Beispiel #1
0
    def caltrackmsd(self, m_to_p=0.0645, fps=2, plot=True):
        try:
            import trackpy as tp
        except ImportError:
            print('... install trackpy')
            exit

        if len(self._tdata) == 0:
            print('... add track data')
            exit

        em = tp.emsd(self._tdata, m_to_p, fps)
        a = tp.utils.fit_powerlaw(em, plot=False)
        tnumber = np.unique(self._tdata['particle'].values).max()+1

        if plot:
            fig = plt.figure(figsize=(6,4))
            x = pd.Series(em.index.values, index=em.index, dtype=np.float64)
            fits = x.apply(lambda x: a['A']*x**a['n'])
            plt.plot(em.index, em, 'o', label='exp. %i tracks' % tnumber)
            plt.plot(x, fits, label='y=%.4f x^{%.4f}'% (a['A'], a['n']))
            ax = plt.gca()
            ax.set_xscale('log')
            ax.set_yscale('log')
            ax.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]', xlabel='lag time $t$')
            plt.legend(loc='best')
            plt.tight_layout()
            fname = self._cwd.split('/')[-1]+'_trace_msd.pdf'
            plt.savefig(fname, dpi=300)

            plt.show()

        return a
Beispiel #2
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N)).iloc[1:].astype('float64')
     expected.index.name = 'lagt'
     expected.name = 'msd'
     assert_series_equal(actual, expected)
Beispiel #3
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N)).iloc[1:].astype('float64')
     expected.index.name = 'lagt'
     expected.name = 'msd'
     assert_series_equal(actual, expected)
def compute_emsd(traj, DT, omit_time=0, printing=False, DS=0.025):
    '''traj is a pandas.DataFrame instance with columns "frame", "particle", "x" and "y" containing the results of unwrapped trajectories.
    returns a pandas.DataFrane instance containing the ensemble mean squared displacement.'''
    #remove the first and last 150ms of each input trajectory by default
    n_rows_omit = int(omit_time / DT)
    indices_of_head = traj.groupby('particle').head(n_rows_omit).index
    indices_of_tail = traj.groupby('particle').tail(n_rows_omit).index
    drop_id_lst = list(indices_of_head.values)
    drop_id_lst.extend(list(indices_of_tail.values))
    traj.drop(index=drop_id_lst, inplace=True)
    #truncate max lag to the min lifetime
    len_lst = traj.groupby('particle').x.count().values
    if len(len_lst) == 0:
        return None
    max_lag = np.min(len_lst)  #frames
    #compute ensemble MSD
    emsd = trackpy.emsd(
        traj=traj,
        mpp=DS,
        fps=1 / DT,
        max_lagtime=max_lag,
        detail=False,
        pos_columns=None,
    )
    if printing:
        print(f'max_lag was {DT*max_lag} ms')
    return emsd
Beispiel #5
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N, dtype=np.float),
                       index=np.arange(N, dtype=np.float)).iloc[1:]
     expected.index.name = 'lagt'
     expected.name = 'msd'
     assert_series_equal(actual, expected)
Beispiel #6
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N, dtype=np.float),
                       index=np.arange(N, dtype=np.float)).iloc[1:]
     expected.index.name = 'lagt'
     expected.name = 'msd'
     assert_series_equal(actual, expected)
def _compute_general_msd(trajectory, space_scale, fps, max_lagtime=100):

