Beispiel #1
0
def main(trained_model,
         test_file,
         viterbi,
         output_tags="output.tag",
         output_predictions="output.pred"):
    test_data, identifier = load_data(testing_file)

    evaluate = True

    # extract features
    if not "crf" in trained_model:
        if not isinstance(trained_model, list):
            with open(trained_model, 'rb') as frb:
                clf, previous_n, next_n, word_vocab, other_features = pickle.load(
                    frb)
        else:
            clf, previous_n, next_n, word_vocab, other_features = trained_model

    tic = time.clock()

    with open(output_tags, 'w') as fw:
        confidences = []
        for i in range(len(test_data) + len(identifier)):
            if i % 2 == 1:
                if "crf" in trained_model:
                    y, tmp_conf = crf.predict(test_data[i / 2][0],
                                              trained_model)
                    fw.write(" ".join([
                        test_data[i / 2][0][j] + "_" + y[j]
                        for j in range(len(test_data[i / 2][0]))
                    ]))
                else:
                    y, tmp_conf = predict_tags_n(viterbi, previous_n, next_n,
                                                 clf, test_data[i / 2][0],
                                                 word_vocab, other_features)
                    fw.write(" ".join([
                        test_data[i / 2][0][j] + "_" + int2tags[int(y[j])]
                        for j in range(len(test_data[i / 2][0]))
                    ]))
                assert (len(y) == len(tmp_conf))
                confidences.append(tmp_conf)
                fw.write("\n")
            else:
                fw.write(identifier[i / 2])
                fw.write("\n")

        print(time.clock() - tic)

        if evaluate:
            eval_mode_batch(output_tags, confidences, helper.cities)
        else:
            predict_mode_batch(output_tags, output_predictions, helper.cityies)
def main(trained_model,testing_file,viterbi,output_tags="output.tag", output_predictions="output.pred"):
    test_data, identifier = load_data(testing_file)

    evaluate = True

    ## extract features
    if not "crf" in trained_model: 
        if not isinstance(trained_model, list):
            clf, previous_n, next_n, word_vocab,other_features = pickle.load( open( trained_model, "rb" ) )
        else:
            clf, previous_n, next_n, word_vocab,other_features = trained_model

    tic = time.clock()
    f = open(output_tags,'w')
    confidences = []
    for i in range(len(test_data)+len(identifier)):
        if i%2 == 1:
            if "crf" in trained_model:
                y, tmp_conf = crf.predict(test_data[i/2][0], trained_model)
                f.write(" ".join([test_data[i/2][0][j]+"_"+y[j] for j in range(len(test_data[i/2][0]))]))
            else:
               y, tmp_conf = predict_tags_n(viterbi, previous_n,next_n, clf, test_data[i/2][0], word_vocab,other_features)
               f.write(" ".join([test_data[i/2][0][j]+"_"+int2tags[int(y[j])] for j in range(len(test_data[i/2][0]))]))
            assert(len(y) == len(tmp_conf))
            confidences.append(tmp_conf)
            f.write("\n")
        else:
            f.write(identifier[i/2])
            f.write("\n")
    #print time.clock()-tic
    f.close()
    if evaluate:
        eval_mode_batch(output_tags, confidences, helper.cities)
    else:
        predict_mode_batch(output_tags, output_predictions, helper.cities)
    return
Beispiel #3
0
def predictCRF(trained_model, words, cities):
    tags, confidences = crf.predict(words, trained_model)
    pred, conf_scores, conf_cnts = predict_mode(words, tags, confidences,
                                                cities, True)
    return pred, conf_scores, conf_cnts
def predictCRF(trained_model, words, cities):
    tags, confidences = crf.predict(words, trained_model)
    pred, conf_scores, conf_cnts = predict_mode(words, tags, confidences, cities, True)
    return pred, conf_scores, conf_cnts