Beispiel #1
0
def test_Dimshuffle_lift_restrictions():
    rng = shared(np.random.RandomState(1233532), borrow=False)

    x = normal(tt.arange(2).reshape((2, )), 100, size=(2, 2, 2), rng=rng)
    y = x.dimshuffle(1, 0, 2)
    # The non-`Dimshuffle` client depends on the RNG state, so we can't
    # perform the lift
    z = x - y

    fg = FunctionGraph([rng], [z], clone=False)
    _ = EquilibriumOptimizer([local_dimshuffle_rv_lift],
                             max_use_ratio=100).apply(fg)

    dimshuffle_node = fg.outputs[0].owner.inputs[1].owner
    assert dimshuffle_node == y.owner
    assert isinstance(dimshuffle_node.op, DimShuffle)
    assert dimshuffle_node.inputs[0].owner.op == normal

    # The non-`Dimshuffle` client doesn't depend on the RNG state, so we can
    # perform the lift
    z = tt.ones(x.shape) - y

    fg = FunctionGraph([rng], [z], clone=False)
    EquilibriumOptimizer([local_dimshuffle_rv_lift],
                         max_use_ratio=100).apply(fg)

    rv_node = fg.outputs[0].owner.inputs[1].owner
    assert rv_node.op == normal
    assert isinstance(rv_node.inputs[-1].owner.op, DimShuffle)
    assert isinstance(rv_node.inputs[-2].owner.op, DimShuffle)
Beispiel #2
0
def test_Subtensor_lift_restrictions():
    rng = shared(np.random.RandomState(1233532), borrow=False)

    std = tt.vector("std")
    std.tag.test_value = np.array([1e-5, 2e-5, 3e-5], dtype=config.floatX)
    x = normal(tt.arange(2), tt.ones(2), rng=rng)
    y = x[1]
    # The non-`Subtensor` client depends on the RNG state, so we can't perform
    # the lift
    z = x - y

    fg = FunctionGraph([rng], [z], clone=False)
    _ = EquilibriumOptimizer([local_subtensor_rv_lift],
                             max_use_ratio=100).apply(fg)

    subtensor_node = fg.outputs[0].owner.inputs[1].owner.inputs[0].owner
    assert subtensor_node == y.owner
    assert isinstance(subtensor_node.op, Subtensor)
    assert subtensor_node.inputs[0].owner.op == normal

    # The non-`Subtensor` client doesn't depend on the RNG state, so we can
    # perform the lift
    z = tt.ones(x.shape) - x[1]

    fg = FunctionGraph([rng], [z], clone=False)
    EquilibriumOptimizer([local_subtensor_rv_lift],
                         max_use_ratio=100).apply(fg)

    rv_node = fg.outputs[0].owner.inputs[1].owner.inputs[0].owner
    assert rv_node.op == normal
    assert isinstance(rv_node.inputs[-1].owner.op, Subtensor)
    assert isinstance(rv_node.inputs[-2].owner.op, Subtensor)
Beispiel #3
0
 def test_1(self):
     x, y, z = map(MyVariable, 'xyz')
     e = op3(op4(x, y))
     g = FunctionGraph([x, y, z], [e])
     # print g
     opt = EquilibriumOptimizer(
         [PatternSub((op1, 'x', 'y'), (op2, 'x', 'y')),
          PatternSub((op4, 'x', 'y'), (op1, 'x', 'y')),
          PatternSub((op3, (op2, 'x', 'y')), (op4, 'x', 'y'))
          ],
         max_use_ratio=10)
     opt.optimize(g)
     # print g
     assert str(g) == '[Op2(x, y)]'
 def test_1(self):
     x, y, z = map(MyVariable, 'xyz')
     e = op3(op4(x, y))
     g = FunctionGraph([x, y, z], [e])
     # print g
     opt = EquilibriumOptimizer([
         PatternSub((op1, 'x', 'y'), (op2, 'x', 'y')),
         PatternSub((op4, 'x', 'y'), (op1, 'x', 'y')),
         PatternSub((op3, (op2, 'x', 'y')), (op4, 'x', 'y'))
     ],
                                max_use_ratio=10)
     opt.optimize(g)
     # print g
     assert str(g) == '[Op2(x, y)]'
Beispiel #5
0
 def test_1(self):
     x, y, z = map(MyVariable, "xyz")
     e = op3(op4(x, y))
     g = FunctionGraph([x, y, z], [e])
     # print g
     opt = EquilibriumOptimizer(
         [
             PatternSub((op1, "x", "y"), (op2, "x", "y")),
             PatternSub((op4, "x", "y"), (op1, "x", "y")),
             PatternSub((op3, (op2, "x", "y")), (op4, "x", "y")),
         ],
         max_use_ratio=10,
     )
     opt.optimize(g)
     # print g
     assert str(g) == "FunctionGraph(Op2(x, y))"
Beispiel #6
0
def test_DimShuffle_lift(ds_order, lifted, dist_op, dist_params, size, rtol):