    # Calculate the MSD
    msd = tp.emsd(trajectory, space_scale, fps, max_lagtime=max_lagtime)

    # Format into a 2-D numpy array
    msd = np.array([msd.index, msd.to_numpy()])

    return msd.T
Beispiel #8
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N, dtype=np.float),
                       index=np.arange(N, dtype=np.float)).iloc[1:]
     expected.index.name = 'lagt'
     expected.name = 'msd'
     # HACK: Float64Index imprecision ruins index equality.
     # Test them separately. If that works, make them exactly the same.
     assert_almost_equal(actual.index.values, expected.index.values)
     actual.index = expected.index
     assert_series_equal(actual, expected)
Beispiel #9
0
 def test_zero_emsd(self):
     N = 10
     actual = tp.emsd(self.dead_still, 1, 1)
     expected = Series(np.zeros(N, dtype=np.float),
                       index=np.arange(N, dtype=np.float)).iloc[1:]
     expected.index.name = 'lagt'
     expected.name = 'msd'
     # HACK: Float64Index imprecision ruins index equality.
     # Test them separately. If that works, make them exactly the same.
     assert_almost_equal(actual.index.values, expected.index.values)
     actual.index = expected.index
     assert_series_equal(actual, expected)
Beispiel #10
0
 def test_linear_emsd(self):
     A = 1
     EARLY = 7  # only early lag times have good stats
     actual = tp.emsd(self.many_walks, 1, 1, max_lagtime=EARLY)
     a = np.arange(EARLY + 1, dtype='float64')
     expected = Series(2 * A * a, index=a).iloc[1:]
     expected.name = 'msd'
     expected.index.name = 'lagt'
     # HACK: Float64Index imprecision ruins index equality.
     # Test them separately. If that works, make them exactly the same.
     assert_almost_equal(actual.index.values, expected.index.values)
     actual.index = expected.index
     assert_series_equal(np.round(actual), expected)
Beispiel #11
0
 def test_linear_emsd(self):
     A = 1
     EARLY = 7 # only early lag times have good stats
     actual = tp.emsd(self.many_walks, 1, 1, max_lagtime=EARLY)
     a = np.arange(EARLY, dtype='float64')
     expected = Series(2*A*a, index=a).iloc[1:]
     expected.name = 'msd'
     expected.index.name = 'lag time [s]'
     # HACK: Float64Index imprecision ruins index equality.
     # Test them separately. If that works, make them exactly the same.
     assert_almost_equal(actual.index.values, expected.index.values)
     actual.index = expected.index
     assert_series_equal(np.round(actual), expected)
Beispiel #12
0
    def test_linear_emsd_gaps(self):
        A = 1
        EARLY = 4  # only early lag times have good stats
        gapped_walks = self.many_walks.reset_index(drop=True)
        to_drop = np.random.choice(gapped_walks.index,
                                   int(len(gapped_walks) * 0.1), replace=False)
        gapped_walks = gapped_walks.drop(to_drop, axis=0)

        actual = tp.emsd(gapped_walks, 1, 1, max_lagtime=EARLY)
        a = np.arange(EARLY+1, dtype='float64')
        expected = Series(2*A*a, index=a).iloc[1:]
        expected.name = 'msd'
        expected.index.name = 'lagt'
        # HACK: Float64Index imprecision ruins index equality.
        # Test them separately. If that works, make them exactly the same.
        assert_almost_equal(actual.index.values, expected.index.values)
        actual.index = expected.index
        assert_series_equal(np.round(actual), expected)
Beispiel #13
0
def nd2msd(nd_fh,
           params_locate_start={'diameter':11,'minmass_percentile':92},
           params_msd={'mpp':0.0645,'fps':0.2, 'max_lagtime':100},
          get_coords=True,out_fh=None):
    frames=nd2frames(nd_fh)
    t_cor=frames2coords_cor(frames,params_locate_start=params_locate_start,params_msd=params_msd,out_fh=out_fh)
    # debug
    imsd=tp.imsd(t_cor,statistic='msd',**params_msd)
    emsd=tp.emsd(t_cor,**params_msd)
    emsd=pd.DataFrame(emsd)
    emsd.index.name='lag time [s]'
    # print emsd
    
    import statsmodels.tsa.stattools as st
    acf=pd.DataFrame(columns=emsd.columns)
    for c in emsd:
        acf[c]=st.acf(emsd.loc[:,c],nlags=len(emsd))
    acf.index=emsd.index
    
    if not out_fh is None:
        figure=plt.figure()
        ax=plt.subplot(111)
        acf.plot(ax=ax)
        plt.savefig('%s.acf.pdf' % out_fh,format='pdf')
#         plt.clf()
    
    if not out_fh is None:
        imsd.to_csv(out_fh+".imsd")
        emsd.to_csv(out_fh+".emsd")
        acf.to_csv(out_fh+".acf")
        dpkl={}
        dpkl['imsd']=imsd
        dpkl['emsd']=emsd
        dpkl['acf']=acf
#         dpkl['t']=t
#         dpkl['t_flt']=t_flt
#         dpkl['f_batch']=f_batch
        dpkl['t_cor']=t_cor
        to_pkl(dpkl,out_fh+".pkl")
        if get_coords:
            t_cor.to_csv(out_fh+".coords")
    return imsd,emsd
Beispiel #14
0
def nd2msd(nd_fh):
    # print nd_fh
    frames=pims.ND2_Reader(nd_fh)
    logging.info('number of frames = %d' % len(np.shape(frames)))
    if len(np.shape(frames))==4:
        frames = average_z(frames)
    threshold=np.percentile(frames,75)
    f_batch = tp.batch(frames,diameter=11,threshold=threshold)

