x)**2)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L.Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. """ f = sympify(f) if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One if not f.has(x): return indep * f * x rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } rewrite = kwargs.pop('rewrite', False) if rewrite: for candidates, rule in rewritables.iteritems(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.iterkeys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) hints = kwargs.get('hints', None) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) for g in set(terms): if g.is_Function: if g.func is exp: M = g.args[0].match(a * x**2) if M is not None: terms.add(erf(sqrt(-M[a]) * x)) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a * x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a] / M[b]) * x)) else: terms |= set(hints) for g in set(terms): terms |= components(g.diff(x), x) V = _symbols('x', len(terms)) mapping = dict(zip(terms, V)) rev_mapping = {} for k, v in mapping.iteritems(): rev_mapping[v] = k def substitute(expr): return expr.subs(mapping) diffs = [substitute(simplify(g.diff(x))) for g in terms] denoms = [g.as_numer_denom()[1] for g in diffs] denom = reduce(lambda p, q: lcm(p, q, V), denoms) numers = [Poly.cancel(denom * g, *V) for g in diffs] def derivation(h): return Add(*[d * h.diff(v) for d, v in zip(numers, V)]) def deflation(p): for y in V: if not p.has_any_symbols(y): continue if derivation(p) is not S.Zero: c, q = p.as_poly(y).as_primitive() return deflation(c) * gcd(q, q.diff(y)) else: return p def splitter(p): for y in V: if not p.has_any_symbols(y): continue if derivation(y) is not S.Zero: c, q = p.as_poly(y).as_primitive() q = q.as_basic() h = gcd(q, derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = splitter(c) if s.as_poly(y).degree == 0: return (c_split[0], q * c_split[1]) q_split = splitter(Poly.cancel((q, s), *V)) return (c_split[0] * q_split[0] * s, c_split[1] * q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + substitute(term)**2] = False elif term.func is tanh: special[1 + substitute(term)] = False special[1 - substitute(term)] = False elif term.func is C.LambertW: special[substitute(term)] = True F = substitute(f) P, Q = F.as_numer_denom() u_split = splitter(denom) v_split = splitter(Q) polys = list(v_split) + [u_split[0]] + special.keys() s = u_split[0] * Mul(*[k for k, v in special.iteritems() if v]) a, b, c = [p.as_poly(*V).degree for p in [s, P, Q]] poly_denom = s * v_split[0] * deflation(v_split[1]) def exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom: return max([exponent(h) for h in g.args]) else: return 1 A, B = exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = monomials(V, A + B - 1) else: monoms = monomials(V, A + B) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add( *[poly_coeffs[i] * monomial for i, monomial in enumerate(monoms)]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, *V) except PolynomialError: factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.atoms(Symbol): if z in V: break else: continue irreducibles |= set(root_factors(poly, z, domain=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) for i, poly in enumerate(irreducibles): if poly.has(*V): log_coeffs.append(B[i]) log_part.append(log_coeffs[-1] * log(poly)) coeffs = poly_coeffs + log_coeffs candidate = poly_part / poly_denom + Add(*log_part) h = together(F - derivation(candidate) / denom) numer = h.as_numer_denom()[0].expand() if not numer.is_Add: numer = [numer] equations = {} for term in numer.args: coeff, dependent = term.as_independent(*V) if dependent in equations: equations[dependent] += coeff else: equations[dependent] = coeff solution = solve(equations.values(), *coeffs) if solution is not None: return (solution, candidate, coeffs) else: return None if not (F.atoms(Symbol) - set(V)): result = integrate('Q') if result is None: result = integrate() else: result = integrate() if result is not None: (solution, candidate, coeffs) = result antideriv = candidate.subs(solution) for coeff in coeffs: if coeff not in solution: antideriv = antideriv.subs(coeff, S.Zero) antideriv = antideriv.subs(rev_mapping) antideriv = simplify(antideriv).expand() if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep * antideriv else: if not rewrite: result = heurisch(f, x, rewrite=True, **kwargs) if result is not None: return indep * result return None
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral components """ f = sympify(f) if x not in f.free_symbols: return f * x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): if g.is_Function: if g.func is li: M = g.args[0].match(a * x**b) if M is not None: terms.add( x * (li(M[a] * x**M[b]) - (M[a] * x**M[b])**(-1 / M[b]) * Ei( (M[b] + 1) * log(M[a] * x**M[b]) / M[b]))) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif g.func is exp: M = g.args[0].match(a * x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a]) * x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a]) * x)) M = g.args[0].match(a * x**2 + b * x + c) if M is not None: if M[a].is_positive: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erfi( sqrt(M[a]) * x + M[b] / (2 * sqrt(M[a])))) elif M[a].is_negative: terms.add( sqrt(pi / 4 * (-M[a])) * exp(M[c] - M[b]**2 / (4 * M[a])) * erf( sqrt(-M[a]) * x - M[b] / (2 * sqrt(-M[a])))) M = g.args[0].match(a * log(x)**2) if M is not None: if M[a].is_positive: terms.add( erfi( sqrt(M[a]) * log(x) + 1 / (2 * sqrt(M[a])))) if M[a].is_negative: terms.add( erf( sqrt(-M[a]) * log(x) - 1 / (2 * sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a * x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a] / M[b]) * x)) M = g.base.match(a * x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a] / M[b]) * x)) elif