Beispiel #1
0
def calculatePromoterActivity(annotationFile,
                              bamFile,
                              projectName,
                              projectFolder,
                              refseqToNameDict,
                              background=False):
    '''
    calculates the level of acetylation at each TF promoter
    '''

    print 'GENERATING AN ACTIVITY TABLE USING CHIP DATA'

    annotTable = utils.parseTable(annotationFile, '\t')
    output = []
    counter = 0

    bam = utils.Bam(bamFile)

    if background:
        background = utils.Bam(background)

    startDict = utils.makeStartDict(annotationFile)

    tssLoci = []
    for gene in startDict:
        tssLoci.append(utils.makeTSSLocus(gene, startDict, 2500, 2500))
    tssCollection = utils.LocusCollection(tssLoci, 50)

    gff = utils.locusCollectionToGFF(tssCollection)

    outputname = projectFolder + projectName + '_TSS.gff'
    utils.unParseTable(gff, outputname, '\t')

    mappingCmd = 'bamliquidator_batch'
    mappingCmd += ' -r ' + outputname
    mappingCmd += ' -o ' + projectFolder + 'bamliquidator'
    mappingCmd += ' -m -e 200 '
    mappingCmd += bamFile

    subprocess.call(mappingCmd, shell=True)

    print mappingCmd
Beispiel #2
0
def calculatePromoterActivity(annotationFile, bamFile, projectName, projectFolder, refseqToNameDict):
    '''
    calculates the level of H3K27ac at each promoter from a H3K27ac bam file
    '''

    print 'IDENTIFY EXPRESSED GENES'

    annotTable = utils.parseTable(annotationFile, '\t')
    output = []
    counter = 0

    bam = utils.Bam(bamFile)

    startDict = utils.makeStartDict(annotationFile)

    tssLoci = []
    for gene in startDict:
        tssLoci.append(utils.makeTSSLocus(gene,startDict,1000,1000))
    tssCollection = utils.LocusCollection(tssLoci,50)

    gff = utils.locusCollectionToGFF(tssCollection)


    outputname = projectFolder + projectName + '_TSS.gff'
    utils.unParseTable(gff, outputname, '\t')

    # run bamToGFF.py to quantify signal at each TSS +/- 1kb

    mappingCmd = 'python ./bamToGFF.py'
    mappingCmd += ' -r '
    mappingCmd += ' -d '
    mappingCmd += ' -o ' + projectFolder + 'matrix.gff'
    mappingCmd += ' -m 1 -f 0 -e 200 '
    mappingCmd += ' -i ' + projectFolder + projectName + '_TSS.gff'
    mappingCmd += ' -b ' + bamFile

    call(mappingCmd, shell=True)

    print  mappingCmd
Beispiel #3
0
def regionStitching(referenceCollection, name, outFolder, stitchWindow, tssWindow, annotFile, removeTSS=True):
    print('PERFORMING REGION STITCHING')
    # first have to turn bound region file into a locus collection

    # need to make sure this names correctly... each region should have a unique name
    #referenceCollection 

    debugOutput = []
    # filter out all bound regions that overlap the TSS of an ACTIVE GENE
    if removeTSS:

        print('REMOVING TSS FROM REGIONS USING AN EXCLUSION WINDOW OF %sBP' % (tssWindow))
        # first make a locus collection of TSS

        startDict = utils.makeStartDict(annotFile)

        # now makeTSS loci for active genes
        removeTicker = 0
        # this loop makes a locus centered around +/- tssWindow of transcribed genes
        # then adds it to the list tssLoci
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, tssWindow, tssWindow))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)

        # gives all the loci in referenceCollection
        boundLoci = referenceCollection.getLoci()

        # this loop will check if each bound region is contained by the TSS exclusion zone
        # this will drop out a lot of the promoter only regions that are tiny
        # typical exclusion window is around 2kb
        for locus in boundLoci:
            if len(tssCollection.getContainers(locus, 'both')) > 0:

                # if true, the bound locus overlaps an active gene
                referenceCollection.remove(locus)
                debugOutput.append([locus.__str__(), locus.ID(), 'CONTAINED'])
                removeTicker += 1
        print('REMOVED %s LOCI BECAUSE THEY WERE CONTAINED BY A TSS' % (removeTicker))