    t = tp.link_df(f_batch, search_range=11, memory=3)
    t_flt = tp.filter_stubs(t, 3*int(len(frames)/4))
    try:
        d = tp.compute_drift(t_flt)
        t_cor = tp.subtract_drift(t_flt, d)
    except:
        t_cor=t_flt
        logging.info("drift correction excepted")    
    # plt.figure()
    # tp.plot_traj(t_flt)
    # plt.figure()
    # d.plot()
    imsd=tp.imsd(t_cor,0.1,0.2, max_lagtime=100, statistic='msd')
    emsd=tp.emsd(t_cor,0.1,0.2, max_lagtime=100)
    return imsd,emsd
Beispiel #15
0
    def analyze(self, plot_gif=False):
        self.drifts = []
        self.v_drift_mag = []
        self.D_constants = []
        self.D_constants2 = []
        self.msd_slope = []
        self.msd_intercept = []
        self.mu_hats = []
        self.ed = []
        self.em = []
        self.frames = []
        self.dataframes = []

        for i, path in enumerate(self.SXM_PATH):
            frames = SXMReader(path)
            self.frames.append(frames)
            self.NM_PER_PIXEL = frames.meters_per_pixel * 1e9
            molecule_size, min_mass, max_mass, separation, min_size, max_ecc, adaptive_stop, search_range, _ = self.PARAMS[
                i]
            f = tp.batch(frames,
                         molecule_size,
                         minmass=min_mass,
                         separation=separation)
            t = tp.link(f,
                        search_range=search_range,
                        adaptive_stop=adaptive_stop)
            t1 = t[((t['mass'] > min_mass) & (t['size'] > min_size)
                    & (t['ecc'] < max_ecc)) & (t['mass'] < max_mass)]
            t2 = tp.filter_stubs(t, 3)
            # Compare the number of particles in the unfiltered and filtered data.
            print('Before:', t['particle'].nunique())
            print('After:', t2['particle'].nunique())

            if plot_gif == True:
                moviename = "{}-{}".format(min(self.fileranges[i]),
                                           max(self.fileranges[i]))
                singlemoviefolder = self.MOVIE_FOLDER + moviename + "/"
                if not os.path.exists(singlemoviefolder):
                    os.makedirs(singlemoviefolder)
                mpl.rcParams.update({'font.size': 14, 'font.weight': 'bold'})
                mpl.rc('image', origin='lower')
                mpl.rc('text', usetex=False)
                mpl.rc('text', color='orange')

                fns = []
                for j, frame in enumerate(frames):
                    fig = plt.figure(figsize=(5, 5))
                    tp.plot_traj(t2[(t2['frame'] <= j)],
                                 superimpose=frames[j],
                                 label=True)
                    fn = singlemoviefolder + "Image_{}.png".format(
                        self.fileranges[i][j])
                    fig.savefig(fn)
                    fns.append(fn)
                    ax = plt.gca()  # get the axis
                    ax.set_ylim(ax.get_ylim()[::-1])  # invert the axis
                    ax.xaxis.tick_top()  # and move the X-Axis
                    ax.yaxis.set_ticks(np.arange(0, 16, 1))  # set y-ticks
                    ax.yaxis.tick_left()  # remove right y-Ticks
                    plt.clf()
                mpl.rc('text', color='black')
                images = []
                for fn in fns:
                    images.append(imageio.imread(fn))
                imageio.mimsave(singlemoviefolder + moviename + '.gif',
                                images,
                                duration=0.5)
                self._cleanup_png(singlemoviefolder)

            # Compute drifts
            d = tp.compute_drift(t2)
            d.loc[0] = [0, 0]
            t3 = t2.copy()
            # Storing drifts
            self.drifts.append(d)

            # Method 1 of calculating D: variance of all displacements of Delta_t=1
            displacements = self._calculate_displacements(t3)
            self.D_constants.append(
                (displacements.dx.var() + displacements.dy.var()) /
                4)  # r^2 = x^2 + y^2 = 2Dt + 2Dt
            self.mu_hats.append(np.mean(displacements[['dx', 'dy']], axis=0))

            # Method 2 of calculating D: linear fit to MSD
            em = tp.emsd(t3,
                         frames.meters_per_pixel * 1e9,
                         self.DIFFUSION_TIME,
                         max_lagtime=len(frames),
                         detail=True)
            self.em.append(em)
            self.ed.append([em['<x>'], em['<y>']])
            result = linregress(em.index[:-8] * self.DIFFUSION_TIME,
                                em['msd'][:-8])
            self.msd_slope.append(result.slope)
            self.msd_intercept.append(result.intercept)
            self.D_constants2.append(result.slope / 4)

            # Store dataframe for future analysis
            self.dataframes.append(t3)
        self.v_drift_mag = np.linalg.norm(self.mu_hats, 2, axis=1)
Beispiel #16
0
plt.show()


##MSD Calculation and Plot
im=tp.imsd(tm,1/5.,60)    ##microns per pixel, frames per second=60
fig, ax = plt.subplots()
ax.plot(im.index, im, 'k-', alpha=0.1)  # black lines, semitransparent
ax.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
       xlabel='lag time $t$',title='MSD')
ax.set_xscale('log')
ax.set_yscale('log')