    rng = shared(np.random.RandomState(1233532), borrow=False)

    dist_params_tt = []
    for p in dist_params:
        p_tt = tt.as_tensor(p).type()
        p_tt.tag.test_value = p
        dist_params_tt.append(p_tt)

    size_tt = []
    for s in size:
        s_tt = tt.iscalar()
        s_tt.tag.test_value = s
        size_tt.append(s_tt)

    dist_st = dist_op(*dist_params_tt, size=size_tt,
                      rng=rng).dimshuffle(ds_order)

    f_inputs = [
        p for p in dist_params_tt + size_tt
        if not isinstance(p, (slice, Constant))
    ]

    mode = Mode(
        "py",
        EquilibriumOptimizer([local_dimshuffle_rv_lift], max_use_ratio=100))

    f_opt = function(
        f_inputs,
        dist_st,
        mode=mode,
    )

    (new_out, ) = f_opt.maker.fgraph.outputs

    if lifted:
        assert new_out.owner.op == dist_op
        assert all(
            isinstance(i.owner.op, DimShuffle)
            for i in new_out.owner.inputs[3:] if i.owner)
    else:
        assert isinstance(new_out.owner.op, DimShuffle)
        return

    f_base = function(
        f_inputs,
        dist_st,
        mode=no_mode,
    )

    arg_values = [p.get_test_value() for p in f_inputs]
    res_base = f_base(*arg_values)
    res_opt = f_opt(*arg_values)

    np.testing.assert_allclose(res_base, res_opt, rtol=rtol)
Beispiel #7
0
 def test_low_use_ratio(self):
     x, y, z = map(MyVariable, 'xyz')
     e = op3(op4(x, y))
     g = FunctionGraph([x, y, z], [e])
     # print 'before', g
     # display pesky warnings along with stdout
     # also silence logger for 'theano.gof.opt'
     _logger = logging.getLogger('theano.gof.opt')
     oldlevel = _logger.level
     _logger.setLevel(logging.CRITICAL)
     try:
         opt = EquilibriumOptimizer(
             [PatternSub((op1, 'x', 'y'), (op2, 'x', 'y')),
              PatternSub((op4, 'x', 'y'), (op1, 'x', 'y')),
              PatternSub((op3, (op2, 'x', 'y')), (op4, 'x', 'y'))
              ],
             max_use_ratio=1. / len(g.apply_nodes))  # each opt can only be applied once
         opt.optimize(g)
     finally:
         _logger.setLevel(oldlevel)
     # print 'after', g
     assert str(g) == '[Op1(x, y)]'
Beispiel #8
0
 def test_low_use_ratio(self):
     x, y, z = map(MyVariable, "xyz")
     e = op3(op4(x, y))
     g = FunctionGraph([x, y, z], [e])
     # print 'before', g
     # display pesky warnings along with stdout
     # also silence logger for 'theano.gof.opt'
     _logger = logging.getLogger("theano.gof.opt")
     oldlevel = _logger.level
     _logger.setLevel(logging.CRITICAL)
     try:
         opt = EquilibriumOptimizer(
             [
                 PatternSub((op1, "x", "y"), (op2, "x", "y")),
                 PatternSub((op4, "x", "y"), (op1, "x", "y")),
                 PatternSub((op3, (op2, "x", "y")), (op4, "x", "y")),
             ],
             max_use_ratio=1.0 / len(g.apply_nodes),
         )  # each opt can only be applied once
         opt.optimize(g)
     finally:
         _logger.setLevel(oldlevel)
     # print 'after', g
     assert str(g) == "FunctionGraph(Op1(x, y))"
Beispiel #9
0
def test_kanren_opt():
    """Make sure we can run miniKanren "optimizations" over a graph until a fixed-point/normal-form is reached.
    """
    tt.config.cxx = ""
    tt.config.compute_test_value = "ignore"

    x_tt = tt.vector("x")
    c_tt = tt.vector("c")
    d_tt = tt.vector("c")
    A_tt = tt.matrix("A")
    B_tt = tt.matrix("B")