    # referenceCollection is now all enriched region loci that don't overlap an active TSS

    if stitchWindow == '':
        print('DETERMINING OPTIMUM STITCHING PARAMTER')
        optCollection = copy.deepcopy(referenceCollection)
        stitchWindow = optimizeStitching(optCollection, name, outFolder, stepSize=500)
    print('USING A STITCHING PARAMETER OF %s' % stitchWindow)
    stitchedCollection = referenceCollection.stitchCollection(stitchWindow, 'both')

    if removeTSS:
        # now replace any stitched region that overlap 2 distinct genes
        # with the original loci that were there
        fixedLoci = []
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, 50, 50))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)
        removeTicker = 0
        originalTicker = 0
        for stitchedLocus in stitchedCollection.getLoci():
            overlappingTSSLoci = tssCollection.getOverlap(stitchedLocus, 'both')
            tssNames = [startDict[tssLocus.ID()]['name'] for tssLocus in overlappingTSSLoci]
            tssNames = utils.uniquify(tssNames)
            if len(tssNames) > 2:

                # stitchedCollection.remove(stitchedLocus)
                originalLoci = referenceCollection.getOverlap(stitchedLocus, 'both')
                originalTicker += len(originalLoci)
                fixedLoci += originalLoci
                debugOutput.append([stitchedLocus.__str__(), stitchedLocus.ID(), 'MULTIPLE_TSS'])
                removeTicker += 1
            else:
                fixedLoci.append(stitchedLocus)

        print('REMOVED %s STITCHED LOCI BECAUSE THEY OVERLAPPED MULTIPLE TSSs' % (removeTicker))
        print('ADDED BACK %s ORIGINAL LOCI' % (originalTicker))
        fixedCollection = utils.LocusCollection(fixedLoci, 50)
        return fixedCollection, debugOutput, stitchWindow
    else:
        return stitchedCollection, debugOutput, stitchWindow
Beispiel #4
0
def findCanidateTFs(annotationFile, superLoci, expressedNM, TFlist, refseqToNameDict, projectFolder, projectName):
    '''
    find all TFs within 1Mb of the super-enhancer center that are considered expressed 
    return a dictionary keyed by TF that points to a list of super-enhancer loci
    '''

    print 'FINDING CANIDATE TFs'

    startDict = utils.makeStartDict(annotationFile)

    # Find the location of the TSS of all transcripts (NMid) considered expressed
    tssLoci = []
    for geneID in expressedNM:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))
    tssCollection = utils.LocusCollection(tssLoci,50)

    # Assign all transcripts (NMid) that are TFs to a super-enhancer if it is the closest gene
    seAssignment = []
    seAssignmentGene = []
    TFandSuperDict = {}

    for superEnh in superLoci:

        seCenter = (superEnh.start() + superEnh.end()) / 2 

        # Find all transcripts whose TSS occur within 1Mb of the SE center
        searchLocus = utils.Locus(superEnh.chr(), superEnh.start()-1000000, superEnh.end()+1000000, '.')
        allEnhancerLoci = tssCollection.getOverlap(searchLocus)
        allEnhancerGenes = [locus.ID() for locus in allEnhancerLoci]

        # Find the transcript that is closest to the center
        if allEnhancerGenes:
            distList = [abs(seCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            closestGene = allEnhancerGenes[distList.index(min(distList))]
        else:
            closestGene = ''

        seAssignment.append([superEnh.chr(), superEnh.start(), superEnh.end(), closestGene])

        # Select the transcript if it is a TF, and allow for a TF to have multiple SEs
        if closestGene in TFlist and closestGene not in TFandSuperDict.keys():
            TFandSuperDict[closestGene] = [superEnh]
        elif closestGene in TFlist and closestGene in TFandSuperDict.keys():
            TFandSuperDict[closestGene].append(superEnh)

        # Convert the selected TF NMids to gene names
        if closestGene != '':
            geneName = refseqToNameDict[closestGene]
            seAssignmentGene.append([superEnh.chr(), superEnh.start(), superEnh.end(), geneName])

    # Output the list of SE-assigned transcripts (NMids)
    seAssignmentFile = projectFolder + projectName + '_SE_ASSIGNMENT_TRANSCRIPT.txt'
    utils.unParseTable(seAssignment, seAssignmentFile, '\t')