##Total Ensemble MSD and Plot
em=tp.emsd(tm,1/5.,60)
fig, ax = plt.subplots()
ax.plot(em.index, em, 'o-')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]', xlabel='lag time $t$', title='Ensemble MSD')
ax.set(ylim=(1e-2, 10));




##Fitting the EMSD

#plt.figure()
plt.ylabel(r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]')
plt.title("EMSD Fit")
Beispiel #17
0
fps = 25  # frame per second
maxact = 11

##fig, ax = plt.subplots() # for ploting msd curve of all activites
#plt.figure('MSD for aactivities')
#plt.clf()

for act in range(8, 12):  # loop for file name

    print('Activity', act)
    # load trajectory
    traj_f = pd.read_csv(savepath_traj_f.format(act))

    #==============================================================================
    #      ## Mean Squared Displacement of Individal Probes
    #      im = tp.imsd(traj_f, mpp, fps, max_lagtime=100, statistic='msd')  # microns per pixel = 100/285., frames per second = 24
    #
    #      fig, ax = plt.subplots()
    #      ax.plot(im.index, im[18], 'k-', alpha=0.1)  # black lines, semitransparent
    #      ax.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]', xlabel='lag time $t$')
    #      ax.set_xscale('log')
    #      ax.set_yscale('log')
    #==============================================================================

    ## Ensemble MSD
    em = tp.emsd(traj_f, mpp, fps, max_lagtime=1600,
                 detail=True)  #detail=True to see also <x>,<y>,<x^2>,<y^2>

    # save MSD
    em.to_csv(savepath_MSD.format(act), index=False)
tp.plot_traj(t1)


d = tp.compute_drift(t1)
d.plot()
plt.show()
plt.savefig("1.pdf")

tm = tp.subtract_drift(t1.copy(),d)

ax = tp.plot_traj(tm)
plt.show()
plt.savefig("2.pdf")


em = tp.emsd(tm, 0.00000119029/1, 30) # microns per pixel = 100/285., frames per second = 24

fig, ax = plt.subplots()
ax.plot(em.index, em, 'o')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
       xlabel='lag time $t$')
ax.set(ylim=(1e-2, 100));
plt.savefig("3.pdf")

plt.figure()
plt.ylabel(r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]')
plt.xlabel('lag time $t$');
atre = tp.utils.fit_powerlaw(em)  # performs linear best fit in log space, plots]
plt.savefig("4.pdf")
Beispiel #19
0
def main():

    for case_idx, case in enumerate(cases.values()):

        res_path = gen_path + case[1]
        frames = pims.ImageSequence(gen_path + case[0], as_grey=True)

        # Stores the unfiltered annotated image of a frame to local file path
        if plots["Annotate_unfiltered"]:
            k = tp.locate(frames[0],
                          11,
                          invert=[case_idx in [0, 1]],
                          minmass=200)
            fig = plt.figure("Annotated_unfiltered_image_" + case[2])
            ax1 = fig.add_subplot()
            a = ["k", "w"][case_idx in [2, 3]]
            tp.annotate(k, frames[0], color=a, ax=ax1)
            #ax1.set_title("Annotated unfiltered image case: "+ case[2])
            #ax1.set_xlabel("x[px]", fontsize=size)
            #ax1.set_ylabel("y[px]", fontsize=size)
            ax1.tick_params(axis="both",
                            which="both",
                            top=False,
                            bottom=False,
                            labelbottom=False,
                            right=False,
                            left=False,
                            labelleft=False)
            fig.savefig(res_path + "Annotated_unfiltered_image_" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close(fig)

        # If True: Tracks all frames and stores .csv to locally, else: imports such .csv file from local
        if plots["Generate_batch"]:
            f = tp.batch(frames[:225],
                         11,
                         minmass=100,
                         invert=[case_idx in [0, 1]])
            f.to_csv(res_path + "batch_" + case[2] + ".csv")
        if not plots["Generate_batch"]:
            f = pd.read_csv(res_path + "batch_" + case[2] + ".csv")

