def test_multiswap(self):
   with self.graph.as_default():
     a3 = tf.constant(3.0, shape=[2], name="a3")
   ge.reroute.swap(ge.sgv(a3.op).remap_outputs([0, 0]),
                   ge.sgv(self.a0.op, self.a1.op))
   self.assertTrue(ge.matcher("c0").input_ops("a3", "b0")(self.c0.op))
   self.assertTrue(ge.matcher("c1").input_ops("a3", "b1")(self.c1.op))
Beispiel #2
0
    def test_reroute(self):
        ge.reroute.reroute_a2b_ts([self.a0, self.b0], [self.a1, self.b1])
        self.assertTrue(ge.matcher("c0").input_ops("a0", "b0")(self.c0.op))
        self.assertTrue(ge.matcher("c1").input_ops("a0", "b0")(self.c1.op))

        ge.reroute.reroute_b2a_ts([self.a0, self.b0], [self.a1, self.b1])
        self.assertTrue(ge.matcher("c0").input_ops("a1", "b1")(self.c0.op))
        self.assertTrue(ge.matcher("c1").input_ops("a1", "b1")(self.c1.op))
Beispiel #3
0
 def test_multiswap(self):
     with self.graph.as_default():
         a3 = tf.constant(3.0, shape=[2], name="a3")
     ge.reroute.swap(
         ge.sgv(a3.op).remap_outputs([0, 0]),
         ge.sgv(self.a0.op, self.a1.op))
     self.assertTrue(ge.matcher("c0").input_ops("a3", "b0")(self.c0.op))
     self.assertTrue(ge.matcher("c1").input_ops("a3", "b1")(self.c1.op))
  def test_reroute(self):
    ge.reroute.reroute_a2b_ts([self.a0, self.b0], [self.a1, self.b1])
    self.assertTrue(ge.matcher("c0").input_ops("a0", "b0")(self.c0.op))
    self.assertTrue(ge.matcher("c1").input_ops("a0", "b0")(self.c1.op))

    ge.reroute.reroute_b2a_ts([self.a0, self.b0], [self.a1, self.b1])
    self.assertTrue(ge.matcher("c0").input_ops("a1", "b1")(self.c0.op))
    self.assertTrue(ge.matcher("c1").input_ops("a1", "b1")(self.c1.op))
Beispiel #5
0
 def test_detach(self):
   """Test for ge.detach."""
   sgv = ge.sgv(self.c.op, self.a.op)
   control_outputs = ge.util.ControlOutputs(self.graph)
   ge.detach(sgv, control_inputs=control_outputs)
   # make sure the detached graph is as expected.
   self.assertTrue(ge.matcher("^foo/c$")
                   .input_ops("geph__a_0", "geph__b_0")(self.c.op))
Beispiel #6
0
  def test_connect(self):
    """Test for ge.connect."""
    with self.graph.as_default():
      x = tf.constant([1., 1.], shape=[2], name="x")
      y = tf.constant([2., 2.], shape=[2], name="y")
      z = tf.add(x, y, name="z")

    sgv = ge.sgv(x.op, y.op, z.op)
    ge.connect(sgv, ge.sgv(self.e.op).remap_inputs([0]))
    self.assertTrue(ge.matcher("^foo/bar/e$").input_ops("^z$", "foo/d$")
                    (self.e.op))
  def test_reroute_can_modify(self):
    graph = tf.Graph()
    # create a special graph where "a" is an ambiguous tensor. That is
    # it is both an input and an output of the ops in sgv0.
    with graph.as_default():
      a = tf.constant(1.0, shape=[2], name="a")
      b = tf.constant(2.0, shape=[2], name="b")
      c = tf.add(a, b, name="c")
      d = tf.add(a, c, name="d")

      e = tf.constant(1.0, shape=[2], name="e")
      f = tf.constant(2.0, shape=[2], name="f")
      g = tf.add(e, f, name="g")

    sgv0 = ge.sgv(a.op, b.op, c.op)
    sgv1 = ge.sgv(e.op, f.op)