    # Output the list of SE-assigned genes
    seAssignmentGeneFile = projectFolder + projectName + '_SE_ASSIGNMENT_GENE.txt'
    utils.unParseTable(seAssignmentGene, seAssignmentGeneFile, '\t')

    print 'Number of canidate TFs:', len(TFandSuperDict)

    return TFandSuperDict
Beispiel #5
0
def findCanidateTFs(annotationFile, enhancerLoci, expressedNM, expressionDictNM,
                    bamFile, TFlist, refseqToNameDict, projectFolder, projectName, promoter):
    '''                                                           
    Assign each Super-Enhancer to the closest active TSS to its center
    Return a dictionary keyed by TF that points to a list of loci
    '''

    print 'FINDING CANIDATE TFs'

    enhancerAssignment = []
    TFtoEnhancerDict = defaultdict(list)

    startDict = utils.makeStartDict(annotationFile)    

    tssLoci = []
    for gene in expressedNM:
        tssLoci.append(utils.makeTSSLocus(gene,startDict,1000,1000))
    tssCollection = utils.LocusCollection(tssLoci,50)    


    # Loop through enhancers
    for enhancer in enhancerLoci:
        

        # If the enhancer overlaps a TSS, save it
        overlappingLoci = tssCollection.getOverlap(enhancer, 'both')
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # Find all gene TSS within 100 kb
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,100000,100000),'both')
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())
        
        # If no genes are within 100 kb, find the closest active gene
        closestGene = ''
        if len(overlappingGenes) == 0 and len(proximalGenes) == 0:
        
            distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,1000000,1000000),'both')
            distalGenes =[]
            for distalLocus in distalLoci:
                distalGenes.append(distalLocus.ID())

            enhancerCenter = (int(enhancer.start()) + int(enhancer.end())) / 2
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in distalGenes]
            if distList:
                closestGene = distalGenes[distList.index(min(distList))]


        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)
 

        # If a TSS overlaps an enhancer, assign them together
        if overlappingGenes:
            for gene in overlappingGenes:
                if gene in TFlist:
                    TFtoEnhancerDict[gene].append(enhancer)
                    enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
                
        # Otherwise, assign the enhancer to the most active gene in 100 kb
        elif not overlappingGenes and proximalGenes:
            highestGene = ''
            highestActivity = 0
            for gene in proximalGenes:
                if expressionDictNM[gene] > highestActivity:
                    highestActivity = expressionDictNM[gene]
                    highestGene = gene
            if highestGene in TFlist:
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
            
        elif not overlappingGenes and not proximalGenes and closestGene:
            if closestGene in TFlist:
                gene = closestGene
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])

    # Add promoter is it's not contained in the super
    if promoter:
        for gene in TFtoEnhancerDict.keys():
            promoter = utils.Locus(startDict[gene]['chr'], int(startDict[gene]['start'][0]) - 2000, 
                                   int(startDict[gene]['start'][0]) + 2000, startDict[gene]['sense'])
            overlapBool = False
            for enhancer in TFtoEnhancerDict[gene]:
                if promoter.overlaps(enhancer):
                    overlapBool = True
            if not overlapBool:
                TFtoEnhancerDict[gene].append(promoter)

    seAssignmentFile = projectFolder + projectName + '_ENHANCER_ASSIGNMENT.txt'
    utils.unParseTable(enhancerAssignment, seAssignmentFile, '\t')

    return TFtoEnhancerDict
Beispiel #6
0
def make_shep_on_mycn_landscape(shep_on_dataFile):

    '''
    finds mycn peaks in shep21 that are conserved in nb and segregates them into promoter or enhancer
    '''
    dataDict = pipeline_dfci.loadDataTable(shep_on_dataFile)


    print('LOADING SHEP ON MYCN SITES')
    #load all of the shep_on sites
    # shep_on_gff_path = '%smeta_rose/SHEP_ON_MYC/gff/HG19_SHEP_ON_MYC_ALL_-0_+0.gff' % (projectFolder)
    # shep_on_gff = utils.parseTable(shep_on_gff_path,'\t')

    shep_on_bed_path = '%sSHEP_6HR_MYCN_peaks.bed' % (macsEnrichedFolder)
    shep_on_bed = utils.parseTable(shep_on_bed_path,'\t')
    shep_on_gff = utils.bedToGFF(shep_on_bed)
    