        # Linking and filtering
        t = tp.link_df(f, 5, memory=3)
        t1 = tp.filter_stubs(t, 50)

        # Plots the size vs mass profile and saves to local file path
        if plots["Size_vs_mass"]:
            fig = plt.figure("Size_vs_mass_" + case[2])
            ax1 = fig.add_subplot()
            tp.mass_size(
                t1.groupby('particle').mean(),
                ax=ax1)  # convenience function -- just plots size vs. mass
            #ax1.set_title("Size vs mass case: " + case[2])
            ax1.set_xlabel("mass", fontsize=size)
            ax1.set_ylabel("Gyration radius [px]", fontsize=size)
            ax1.spines['top'].set_visible(False)
            ax1.spines['right'].set_visible(False)
            ax1.tick_params(axis="both", which="major", labelsize=size)
            ax1.tick_params(axis="both", which="minor", labelsize=size)
            fig.savefig(res_path + "Size_vs_mass_" + case[2] + ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close(fig)

        if plots["Annotate_filtered"]:

            if case_idx in [0, 1]:  # Set BF condition
                condition = lambda x: (
                    (x['mass'].mean() > 250) & (x['size'].mean() < 3.0) &
                    (x['ecc'].mean() < 0.1))

            elif case_idx in [2, 3]:  # Set DF condition
                condition = lambda x: (
                    (x['mass'].mean() > 100) & (x['size'].mean() < 5.0) &
                    (x['ecc'].mean() < 0.1))

            t2 = tp.filter(
                t1, condition
            )  # a wrapper for pandas' filter that works around a bug in v 0.12

            fig = plt.figure("Annotated_filtered_image_" + case[2])
            ax1 = fig.add_subplot()
            k = ["k", "w"][case_idx in [2, 3]]
            tp.annotate(t2[t2['frame'] == 0], frames[0], color=k, ax=ax1)
            #ax1.set_title("Annotated filtered image case: " + case[2])
            #ax1.set_xlabel("x[px]", fontsize=size)
            #ax1.set_ylabel("y[px]", fontsize=size)
            ax1.tick_params(axis="both",
                            which="both",
                            top=False,
                            bottom=False,
                            labelbottom=False,
                            right=False,
                            left=False,
                            labelleft=False)
            fig.savefig(res_path + "Annotated_filtered_image_" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close(fig)

        if plots["Gyration_radius_filtered"]:
            size_dis_t1 = [i * ratio_μm_px for i in t1['size']]
            plt.figure("Gyration_radius_filtered_" + case[2])
            plt.hist(size_dis_t1, bins=300, color="k", alpha=0.5)
            #plt.title("Gyration radius filtered case: "+ case[2])
            plt.ylabel("Events", fontsize=size)
            plt.xlabel("Gyration radius [μm]", fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            plt.tick_params(axis="both", which="major", labelsize=size)
            plt.tick_params(axis="both", which="minor", labelsize=size)
            plt.savefig(res_path + "Gyration_radius_filtered" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close("all")

        if plots["Gyration_radius_unfiltered"]:
            size_dis_t = [i * ratio_μm_px for i in t['size']]
            plt.figure("Gyration_radius_unfiltered_" + case[2])
            plt.hist(size_dis_t, bins=300, color="k", alpha=0.5)
            #plt.title("Gyration radius unfiltered case: " + case[2])
            plt.ylabel("Events", fontsize=size)
            plt.xlabel("Gyration radius [μm]", fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            plt.tick_params(axis="both", which="major", labelsize=size)
            plt.tick_params(axis="both", which="minor", labelsize=size)
            plt.savefig(res_path + "Gyration_radius_unfiltered" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close("all")

        d = tp.compute_drift(t1)
        tm = tp.subtract_drift(t1, d)

        if plots["Trajectory_drift"]:
            fig = plt.figure("Trajectory_drift_subtracted_" + case[2])
            ax1 = fig.add_subplot()
            ax1.tick_params(axis="both", which="major", labelsize=size)
            ax1.tick_params(axis="both", which="minor", labelsize=size)
            ax1.spines['top'].set_visible(False)
            ax1.spines['right'].set_visible(False)
            tp.plot_traj(tm, ax=ax1)
            #ax1.set_title("Trajectory with drift subtracted case: " + case[2])
            plt.savefig(res_path + "Trajectory_drift_subtracted_" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close(fig)

        if plots["Variance_all_parts"]:
            im = tp.imsd(
                tm, ratio_μm_px, fps, max_lagtime=225
            )  # microns per pixel = 100/285., frames per second = 24
            plt.figure("Variance_for_all_particles_" + case[2])
            #plt.title("Variance for all particles case: " + case[2])
            plt.plot(im.index, im, 'k-',
                     alpha=0.1)  # black lines, semitransparent
            plt.ylabel(r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
                       fontsize=size),
            plt.xlabel('time $t$', fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            plt.xscale('log')
            plt.yscale('log')
            plt.savefig(res_path + "Variance_for_all_particles_" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)

        if plots["Variance_linear"] or plots["Variance_power_fit"] or plots[
                "Return_A_and_D"]:
            em = tp.emsd(tm, ratio_μm_px, fps, max_lagtime=225)