    ge.reroute.swap_outputs(sgv0, sgv1)
    self.assertTrue(ge.matcher("g").input_ops("a", ge.matcher("c")
                                              .input_ops("a", "b"))(g.op))
    self.assertTrue(ge.matcher("d").input_ops("e", "f")(d.op))
  def test_transform_in_place(self):
    transformer = ge.Transformer()
    def my_transform_op_handler_in_place(info, op):
      add_noise = op.name.startswith("Add")
      op = ge.transform.transform_op_in_place(info, op,
                                              detach_outputs=add_noise)
      if add_noise:
        # add some noise to op
        with info.graph_.as_default():
          t = tf.add(tf.constant(1.0, shape=[10], name="Noise"), op.outputs[0],
                     name="AddNoise")
        # return the "noisy" op
        return t.op
      else:
        return op
    transformer.transform_op_handler = my_transform_op_handler_in_place

    transformer(self.graph, self.graph, "", "")
    matcher0 = ge.matcher("AddNoise").input_ops(
        "Noise", ge.matcher("Add").input_ops("Const", "Input"))
    matcher1 = ge.matcher("AddNoise_1").input_ops(
        "Noise_1", ge.matcher("Add_1").input_ops("Const_1", matcher0))
    matcher2 = ge.matcher("AddNoise_2").input_ops(
        "Noise_2", ge.matcher("Add_2").input_ops("Const_2", matcher1))
    top = ge.select_ops("^AddNoise_2$", graph=self.graph)[0]
    self.assertTrue(matcher2(top))
Beispiel #9
0
    def test_transform_in_place(self):
        transformer = ge.Transformer()

        def my_transform_op_handler_in_place(info, op):
            add_noise = op.name.startswith("Add")
            op = ge.transform.transform_op_in_place(info,
                                                    op,
                                                    detach_outputs=add_noise)
            if add_noise:
                # add some noise to op
                with info.graph_.as_default():
                    t = tf.add(tf.constant(1.0, shape=[10], name="Noise"),
                               op.outputs[0],
                               name="AddNoise")
                # return the "noisy" op
                return t.op
            else:
                return op

        transformer.transform_op_handler = my_transform_op_handler_in_place

        transformer(self.graph, self.graph, "", "")
        matcher0 = ge.matcher("AddNoise").input_ops(
            "Noise",
            ge.matcher("Add").input_ops("Const", "Input"))
        matcher1 = ge.matcher("AddNoise_1").input_ops(
            "Noise_1",
            ge.matcher("Add_1").input_ops("Const_1", matcher0))
        matcher2 = ge.matcher("AddNoise_2").input_ops(
            "Noise_2",
            ge.matcher("Add_2").input_ops("Const_2", matcher1))
        top = ge.select_ops("^AddNoise_2$", graph=self.graph)[0]
        self.assertTrue(matcher2(top))
Beispiel #10
0
    def test_transform(self):
        transformer = ge.Transformer()

        def my_transform_op_handler(info, op):
            add_noise = op.name.startswith("Add")
            op_ = ge.transform.copy_op_handler(info, op)
            if add_noise:
                # add some noise to op
                with info.graph_.as_default():
                    t_ = math_ops.add(constant_op.constant(1.0,
                                                           shape=[10],
                                                           name="Noise"),
                                      op_.outputs[0],
                                      name="AddNoise")
                # return the "noisy" op
                return t_.op
            else:
                return op_

        transformer.transform_op_handler = my_transform_op_handler

        graph = ops.Graph()
        transformer(self.graph, graph, "", "")
        matcher0 = ge.matcher("AddNoise").input_ops(
            "Noise",
            ge.matcher("Add").input_ops("Const", "Input"))
        matcher1 = ge.matcher("AddNoise_1").input_ops(
            "Noise_1",
            ge.matcher("Add_1").input_ops("Const_1", matcher0))
        matcher2 = ge.matcher("AddNoise_2").input_ops(
            "Noise_2",
            ge.matcher("Add_2").input_ops("Const_2", matcher1))
        top = ge.select_ops("^AddNoise_2$", graph=graph)[0]
        self.assertTrue(matcher2(top))
  def test_transform(self):
    transformer = ge.Transformer()

