Beispiel #1
0
    def explore_dimensions(self, initialState, ranges, pointsPerDim = 10, repetitions = 3):
        '''For the given vector, vary each parameter separately.

        Arguments:
        initialState -- where to start
        ranges       -- parameter ranges
        pointsPerDim -- number of points along each dimension
        repetitions  -- how many measurements to make of each position
        '''

        nDimensions = len(initialState)

        self.log_start()
        self.log_write('RunManager.explore_dimensions, centered at %s' % prettyVec(initialState))

        for dimension in range(nDimensions):
            self.log_write('RunManager.explore_dimensions: dimension %d' % dimension)

            points = Neighbor.uniform_spread(ranges, initialState, dimension, number = pointsPerDim, includeOrig = True)

            for ii,point in enumerate(points):

                for tt in range(repetitions):
                    print 'Iteration dimension %d, point %d, trial %d' % (dimension, ii, tt), prettyVec(point),
                    sys.stdout.flush()
                    self.log_write('%d, %d, %d, ' % (dimension, ii, tt), newline=False)
                    
                    dist = self.run_robot(point)

                    print '%.2f' % dist
                    self.log_results(point, dist)
Beispiel #2
0
    def updateResults(self, dist):
        self.iterations += 1
        if self.bestDist is None or dist > self.bestDist:
            self.bestDist = dist
            self.bestState = self.current
            self.bestIter  = self.iterations

        print '    best (iter %3d)' % self.bestIter, prettyVec(self.bestState), '%.2f' % self.bestDist  # Prints best state and distance so far
Beispiel #3
0
    def explore_dimensions(self,
                           initialState,
                           ranges,
                           pointsPerDim=10,
                           repetitions=3):
        '''For the given vector, vary each parameter separately.

        Arguments:
        initialState -- where to start
        ranges       -- parameter ranges
        pointsPerDim -- number of points along each dimension
        repetitions  -- how many measurements to make of each position
        '''

        nDimensions = len(initialState)

        self.log_start()
        self.log_write('RunManager.explore_dimensions, centered at %s' %
                       prettyVec(initialState))

        for dimension in range(nDimensions):
            self.log_write('RunManager.explore_dimensions: dimension %d' %
                           dimension)

            points = Neighbor.uniform_spread(ranges,
                                             initialState,
                                             dimension,
                                             number=pointsPerDim,
                                             includeOrig=True)

            for ii, point in enumerate(points):

                for tt in range(repetitions):
                    print 'Iteration dimension %d, point %d, trial %d' % (
                        dimension, ii, tt), prettyVec(point),
                    sys.stdout.flush()
                    self.log_write('%d, %d, %d, ' % (dimension, ii, tt),
                                   newline=False)

                    dist = self.run_robot(point)

                    print '%.2f' % dist
                    self.log_results(point, dist)
Beispiel #4
0
    def do_many_runs(self, strategy, ranges, limit=None):
        if limit is None:
            limit = 10000

        self.log_start(strategy.logHeader())

        for ii in xrange(limit):
            currentState, logInfo = strategy.getNext()

            print
            #if hasattr(currentState, '__call__'):
            #    print 'Iteration %2d: %s' % (ii+1, logStr),
            #else:
            #    print 'Iteration %2d params' % (ii+1), prettyVec(currentState),
            paramStr = logInfo if isinstance(
                logInfo, basestring) else prettyVec(logInfo)
            print 'Iteration %2d: %s' % (ii + 1, paramStr)
            sys.stdout.flush()

            # Check if this state is new, and possibly skip it
            #if tuple(currentState) in self.statesSoFar:
            #    print '*** Duplicate iteration!'
            #    # Skip only if using random hill climbing. In other words,
            #    # comment this line out if using gradient_search:
            #    #currentState = neighborFunction(bestState)
            #    continue

            currentDistance = self.run_robot(currentState)
            #currentDistance = input('Distance walked? ')

            #self.statesSoFar.add(tuple(currentState))

            #print '        walked %.2f' % currentDistance
            print '%.2f' % currentDistance

            strategy.updateResults(currentDistance)

            #print '        best so far', prettyVec(strategy.bestState), '%.2f' % strategy.bestDist  # Prints best state and distance so far

            self.log_results(logInfo, currentDistance)
Beispiel #5
0
    def do_many_runs(self, strategy, ranges, limit = None):
        if limit is None:
            limit = 10000

        self.log_start(strategy.logHeader())

        for ii in xrange(limit):
            currentState, logInfo = strategy.getNext()
            
            print
            #if hasattr(currentState, '__call__'):
            #    print 'Iteration %2d: %s' % (ii+1, logStr),
            #else:
            #    print 'Iteration %2d params' % (ii+1), prettyVec(currentState),
            paramStr = logInfo if isinstance(logInfo, basestring) else prettyVec(logInfo)
            print 'Iteration %2d: %s' % (ii+1, paramStr)
            sys.stdout.flush()

            # Check if this state is new, and possibly skip it
            #if tuple(currentState) in self.statesSoFar:
            #    print '*** Duplicate iteration!'
            #    # Skip only if using random hill climbing. In other words,
            #    # comment this line out if using gradient_search:
            #    #currentState = neighborFunction(bestState)
            #    continue

            currentDistance = self.run_robot(currentState)
            #currentDistance = input('Distance walked? ')

            #self.statesSoFar.add(tuple(currentState))

            #print '        walked %.2f' % currentDistance
            print '%.2f' % currentDistance

            strategy.updateResults(currentDistance)

            #print '        best so far', prettyVec(strategy.bestState), '%.2f' % strategy.bestDist  # Prints best state and distance so far

            self.log_results(logInfo, currentDistance)