M[a].is_negative: terms.add((-M[b] / 2 * sqrt(-M[a]) * atan( sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b])) )) else: terms |= set(hints) for g in set(terms): terms |= components(cancel(g.diff(x)), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) mapping = dict(list(zip(terms, V))) rev_mapping = {} if unnecessary_permutations is None: unnecessary_permutations = [] for k, v in mapping.items(): rev_mapping[v] = k if mappings is None: # Pre-sort mapping in order of largest to smallest expressions (last is always x). def _sort_key(arg): return default_sort_key(arg[0].as_independent(x)[1]) #optimizing the number of permutations of mappping unnecessary_permutations = [(x, mapping[x])] del mapping[x] mapping = sorted(list(mapping.items()), key=_sort_key, reverse=True) mappings = permutations(mapping) def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [_substitute(cancel(g.diff(x))) for g in terms] denoms = [g.as_numer_denom()[1] for g in diffs] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch( f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep * result return None numers = [cancel(denom * g) for g in diffs] def _derivation(h): return Add(*[d * h.diff(v) for d, v in zip(numers, V)]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c) * gcd(q, q.diff(y)).as_expr() else: return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0] * q_split[0] * s, c_split[1] * q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + _substitute(term)**2] = False elif term.func is tanh: special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif term.func is C.LambertW: special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = list(v_split) + [u_split[0]] + list(special.keys()) s = u_split[0] * Mul(*[k for k, v in special.items() if v]) polified = [p.as_poly(*V) for p in [s, P, Q]] if None in polified: return None a, b, c = [p.total_degree() for p in polified] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([_exponent(h) for h in g.args]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = itermonomials(V, A + B - 1 + degree_offset) else: monoms = itermonomials(V, A + B + degree_offset) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add( *[poly_coeffs[i] * monomial for i, monomial in enumerate(monoms)]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def _integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break else: continue irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) for i, poly in enumerate(irreducibles): if poly.has(*V): log_coeffs.append(B[i]) log_part.append(log_coeffs[-1] * log(poly)) coeffs = poly_coeffs + log_coeffs # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancelation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part / poly_denom + Add(*log_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(coeffs) | set(V) non_syms = set([]) def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(coeffs, ground) ring = PolyRing(V, coeff_ring) numer = ring.from_expr(raw_numer) solution = solve_lin_sys(numer.coeffs(), coeff_ring) if solution is None: return None else: # If the ring is RR k.as_expr() will be 1.0*A solution = [(k.as_expr().as_coeff_Mul()[1], v.as_expr()) for k, v in solution.items()] return candidate.subs(solution).subs( list(zip(coeffs, [S.Zero] * len(coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep * antideriv else: if retries >= 0: result = heurisch( f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep * result return None
def _invert_real(f, g_ys, symbol): """ Helper function for invert_real """ if not f.has(symbol): raise ValueError("Inverse of constant function doesn't exist") if f is symbol: return (f, g_ys) n = Dummy('n') if hasattr(f, 'inverse') and not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_real(f.args[0], Union(imageset(Lambda(n, n), g_ys).intersect(Interval(0, oo)), imageset(Lambda(n, -n), g_ys).intersect(Interval(-oo, 0))), symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g != S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g != S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if numer == S.One or numer == - S.One: return _invert_real(base, res, symbol) else: if numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: return _invert_real(expo, imageset(Lambda(n, log(n)/log(base)), g_ys), symbol) if isinstance(f, sin): n = Dummy('n') if isinstance(g_ys, FiniteSet): sin_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*asin(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], sin_invs, symbol) if isinstance(f, csc): n = Dummy('n') if isinstance(g_ys, FiniteSet): csc_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*acsc(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], csc_invs, symbol) if isinstance(f, cos): n = Dummy('n') if isinstance(g_ys, FiniteSet): cos_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs = Union(cos_invs_f1, cos_invs_f2) return _invert_real(f.args[0], cos_invs, symbol) if isinstance(f, sec): n = Dummy('n') if isinstance(g_ys, FiniteSet): sec_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs = Union(sec_invs_f1, sec_invs_f2) return _invert_real(f.args[0], sec_invs, symbol) if isinstance(f, tan) or isinstance(f, cot): n = Dummy('n') if isinstance(g_ys, FiniteSet): tan_cot_invs = Union(*[imageset(Lambda(n, n*pi + f.inverse()(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], tan_cot_invs, symbol) return (f, g_ys)
def _expr_small(cls, a, z): return cos(2 * a * asin(sqrt(z)))