    def my_transform_op_handler(info, op):
      add_noise = op.name.startswith("Add")
      op_ = ge.transform.copy_op_handler(info, op)
      if add_noise:
        # add some noise to op
        with info.graph_.as_default():
          t_ = math_ops.add(constant_op.constant(
              1.0, shape=[10], name="Noise"),
                            op_.outputs[0],
                            name="AddNoise")
        # return the "noisy" op
        return t_.op
      else:
        return op_

    transformer.transform_op_handler = my_transform_op_handler

    graph = ops.Graph()
    transformer(self.graph, graph, "", "")
    matcher0 = ge.matcher("AddNoise").input_ops(
        "Noise", ge.matcher("Add").input_ops("Const", "Input"))
    matcher1 = ge.matcher("AddNoise_1").input_ops(
        "Noise_1", ge.matcher("Add_1").input_ops("Const_1", matcher0))
    matcher2 = ge.matcher("AddNoise_2").input_ops(
        "Noise_2", ge.matcher("Add_2").input_ops("Const_2", matcher1))
    top = ge.select_ops("^AddNoise_2$", graph=graph)[0]
    self.assertTrue(matcher2(top))
Beispiel #12
0
    def test_reroute_can_modify(self):
        graph = tf.Graph()
        # create a special graph where "a" is an ambiguous tensor. That is
        # it is both an input and an output of the ops in sgv0.
        with graph.as_default():
            a = tf.constant(1.0, shape=[2], name="a")
            b = tf.constant(2.0, shape=[2], name="b")
            c = tf.add(a, b, name="c")
            d = tf.add(a, c, name="d")

            e = tf.constant(1.0, shape=[2], name="e")
            f = tf.constant(2.0, shape=[2], name="f")
            g = tf.add(e, f, name="g")

        sgv0 = ge.sgv(a.op, b.op, c.op)
        sgv1 = ge.sgv(e.op, f.op)

        ge.reroute.swap_outputs(sgv0, sgv1)
        self.assertTrue(
            ge.matcher("g").input_ops("a",
                                      ge.matcher("c").input_ops("a",
                                                                "b"))(g.op))
        self.assertTrue(ge.matcher("d").input_ops("e", "f")(d.op))
Beispiel #13
0
 def test_simple_match(self):
   self.assertTrue(ge.matcher("^.*/f$")(self.f.op))
   self.assertTrue(
       ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$")(self.f.op))
   self.assertTrue(ge.matcher("^.*/f$").input_ops(True, "^.*/d$")(self.f.op))
   self.assertTrue(
       ge.matcher("^.*/f$").input_ops(
           ge.match.op_type("Add"), ge.match.op_type("Const"))(self.f.op))
   self.assertTrue(
       ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$")
       .output_ops(ge.matcher("^.*/h$")
                   .control_input_ops("^.*/c$"))(self.f.op))
   self.assertTrue(
       ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$").output_ops(
           ge.matcher("^.*/h$").control_input_ops("^.*/c$")
           .output_ops([]))(self.f.op))
 def test_simple_match(self):
     self.assertTrue(ge.matcher("^.*/f$")(self.f.op))
     self.assertTrue(
         ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$")(self.f.op))
     self.assertTrue(
         ge.matcher("^.*/f$").input_ops(True, "^.*/d$")(self.f.op))
     self.assertTrue(
         ge.matcher("^.*/f$").input_ops(ge.match.op_type("Add"),
                                        ge.match.op_type("Const"))(
                                            self.f.op))
     self.assertTrue(
         ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$").output_ops(
             ge.matcher("^.*/h$").control_input_ops("^.*/c$"))(self.f.op))
     self.assertTrue(
         ge.matcher("^.*/f$").input_ops("^.*/c$", "^.*/d$").output_ops(
             ge.matcher("^.*/h$").control_input_ops("^.*/c$").output_ops(
                 []))(self.f.op))
Beispiel #15
0
 def test_bypass(self):
   """Test for ge.bypass."""
   ge.bypass(ge.sgv(self.f.op).remap_inputs([0]))
   self.assertTrue(ge.matcher("^foo/bar/h$").input_ops("^foo/c$", "foo/bar/g$")
                   (self.h.op))