    #now get the conserved NB MYCN regions
    nb_conserved_mycn_gff_file = '%sHG19_NB_MYCN_CONSERVED_-0_+0.gff' % (gffFolder)
    nb_conserved_mycn_collection = utils.gffToLocusCollection(nb_conserved_mycn_gff_file)

    print('LOADING SHEP ACTIVE ENHANCERS') 
    #make a collection of enhancers
    shep_enhancer_file = '%smeta_rose/SHEP_ON_H3K27AC/SHEP_ON_H3K27AC_AllEnhancers.table.txt' % (projectFolder)
    shep_enhancer_collection = utils.makeSECollection(shep_enhancer_file,'SHEP_H3K27AC')

    #now get the active promoters
    print('LOADING SHEP ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    shep_transcribed_file = '%sHG19_SHEP_ON_H3K27AC_ACTIVE.txt' % (geneListFolder)
    shep_transcribed_table = utils.parseTable(shep_transcribed_file,'\t')
    transcribedList = [line[1] for line in shep_transcribed_table]
    tssLoci = []
    for refID in transcribedList:
        tssLoci.append(utils.makeTSSLocus(refID,startDict,1000,1000))

    shep_tss_collection = utils.LocusCollection(tssLoci,50)

    #now initialize the 6 gffs we will need
    shep_mycn_gff = [] 
    shep_mycn_gff_5kb = []
    shep_mycn_gff_1kb = []

    shep_mycn_promoter_gff = []
    shep_mycn_promoter_gff_1kb = []
    shep_mycn_promoter_gff_5kb = []

    shep_mycn_enhancer_gff = []
    shep_mycn_enhancer_gff_1kb = []
    shep_mycn_enhancer_gff_5kb = []

    #and their respective file names
    shep_mycn_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_-0_+0.gff' % (gffFolder)
    shep_mycn_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_-1kb_+1kb.gff' % (gffFolder)

    shep_mycn_promoter_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-0_+0.gff' % (gffFolder)
    shep_mycn_promoter_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_promoter_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-1kb_+1kb.gff' % (gffFolder)

    shep_mycn_enhancer_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-0_+0.gff' % (gffFolder)
    shep_mycn_enhancer_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_enhancer_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-1kb_+1kb.gff' % (gffFolder)

    print('ITERATING THROUGH SHEP MYCN PEAKS')

    ticker = 0
    enhancer = 0
    promoter = 0 

    other = 0
    for line in shep_on_gff:
        if ticker % 1000 == 0:
            print ticker
        ticker+=1
        peakID = '%s_%s' % ('SHEP_MYCN',str(ticker))

        lineLocus = utils.Locus(line[0],line[3],line[4],'.',peakID)

        if nb_conserved_mycn_collection.getOverlap(lineLocus):
            gffLine = [line[0],peakID,peakID,line[3],line[4],'','.','',peakID]
            peakCenter = (int(line[3]) + int(line[4]))/2
            gffLine_5kb = [line[0],peakID,peakID,peakCenter - 5000,peakCenter + 5000,'','.','',peakID]
            #the 1kb is not a center +/- but a flank
            gffLine_1kb = [line[0],peakID,peakID,int(line[3]) - 1000,int(line[4]) + 1000,'','.','',peakID]

            shep_mycn_gff.append(gffLine)
            shep_mycn_gff_5kb.append(gffLine_5kb)
            shep_mycn_gff_1kb.append(gffLine_1kb)

            #tss overlap should take precedence over enhancer overlap
            if shep_tss_collection.getOverlap(lineLocus,'both'):
                shep_mycn_promoter_gff.append(gffLine)
                shep_mycn_promoter_gff_5kb.append(gffLine_5kb)
                shep_mycn_promoter_gff_1kb.append(gffLine_1kb)
                promoter+=1
            #now check for enhancer overlap
            elif shep_enhancer_collection.getOverlap(lineLocus,'both'):
                shep_mycn_enhancer_gff.append(gffLine)
                shep_mycn_enhancer_gff_5kb.append(gffLine_5kb)
                shep_mycn_enhancer_gff_1kb.append(gffLine_1kb)
                enhancer+=1
            else:
                other+=1
    