def test_tensorflow_math(): if not tf: skip("TensorFlow not installed") expr = Abs(x) assert tensorflow_code(expr) == "tensorflow.math.abs(x)" _compare_tensorflow_scalar((x, ), expr) expr = sign(x) assert tensorflow_code(expr) == "tensorflow.math.sign(x)" _compare_tensorflow_scalar((x, ), expr) expr = ceiling(x) assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = floor(x) assert tensorflow_code(expr) == "tensorflow.math.floor(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = exp(x) assert tensorflow_code(expr) == "tensorflow.math.exp(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = sqrt(x) assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = x**4 assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = cos(x) assert tensorflow_code(expr) == "tensorflow.math.cos(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = acos(x) assert tensorflow_code(expr) == "tensorflow.math.acos(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(0, 0.95)) expr = sin(x) assert tensorflow_code(expr) == "tensorflow.math.sin(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = asin(x) assert tensorflow_code(expr) == "tensorflow.math.asin(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = tan(x) assert tensorflow_code(expr) == "tensorflow.math.tan(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = atan(x) assert tensorflow_code(expr) == "tensorflow.math.atan(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = atan2(y, x) assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = acosh(x) assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert tensorflow_code(expr) == "tensorflow.math.erf(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = loggamma(x) assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())
def _expr_small(cls, z): return asin(sqrt(z)) / sqrt(z)
def _invert_real(f, g_ys, symbol): """ Helper function for invert_real """ if not f.has(symbol): raise ValueError("Inverse of constant function doesn't exist") if f is symbol: return (f, g_ys) n = Dummy('n') if hasattr(f, 'inverse') and not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_real( f.args[0], Union( imageset(Lambda(n, n), g_ys).intersect(Interval(0, oo)), imageset(Lambda(n, -n), g_ys).intersect(Interval(-oo, 0))), symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g != S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g != S.One: return _invert_real(h, imageset(Lambda(n, n / g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if numer == S.One or numer == -S.One: return _invert_real(base, res, symbol) else: if numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: return _invert_real(expo, imageset(Lambda(n, log(n) / log(base)), g_ys), symbol) if isinstance(f, sin): n = Dummy('n') if isinstance(g_ys, FiniteSet): sin_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*asin(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], sin_invs, symbol) if isinstance(f, csc): n = Dummy('n') if isinstance(g_ys, FiniteSet): csc_invs = Union(*[imageset(Lambda(n, n*pi + (-1)**n*acsc(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], csc_invs, symbol) if isinstance(f, cos): n = Dummy('n') if isinstance(g_ys, FiniteSet): cos_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - acos(g_y)), \ S.Integers) for g_y in g_ys]) cos_invs = Union(cos_invs_f1, cos_invs_f2) return _invert_real(f.args[0], cos_invs, symbol) if isinstance(f, sec): n = Dummy('n') if isinstance(g_ys, FiniteSet): sec_invs_f1 = Union(*[imageset(Lambda(n, 2*n*pi + asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs_f2 = Union(*[imageset(Lambda(n, 2*n*pi - asec(g_y)), \ S.Integers) for g_y in g_ys]) sec_invs = Union(sec_invs_f1, sec_invs_f2) return _invert_real(f.args[0], sec_invs, symbol) if isinstance(f, tan) or isinstance(f, cot): n = Dummy('n') if isinstance(g_ys, FiniteSet): tan_cot_invs = Union(*[imageset(Lambda(n, n*pi + f.inverse()(g_y)), \ S.Integers) for g_y in g_ys]) return _invert_real(f.args[0], tan_cot_invs, symbol) return (f, g_ys)
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None): """ Compute indefinite integral using heuristic Risch algorithm. This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral components """ f = sympify(f) if x not in f.free_symbols: return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): if g.is_Function: if g.func is li: M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif g.func is exp: M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add((-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))) else: terms |= set(hints) for g in set(terms): terms |= components(cancel(g.diff(x)), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) mapping = dict(list(zip(terms, V))) rev_mapping = {} if unnecessary_permutations is None: unnecessary_permutations = [] for k, v in mapping.items(): rev_mapping[v] = k if mappings is None: # Pre-sort mapping in order of largest to smallest expressions (last is always x). def _sort_key(arg): return default_sort_key(arg[0].as_independent(x)[1]) #optimizing the number of permutations of mappping unnecessary_permutations = [(x, mapping[x])] del mapping[x] mapping = sorted(list(mapping.items()), key=_sort_key, reverse=True) mappings = permutations(mapping) def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(cancel(g.diff(x))) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() else: return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) else: return (S.One, p) special = {} for term in terms: if term.is_Function: if term.func is tan: special[1 + _substitute(term)**2] = False elif term.func is tanh: special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif term.func is C.LambertW: special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = list(v_split) + [ u_split[0] ] + list(special.keys()) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = itermonomials(V, A + B - 1 + degree_offset) else: monoms = itermonomials(V, A + B + degree_offset) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly factorization = poly if factorization.is_Mul: reducibles |= set(factorization.args) else: reducibles.add(factorization) def _integrate(field=None): irreducibles = set() for poly in reducibles: for z in poly.atoms(Symbol): if z in V: break else: continue irreducibles |= set(root_factors(poly, z, filter=field)) log_coeffs, log_part = [], [] B = _symbols('B', len(irreducibles)) for i, poly in enumerate(irreducibles): if poly.has(*V): log_coeffs.append(B[i]) log_part.append(log_coeffs[-1] * log(poly)) coeffs = poly_coeffs + log_coeffs # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancelation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(coeffs) | set(V) non_syms = set([]) def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(coeffs, ground) ring = PolyRing(V, coeff_ring) numer = ring.from_expr(raw_numer) solution = solve_lin_sys(numer.coeffs(), coeff_ring) if solution is None: return None else: solution = [ (k.as_expr(), v.as_expr()) for k, v in solution.items() ] return candidate.subs(solution).subs(list(zip(coeffs, [S.Zero]*len(coeffs)))) if not (F.atoms(Symbol) - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand(force=True) if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
def _expr_small(cls, a, z): return cos(2*a*asin(sqrt(z)))
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ Compute indefinite integral using heuristic Risch algorithm. Explanation =========== This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use top level 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": References ========== .. [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral sympy.integrals.heurisch.components """ f = sympify(f) # There are some functions that Heurisch cannot currently handle, # so do not even try. # Set _try_heurisch=True to skip this check if _try_heurisch is not True: if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg): return if not f.has_free(x): return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset))) else: monoms = tuple(ordered(itermonomials(V, A + B + degree_offset))) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in ordered(polys): coeff, factors = factor_list(poly, *V) reducibles.add(coeff) for fact, mul in factors: reducibles.add(fact) def _integrate(field=None): atans = set() pairs = set() if field == 'Q': irreducibles = set(reducibles) else: setV = set(V) irreducibles = set() for poly in ordered(reducibles): zV = setV & set(iterfreeargs(poly)) for z in ordered(zV): s = set(root_factors(poly, z, filter=field)) irreducibles |= s break log_part, atan_part = [], [] for poly in ordered(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(zip(ordered(irreducibles), B))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(zip(ordered(atans), C))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set() def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has_free(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.xreplace(solution).xreplace( dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if all(isinstance(_, Symbol) for _ in V): more_free = F.free_symbols - set(V) else: Fd = F.as_dummy() more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V))) ).free_symbols & Fd.free_symbols if not more_free: # all free generators are identified in V solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand() if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
def test_torch_math(): if not torch: skip("Torch not installed") ma = torch.tensor([[1, 2, -3, -4]]) expr = Abs(x) assert torch_code(expr) == "torch.abs(x)" f = lambdify(x, expr, 'torch') y = f(ma) c = torch.abs(ma) assert (y == c).all() expr = sign(x) assert torch_code(expr) == "torch.sign(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.randint(0, 10)) expr = ceiling(x) assert torch_code(expr) == "torch.ceil(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = floor(x) assert torch_code(expr) == "torch.floor(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = exp(x) assert torch_code(expr) == "torch.exp(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) # expr = sqrt(x) # assert torch_code(expr) == "torch.sqrt(x)" # _compare_torch_scalar((x,), expr, rng=lambda: random.random()) # expr = x ** 4 # assert torch_code(expr) == "torch.pow(x, 4)" # _compare_torch_scalar((x,), expr, rng=lambda: random.random()) expr = cos(x) assert torch_code(expr) == "torch.cos(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = acos(x) assert torch_code(expr) == "torch.acos(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(0, 0.95)) expr = sin(x) assert torch_code(expr) == "torch.sin(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = asin(x) assert torch_code(expr) == "torch.asin(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = tan(x) assert torch_code(expr) == "torch.tan(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = atan(x) assert torch_code(expr) == "torch.atan(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) # expr = atan2(y, x) # assert torch_code(expr) == "torch.atan2(y, x)" # _compare_torch_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert torch_code(expr) == "torch.cosh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = acosh(x) assert torch_code(expr) == "torch.acosh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert torch_code(expr) == "torch.sinh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert torch_code(expr) == "torch.asinh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert torch_code(expr) == "torch.tanh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert torch_code(expr) == "torch.atanh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert torch_code(expr) == "torch.erf(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = loggamma(x) assert torch_code(expr) == "torch.lgamma(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random())