        if plots["Variance_linear"]:
            plt.figure("Variance_linear_fit_" + case[2])
            #plt.title("Variance linear fit case: " + case[2])
            plt.plot(em.index, em, 'ko', alpha=0.5)
            plt.ylabel(r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
                       fontsize=size),
            plt.xlabel('time $t$ [s]', fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            plt.tick_params(axis="both", which="major", labelsize=size)
            plt.tick_params(axis="both", which="minor", labelsize=size)
            plt.xscale('log')
            plt.yscale('log')
            plt.ylim(1e-2, 50)
            plt.savefig(res_path + "Variance_linear_fit_" + case[2] + ".png",
                        bbox_inches="tight",
                        pad_inches=0)

        if plots["Variance_power_fit"]:
            fig = plt.figure("Variance_power_fit_" + case[2])
            ax1 = fig.add_subplot()
            tp.utils.fit_powerlaw(em, ax=ax1, color="k", alpha=0.5)
            #ax1.set_title("Variance power fitted case: " + case[2])
            ax1.set_ylabel(r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
                           fontsize=size)
            ax1.set_xlabel('time $t$ [s]', fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            ax1.tick_params(axis="both", which="major", labelsize=size)
            ax1.tick_params(axis="both", which="minor", labelsize=size)
            fig.savefig(res_path + "Variance_power_fit_" + case[2] + ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close(fig)

        if plots["Hydrodynamic_radius_filtered"]:
            im = tp.imsd(tm, ratio_μm_px, fps, max_lagtime=225)
            r_h = []
            count = 0
            im = im.rename_axis("ID").values

            for index in range(1, len(im[0])):
                if isinstance(im[40][index], float) and isinstance(
                        im[8][index], float):
                    D = (im[40][index] - im[8][index]) / (4 * (40 - 8) /
                                                          fps) * 10**(-12)
                    if isinstance(D, float):
                        r_h += [abs(10**6 * (k_b * T) / (6 * np.pi * μ * D))]
                        if 0 < abs(10**6 * (k_b * T) /
                                   (6 * np.pi * μ * D)) < 6:
                            count += 1

            print("In interval: ", count, "Total: ", len(r_h), "Ratio: ",
                  count / len(r_h))
            plt.figure("Hydrodynamic_radius_filtered_" + case[2])
            plt.hist(r_h,
                     bins=int(count / 3),
                     color="k",
                     alpha=0.5,
                     range=(0, 6))
            #plt.title("Hydrodynamic radius filtered case: "+ case[2])
            plt.ylabel("Trajectories", fontsize=size)
            plt.xlabel("Hydrodynamic radius [μm]", fontsize=size)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['right'].set_visible(False)
            plt.tick_params(axis="both", which="major", labelsize=size)
            plt.tick_params(axis="both", which="minor", labelsize=size)
            plt.savefig(res_path + "Hydrodynamic_radius_filtered" + case[2] +
                        ".png",
                        bbox_inches="tight",
                        pad_inches=0)
            plt.close("all")

        if plots["Return_A_and_D"]:
            A = tp.utils.fit_powerlaw(em, ax=ax1, color="k",
                                      alpha=0.5)["A"] * 10**(-12)
            print(tp.utils.fit_powerlaw(em, ax=ax1, color="k", alpha=0.5))
            print("For case ", case[2], " A=", A, ", and D=", A / 4, ".")
Beispiel #20
0
max_lagtime = 500
nop = 500
# settings end

# reference line
x = [0.01,1,10,100,1000]
y = x
dxb = 0
dyb = 0

datapath = '/Users/Zhengyang/Documents/20160715/a1l'
filename = os.path.join(datapath,'trajectory.dat')
traj = pd.read_csv(filename,delimiter=',')

#remove drift
msd = tp.emsd(traj,mpp,fps,max_lagtime,detail=True)
p1 = np.polyfit(msd['lagt'],msd['<x>'],1)
p2 = np.polyfit(msd['lagt'],msd['<y>'],1)
trajr = traj
trajr['x'] = traj['x']-p1[0]*traj['frame']/fps
trajr['y'] = traj['y']-p2[0]*traj['frame']/fps

# mean squared displacement

msd = tp.emsd(trajr,mpp,fps,max_lagtime,detail=True)

plt.ion()
plt.figure(1)
plt.loglog(msd['lagt'],msd['msd'],linestyle='None',marker='o',mec='r',mfc='w')
plt.loglog(x,y,linestyle='solid')
plt.draw()
Beispiel #21
0
def plot_tracks_MSD(N, a, logmu, Tf, ax_lim, MSD_show, refresh, log_scale):
    '''Function plotting random tracks of particles and their associated mean square displacements,
    depending on several physical parameters and plotting options.
    Designed to be used with ipywidgets
    INPUTS:
    N : number of particles
    a : radius of particles [um]
    logmu: log of viscosity of fluid log[Pa s]
    Tf: length of tracks [s]
    ax_lim: limit of axis display [um]
    MSD_show: boolean for showing graphs of mean square displacements (MSDs)
    refresh: dummy argument for the widgets
    log_scale: boolean to show MSDs in loglog scale
    '''
    