    print('Of %s shep on mycn peaks' % (len(shep_on_gff)))
    print('%s are promoter' % (promoter))
    print('%s are enhancer' % (enhancer))
    print('%s are other' % (other))
    #now write out the gffs
    utils.unParseTable(shep_mycn_gff,shep_mycn_gff_file,'\t')
    utils.unParseTable(shep_mycn_gff_5kb,shep_mycn_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_gff_1kb,shep_mycn_gff_1kb_file,'\t')

    utils.unParseTable(shep_mycn_promoter_gff,shep_mycn_promoter_gff_file,'\t')
    utils.unParseTable(shep_mycn_promoter_gff_5kb,shep_mycn_promoter_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_promoter_gff_1kb,shep_mycn_promoter_gff_1kb_file,'\t')

    utils.unParseTable(shep_mycn_enhancer_gff,shep_mycn_enhancer_gff_file,'\t')
    utils.unParseTable(shep_mycn_enhancer_gff_5kb,shep_mycn_enhancer_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_enhancer_gff_1kb,shep_mycn_enhancer_gff_1kb_file,'\t')
Beispiel #7
0
def make_shep21_mycn_landscape(nb_all_chip_dataFile):
    '''
    finds mycn peaks in shep21 that are conserved in nb and segregates them into promoter or enhancer
    '''

    #first get the shep21 regions

    print('LOADING SHEP21 MYCN SITES')
    dataDict = pipeline_dfci.loadDataTable(nb_all_chip_dataFile)
    shep21_0hr_mycn_enriched_file = '%s%s' % (
        macsEnrichedFolder,
        dataDict['SHEP21_0HR_MYCN_NOSPIKE']['enrichedMacs'])
    shep21_0hr_mycn_bed = utils.parseTable(shep21_0hr_mycn_enriched_file, '\t')

    #now get the conserved NB MYCN regions
    nb_conserved_mycn_gff_file = '%sHG19_NB_MYCN_CONSERVED_-0_+0.gff' % (
        gffFolder)
    nb_conserved_mycn_collection = utils.gffToLocusCollection(
        nb_conserved_mycn_gff_file)

    print('LOADING SHEP21 ACTIVE ENHANCERS')
    #make a collection of enhancers
    shep21_enhancer_file = '%senhancer_rose/SHEP21_0HR_H3K27AC_NOSPIKE_ROSE/SHEP21_0HR_H3K27AC_NOSPIKE_peaks_AllEnhancers.table.txt' % (
        projectFolder)
    shep21_enhancer_collection = utils.makeSECollection(
        shep21_enhancer_file, 'SHEP21_0HR_H3K27AC_NOSPIKE')

    #now get the active promoters
    print('LOADING SHEP21 ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    shep21_transcribed_file = '%sHG19_SHEP21_H3K27AC_TRANSCRIBED.txt' % (
        geneListFolder)
    shep21_transcribed_table = utils.parseTable(shep21_transcribed_file, '\t')
    transcribedList = [line[1] for line in shep21_transcribed_table]
    tssLoci = []
    for refID in transcribedList:
        tssLoci.append(utils.makeTSSLocus(refID, startDict, 1000, 1000))

    shep21_tss_collection = utils.LocusCollection(tssLoci, 50)

    #now initialize the 6 gffs we will need
    shep21_mycn_conserved_gff = []
    shep21_mycn_conserved_gff_5kb = []
    shep21_mycn_conserved_gff_1kb = []

    shep21_mycn_conserved_promoter_gff = []
    shep21_mycn_conserved_promoter_gff_1kb = []
    shep21_mycn_conserved_promoter_gff_5kb = []

    shep21_mycn_conserved_enhancer_gff = []
    shep21_mycn_conserved_enhancer_gff_1kb = []
    shep21_mycn_conserved_enhancer_gff_5kb = []