    Z_tt = A_tt.dot(x_tt + B_tt.dot(c_tt + d_tt))

    fgraph = FunctionGraph(tt_inputs([Z_tt]), [Z_tt], clone=True)

    assert isinstance(fgraph.outputs[0].owner.op, tt.Dot)

    def distributes(in_lv, out_lv):
        return lall(
            # lhs == A * (x + b)
            eq(etuple(mt.dot, var("A"), etuple(mt.add, var("x"), var("b"))),
               etuplize(in_lv)),
            # rhs == A * x + A * b
            eq(
                etuple(mt.add, etuple(mt.dot, var("A"), var("x")),
                       etuple(mt.dot, var("A"), var("b"))),
                out_lv,
            ),
        )

    distribute_opt = EquilibriumOptimizer([KanrenRelationSub(distributes)],
                                          max_use_ratio=10)

    fgraph_opt = optimize_graph(fgraph, distribute_opt, return_graph=False)

    assert fgraph_opt.owner.op == tt.add
    assert isinstance(fgraph_opt.owner.inputs[0].owner.op, tt.Dot)
    # TODO: Something wrong with `etuple` caching?
    # assert fgraph_opt.owner.inputs[0].owner.inputs[0] == A_tt
    assert fgraph_opt.owner.inputs[0].owner.inputs[0].name == "A"
    assert fgraph_opt.owner.inputs[1].owner.op == tt.add
    assert isinstance(fgraph_opt.owner.inputs[1].owner.inputs[0].owner.op,
                      tt.Dot)
    assert isinstance(fgraph_opt.owner.inputs[1].owner.inputs[1].owner.op,
                      tt.Dot)
def test_mvnormal_mvnormal():
    a_tt = tt.vector('a')
    R_tt = tt.matrix('R')
    F_t_tt = tt.matrix('F')
    V_tt = tt.matrix('V')

    a_tt.tag.test_value = np.r_[1., 0.]
    R_tt.tag.test_value = np.diag([10., 10.])
    F_t_tt.tag.test_value = np.c_[-2., 1.]
    V_tt.tag.test_value = np.diag([0.5])

    beta_rv = MvNormalRV(a_tt, R_tt, name='\\beta')

    E_y_rv = F_t_tt.dot(beta_rv)
    Y_rv = MvNormalRV(E_y_rv, V_tt, name='Y')

    y_tt = tt.as_tensor_variable(np.r_[-3.])
    y_tt.name = 'y'
    Y_obs = observed(y_tt, Y_rv)

    fgraph = FunctionGraph(tt_inputs([beta_rv, Y_obs]), [beta_rv, Y_obs],
                           clone=True)

    posterior_opt = EquilibriumOptimizer(
        [KanrenRelationSub(conjugate_posteriors)], max_use_ratio=10)

    fgraph_opt = optimize_graph(fgraph, posterior_opt, return_graph=False)

    # Make sure that it removed the old, integrated observation distribution.
    assert fgraph_opt[1].owner.inputs[1].equals(tt.NoneConst)

    # Check that the SSE has decreased from prior to posterior.
    # TODO: Use a better test.
    beta_prior_mean_val = a_tt.tag.test_value
    F_val = F_t_tt.tag.test_value
    beta_post_mean_val = fgraph_opt[0].owner.inputs[0].tag.test_value
    priorp_err = np.square(y_tt.data - F_val.dot(beta_prior_mean_val)).sum()
    postp_err = np.square(y_tt.data - F_val.dot(beta_post_mean_val)).sum()

    # First, make sure the prior and posterior means are simply not equal.
    np.testing.assert_raises(AssertionError, np.testing.assert_array_equal,
                             priorp_err, postp_err)
    # Now, make sure there's a decrease (relative to the observed point).
    np.testing.assert_array_less(postp_err, priorp_err)
Beispiel #11
0
def test_Subtensor_lift(indices, lifted, dist_op, dist_params, size):

    rng = shared(np.random.RandomState(1233532), borrow=False)

    dist_params_tt = []
    for p in dist_params:
        p_tt = tt.as_tensor(p).type()
        p_tt.tag.test_value = p
        dist_params_tt.append(p_tt)

    size_tt = []
    for s in size:
        s_tt = tt.iscalar()
        s_tt.tag.test_value = s
        size_tt.append(s_tt)

    from theano.tensor.subtensor import as_index_constant

    indices_tt = ()
    for i in indices:
        i_tt = as_index_constant(i)
        if not isinstance(i_tt, slice):
            i_tt.tag.test_value = i
        indices_tt += (i_tt, )

    dist_st = dist_op(*dist_params_tt, size=size_tt, rng=rng)[indices_tt]

    f_inputs = [
        p for p in dist_params_tt + size_tt + list(indices_tt)
        if not isinstance(p, (slice, Constant))
    ]

    mode = Mode(
        "py", EquilibriumOptimizer([local_subtensor_rv_lift],
                                   max_use_ratio=100))

    f_opt = function(
        f_inputs,
        dist_st,
        mode=mode,
    )