    # we have a few constants
    dt  = 1e-2 # timestep of simulation [s]
    T   = 305  # temperature, fixed [K]
    k_B = 1.38e-23 # Boltzman constant [J K-1]
    
    # we compute the diffusivity [m2/s]
    D = k_B*T/(6*np.pi*10**(logmu)*a*1e-6) #
    
    # we start all tracks from the center of the plot
    pos0 = [0, 0]
    
    # initialisation of figure
    fig, (ax, ax2) = plt.subplots(1,2,figsize = (12,6)) # option to use gridspec here
    
    # we add a bullseye pattern for guiding the viewer
    angle = np.linspace( 0 , 2 * np.pi , 150 ) 
    x =  np.cos( angle ) 
    y =  np.sin( angle ) 
    r_list = np.arange(15) # in microns

    for i, r in enumerate(r_list):
        ax.plot(r*x, r*y, color = 'k', linestyle = '--', alpha = 0.5)
    
    pos = []
    for i in range(N):
        track = generate_diff_track(pos0, D, dt, Tf) 
        track = track*1e6 # convert to microns
        
        # Now, we draw the trajectory and final position
        ax.plot(track[0,:],track[1,:], color = 'k', alpha = 0.5)
        ax.plot(track[0,-1],track[1,-1],marker='o', ms=6, markerfacecolor = 'm', markeredgecolor = 'k')
        
        # we also populate a tracks panda frame (mostly empty) for use with trackpy
        track_pd = np.concatenate((track, np.zeros((6,track.shape[1])), 
                                   np.arange(0,track.shape[1],1)[np.newaxis,:],
                                   i*np.ones((1,track.shape[1]))),axis =0)
        if i==0:
            pos = track_pd
        else:
            pos = np.concatenate((pos, track_pd), axis=1)
        
    # mark initial position
    ax.plot(0,0,marker='o', ms=6, markerfacecolor = 'w', markeredgecolor = 'k')
    
        
    # we also plot the scaling
    ax.plot(np.sqrt(4*D*Tf)*1e6*x,np.sqrt(4*D*Tf)*1e6*y, color = 'r', linestyle = '--')
    ax.text(0.0, 1.3*np.sqrt(4*D*Tf)*1e6, r"$r = \sqrt{4 D t_\mathrm{f}}$", fontsize=16, color='r', 
            ha="center", va="center", bbox=dict(boxstyle="square", ec=(1.0, 1.0, 1.0), fc=(1., 1., 1.),alpha = 0.7))
  

    # polish the plot
    ax.set_xlabel(r'$x$ ($\mu$m)')
    ax.set_ylabel(r'$y$ ($\mu$m)')
    ax.axis('equal')
    ax.set_xlim(-ax_lim, ax_lim)
    ax.set_ylim(-ax_lim, ax_lim)
    #ax.set_axis_off()
    
    if MSD_show:

        # we finish formatting the panda frame for use with Trackpy
        pos = np.transpose(pos)
        df = pd.DataFrame(pos, columns=['x', 'y','mass', 'size', 'ecc', 'signal', 'raw_mass', 'ep', 'frame','particle'])

        # we compute the msd of each particle, and the ensemble value
        im = tp.imsd(df, mpp = 1., fps = 1/dt, max_lagtime=int(np.floor((Tf/dt)/2)))
        em = tp.emsd(df, mpp = 1., fps = 1/dt, max_lagtime=int(np.floor((Tf/dt)/2)))
        
        # we do a linear regression in log space on the whole range of times
        slope, intercept, r, p, stderr = stats.linregress(np.log(em.index), np.log(em))
        
        # we plot the individual msd with the theoretical trend and ensemble average overlaid
        ax2.plot(im.index, im, 'k-', alpha=0.2) 
        ax2.plot(em.index, 1e12*4*D*em.index, linestyle = '--', color='r', label=r'theoretical power law $\langle \Delta r^2 \rangle = 4 D \Delta t$')
        ax2.plot(em.index, em, 'o', label='ensemble average', alpha = 0.8)
        ax2.plot(em.index, np.exp(intercept)*em.index**slope,linestyle = '-.', color='m', label=r'fitted power law $\langle \Delta r^2 \rangle = \alpha \Delta t^\beta$')
        
        ax2.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
        xlabel='lag time $\Delta t$ [s]')
        if log_scale:
            ax2.set_xscale('log')
            ax2.set_yscale('log')
        plt.legend(loc=2, prop={'size': 12})
    else:
        ax2.set_axis_off()
    