    #and their respective file names
    shep21_mycn_conserved_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-1kb_+1kb.gff' % (
        gffFolder)

    shep21_mycn_conserved_promoter_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_promoter_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_promoter_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-1kb_+1kb.gff' % (
        gffFolder)

    shep21_mycn_conserved_enhancer_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_enhancer_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_enhancer_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-1kb_+1kb.gff' % (
        gffFolder)

    print('ITERATING THROUGH SHEP21 MYCN PEAKS')

    ticker = 0
    for line in shep21_0hr_mycn_bed:
        if ticker % 1000 == 0:
            print ticker
        ticker += 1
        peakID = '%s_%s' % ('SHEP21_0HR_MYCN_NOSPIKE', str(ticker))

        lineLocus = utils.Locus(line[0], line[1], line[2], '.', peakID)

        if nb_conserved_mycn_collection.getOverlap(lineLocus):

            gffLine = [
                line[0], peakID, peakID, line[1], line[2], '', '.', '', peakID
            ]
            peakCenter = (int(line[1]) + int(line[2])) / 2
            gffLine_5kb = [
                line[0], peakID, peakID, peakCenter - 5000, peakCenter + 5000,
                '', '.', '', peakID
            ]
            #the 1kb is not a center +/- but a flank
            gffLine_1kb = [
                line[0], peakID, peakID,
                int(line[1]) - 1000,
                int(line[2]) + 1000, '', '.', '', peakID
            ]

            shep21_mycn_conserved_gff.append(gffLine)
            shep21_mycn_conserved_gff_5kb.append(gffLine_5kb)
            shep21_mycn_conserved_gff_1kb.append(gffLine_1kb)

            #tss overlap should take precedence over enhancer overlap
            if shep21_tss_collection.getOverlap(lineLocus, 'both'):
                shep21_mycn_conserved_promoter_gff.append(gffLine)
                shep21_mycn_conserved_promoter_gff_5kb.append(gffLine_5kb)
                shep21_mycn_conserved_promoter_gff_1kb.append(gffLine_1kb)
            #now check for enhancer overlap
            elif shep21_enhancer_collection.getOverlap(lineLocus, 'both'):
                shep21_mycn_conserved_enhancer_gff.append(gffLine)
                shep21_mycn_conserved_enhancer_gff_5kb.append(gffLine_5kb)
                shep21_mycn_conserved_enhancer_gff_1kb.append(gffLine_1kb)

    #now write out the gffs
    utils.unParseTable(shep21_mycn_conserved_gff,
                       shep21_mycn_conserved_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_gff_5kb,
                       shep21_mycn_conserved_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_gff_1kb,
                       shep21_mycn_conserved_gff_1kb_file, '\t')

    utils.unParseTable(shep21_mycn_conserved_promoter_gff,
                       shep21_mycn_conserved_promoter_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_promoter_gff_5kb,
                       shep21_mycn_conserved_promoter_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_promoter_gff_1kb,
                       shep21_mycn_conserved_promoter_gff_1kb_file, '\t')

    utils.unParseTable(shep21_mycn_conserved_enhancer_gff,
                       shep21_mycn_conserved_enhancer_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_enhancer_gff_5kb,
                       shep21_mycn_conserved_enhancer_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_enhancer_gff_1kb,
                       shep21_mycn_conserved_enhancer_gff_1kb_file, '\t')
Beispiel #8
0
def makePeakTable(paramDict,
                  splitGFFPath,
                  averageTablePath,
                  startDict,
                  geneList,
                  genomeDirectory,
                  tads_path=''):
    '''
    makes the final peak table with ebox info
    '''

    peakTable = [[
        'REGION_ID', 'CHROM', 'START', 'STOP', 'LENGTH', 'TSS', 'CPG',
        'CPG_FRACTION', 'GC_FREQ', 'SIGNAL', 'CANON_EBOX_COUNT',
        'NON_CANON_EBOX_COUNT', 'TOTAL_EBOX_COUNT', 'OVERLAPPING_GENES',
        'PROXIMAL_GENES'
    ]]

    print('LOADING PEAK REGIONS')
    peakGFF = utils.parseTable(splitGFFPath, '\t')

    print('LOADING BINDING DATA')
    signalTable = utils.parseTable(averageTablePath, '\t')

    print('LOADING CPGS ISLANDS')
    cpgBed = utils.parseTable(paramDict['cpgPath'], '\t')
    cpgLoci = []
    for line in cpgBed:
        cpgLoci.append(utils.Locus(line[0], line[1], line[2], '.', line[-1]))
    cpgCollection = utils.LocusCollection(cpgLoci, 50)

    print("MAKING TSS COLLECTIONS")
    if len(geneList) == 0:
        geneList = startDict.keys()

    tss_1kb_loci = []
    tss_50kb_loci = []
    for refID in geneList:
        tss_1kb_loci.append(utils.makeTSSLocus(refID, startDict, 1000, 1000))
        tss_50kb_loci.append(utils.makeTSSLocus(refID, startDict, 50000,
                                                50000))