    (new_out, ) = f_opt.maker.fgraph.outputs

    if lifted:
        assert isinstance(new_out.owner.op, RandomVariable)
        assert all(
            isinstance(i.owner.op, (AdvancedSubtensor, AdvancedSubtensor1,
                                    Subtensor))
            for i in new_out.owner.inputs[3:] if i.owner)
    else:
        assert isinstance(new_out.owner.op,
                          (AdvancedSubtensor, AdvancedSubtensor1, Subtensor))
        return

    f_base = function(
        f_inputs,
        dist_st,
        mode=no_mode,
    )

    arg_values = [p.get_test_value() for p in f_inputs]
    res_base = f_base(*arg_values)
    res_opt = f_opt(*arg_values)

    np.testing.assert_allclose(res_base, res_opt, rtol=1e-3)
Beispiel #12
0
def logp(*output_vars):
    """Compute the log-likelihood for a graph.

    Parameters
    ----------
    *output_vars: Tuple[TensorVariable]
        The output of a graph containing `RandomVariable`s.

    Results
    -------
    Dict[TensorVariable, TensorVariable]
        A map from `RandomVariable`s to their log-likelihood graphs.

    """
    # model_inputs = [i for i in tt_inputs(output_vars) if not isinstance(i, tt.Constant)]
    model_inputs = tt_inputs(output_vars)
    model_fgraph = FunctionGraph(
        model_inputs,
        output_vars,
        clone=True,
        # XXX: `ShapeFeature` introduces cached constants
        # features=[tt.opt.ShapeFeature()]
    )

    canonicalize_opt = optdb.query(Query(include=["canonicalize"]))
    push_out_opt = EquilibriumOptimizer([push_out_rvs_from_scan],
                                        max_use_ratio=10)
    optimizations = SeqOptimizer(canonicalize_opt.copy())
    optimizations.append(push_out_opt)
    opt_fgraph = optimize_graph(model_fgraph, optimizations, in_place=True)

    replacements = {}
    rv_to_logp_io = {}
    for node in opt_fgraph.toposort():
        # TODO: This `RandomVariable` "parsing" should be generalized and used
        # in more places (e.g. what if the outer-outputs are `Subtensor`s)
        if isinstance(node.op, RandomVariable):
            var = node.default_output()
            # shape = list(node.fgraph.shape_feature.shape_tuple(new_var))
            shape = None
            new_input_var = var.clone()
            if new_input_var.name:
                new_input_var.name = new_input_var.name.lower()
            replacements[var] = new_input_var
            rv_to_logp_io[var] = (new_input_var,
                                  _logp_fn(node.op, var.owner,
                                           shape)(new_input_var))

        if isinstance(node.op, tt.Subtensor) and node.inputs[0].owner:
            # The output of `theano.scan` is sometimes a sliced tensor (in
            # order to get rid of initial values introduced by in the `Scan`)
            node = node.inputs[0].owner

        if isinstance(node.op, Scan):
            scan_args = ScanArgs.from_node(node)
            rv_outer_outs = get_random_outer_outputs(scan_args)

            for var_idx, var, io_var in rv_outer_outs:
                scan_args, new_oi_var = convert_outer_out_to_in(
                    scan_args,
                    var,
                    inner_out_fn=create_inner_out_logp,
                    output_scan_args=scan_args)
                replacements[var] = new_oi_var

            logp_scan_out = construct_scan(scan_args)

            for var_idx, var, io_var in rv_outer_outs:
                rv_to_logp_io[var] = (replacements[var],
                                      logp_scan_out[var_idx])

    # We need to use the new log-likelihood input variables that were generated
    # for each `RandomVariable` node.  They need to replace the corresponding
    # original variables within each log-likelihood graph.
    rv_vars, inputs_logp_outputs = zip(*rv_to_logp_io.items())
    new_inputs, logp_outputs = zip(*inputs_logp_outputs)

    rev_memo = {v: k for k, v in model_fgraph.memo.items()}

    # Replace the new cloned variables with the original ones, but only if
    # they're not any of `RandomVariable` terms we've converted to
    # log-likelihoods.
    replacements.update({
        k: v
        for k, v in rev_memo.items() if isinstance(k, tt.Variable)
        and v not in new_inputs and k not in replacements
    })

    new_logp_outputs = tt_clone(logp_outputs, replace=replacements)

    rv_to_logp_io = {
        rev_memo[k]: v
        for k, v in zip(rv_vars, zip(new_inputs, new_logp_outputs))
    }

    return rv_to_logp_io