    fig.tight_layout()
    
    if MSD_show:
    
        print(' ================================================================================================')
        print('| Theoretical Diffusivity D = {0:.2E} um2/s          |      Fitted power law: beta = {1:.2E}   |'.format(D*1e12,slope))
        print(' ================================================================================================')
    else:
        print(' =============================================')
        print('| Theoretical Diffusivity D = {:.2E} um2/s  |'.format(D*1e12))
        print(' =============================================')
    
    plt.show()
Beispiel #22
0
def plot_tracks_MSD_box(N, D, Tf, L, refresh, log_scale):
    '''Function plotting random tracks of particles in a square box and their associated mean square displacements,
    depending on several physical parameters and plotting options.
    Designed to be used with ipywidgets
    INPUTS:
    N : number of particles
    D : diffusivity of particles [um2/s]
    Tf: length of tracks [s]
    L: half-width of of bounding box [um]
    refresh: dummy argument for the widgets
    log_scale: boolean to show MSDs in loglog scale
    '''
    
    # we have a few constants
    dt  = 1e-2 # timestep of simulation [s]
    
    # we start all tracks from the center of the plot
    pos0 = [0, 0]
    
    # initialisation of figure
    fig, (ax, ax2) = plt.subplots(1,2,figsize = (12,6)) # option to use gridspec here
    
    # we add the box
    ax.plot([L,L,-L,-L,L], [-L,L,L,-L,-L], color = 'c', linestyle = '-.', alpha = 1,lw=2)
    
    pos = []
    for i in range(N):
        track = generate_diff_track([np.random.uniform(-L,L),np.random.uniform(-L,L)], D, dt, Tf)
        track_box = reflect(track,L)
        track_box = track_box*1e6 # convert to microns
        
        # Now, we draw the trajectory and final position
        ax.plot(track[0,:],track[1,:], color = 'k', alpha = 0.5)
        ax.plot(track[0,-1],track[1,-1],marker='o', ms=6, markerfacecolor = 'm', markeredgecolor = 'k')
        ax.plot(track[0,0],track[1,0],marker='o', ms=6, markerfacecolor = 'w', markeredgecolor = 'k')

        
        # we also populate a tracks panda frame (mostly empty) for use with trackpy
        track_pd = np.concatenate((track, np.zeros((6,track.shape[1])), 
                                   np.arange(0,track.shape[1],1)[np.newaxis,:],
                                   i*np.ones((1,track.shape[1]))),axis =0)
        if i==0:
            pos = track_pd
        else:
            pos = np.concatenate((pos, track_pd), axis=1)
        
    # mark initial position
    #ax.plot(0,0,marker='o', ms=6, markerfacecolor = 'w', markeredgecolor = 'k')

    # polish the plot
    ax.set_xlabel(r'$x$ ($\mu$m)')
    ax.set_ylabel(r'$y$ ($\mu$m)')
    ax.axis('equal')
    ax.set_xlim(-1.2*L, 1.2*L)
    ax.set_ylim(-1.2*L, 1.2*L)
    #ax.set_axis_off()

    # we finish formatting the panda frame for use with Trackpy
    pos = np.transpose(pos)
    df = pd.DataFrame(pos, columns=['x', 'y','mass', 'size', 'ecc', 'signal', 'raw_mass', 'ep', 'frame','particle'])

    # we compute the msd of each particle, and the ensemble value
    im = tp.imsd(df, mpp = 1., fps = 1/dt, max_lagtime=int(np.floor((Tf/dt)/2)))
    em = tp.emsd(df, mpp = 1., fps = 1/dt, max_lagtime=int(np.floor((Tf/dt)/2)))
        
    # we plot the individual msd with the theoretical trend and ensemble average overlaid
    ax2.plot(im.index, im, 'k-', alpha=0.2) 
    ax2.plot(em.index, 4*D*em.index, linestyle = '--', color='r', label=r'theoretical power law $\langle \Delta r^2 \rangle = 4 D \Delta t$')
    ax2.plot(em.index, em, 'o', label='ensemble average', alpha = 0.8)
    ax2.plot(em.index, 0*em.index + 4*L**2/3,linestyle = '-.', color='c', label=r'box limit $4 L^2/3$')
        
    ax2.set(ylabel=r'$\langle \Delta r^2 \rangle$ [$\mu$m$^2$]',
    xlabel='lag time $ \Delta t$ [s]')
    if log_scale:
        ax2.set_xscale('log')
        ax2.set_yscale('log')
        ax2.set_ylim(2*D*dt, 10*L**2)
    else:
        ax2.set_ylim(0, 3*L**2)
    plt.legend(loc=2, prop={'size': 12})
    
    fig.tight_layout()
    
    plt.show()