    #make a 1kb flanking and 50kb flanking collection
    tss_1kb_collection = utils.LocusCollection(tss_1kb_loci, 50)
    tss_50kb_collection = utils.LocusCollection(tss_50kb_loci, 50)

    if len(tads_path) > 0:
        print('LOADING TADS FROM %s' % (tads_path))
        tad_collection = utils.importBoundRegion(tads_path, 'tad')
        use_tads = True

        #building a tad dict keyed by tad ID w/ genes in that tad provided
        tad_dict = defaultdict(list)
        for tss_locus in tss_1kb_loci:
            overlapping_tads = tad_collection.getOverlap(tss_locus, 'both')
            for tad_locus in overlapping_tads:
                tad_dict[tad_locus.ID()].append(tss_locus.ID())

    else:
        use_tads = False

    print('CLASSIFYING PEAKS')
    ticker = 0

    no_tad_count = 0
    for i in range(len(peakGFF)):
        if ticker % 1000 == 0:
            print(ticker)
        ticker += 1

        #getting the particulars of the region
        gffLine = peakGFF[i]
        peakID = gffLine[1]
        chrom = gffLine[0]
        start = int(gffLine[3])
        stop = int(gffLine[4])
        lineLocus = utils.Locus(chrom, start, stop, '.', peakID)

        #getting the mapped signal
        signalLine = signalTable[(i + 1)]
        signalVector = [float(x) for x in signalLine[2:]]

        #setting up the new line
        newLine = [peakID, chrom, start, stop, lineLocus.len()]

        #get the tss status from the gff itself (we are able to do this nicely from the split gff code earlier
        newLine.append(gffLine[7])

        #check cpg status
        if cpgCollection.getOverlap(lineLocus, 'both'):
            newLine.append(1)
        else:
            newLine.append(0)

        #now do fractional cpgOverlap
        overlappingCpGLoci = cpgCollection.getOverlap(lineLocus, 'both')
        overlappingBases = 0
        for locus in overlappingCpGLoci:
            cpgStart = max(locus.start(), lineLocus.start())
            cpgEnd = min(locus.end(), lineLocus.end())
            overlappingBases += (cpgEnd - cpgStart)
        overlapFraction = float(overlappingBases) / lineLocus.len()

        newLine.append(round(overlapFraction, 2))

        #now get the seq
        lineSeq = string.upper(
            utils.fetchSeq(genomeDirectory, chrom, start, stop, True))
        if len(lineSeq) == 0:
            print('UH OH')
            print(lineSeq)
            print(gffLine)
            print(i)
            print(chrom)
            print(start)
            print(stop)
            sys.exit()

        gcFreq = float(lineSeq.count('GC') +
                       lineSeq.count('CG')) / len(lineSeq)
        newLine.append(gcFreq)

        #this is where we add the ChIP-Seq signal
        newLine += signalVector

        eboxMatchList = re.findall('CA..TG', lineSeq)
        if len(eboxMatchList) == 0:
            newLine += [0] * 3
        else:
            totalCount = len(eboxMatchList)
            canonCount = eboxMatchList.count('CACGTG')
            otherCount = totalCount - canonCount
            newLine += [canonCount, otherCount, totalCount]

        #now find the overlapping and proximal genes
        #here each overlapping gene the tss 1kb locus overlaps the peak

        if use_tads:

            tad_loci = tad_collection.getOverlap(lineLocus, 'both')

            tad_id_list = [tad_locus.ID() for tad_locus in tad_loci]
            tad_genes = []
            for tad_id in tad_id_list:
                tad_genes += tad_dict[tad_id]
            if len(tad_genes) == 0:
                #print('no tad for this region')
                #print(gffLine)
                no_tad_count += 1
        else:
            tad_genes = []

        if len(tad_genes) > 0:
            overlappingGenes = [
                startDict[locus.ID()]['name']
                for locus in tss_1kb_collection.getOverlap(lineLocus, 'both')
                if tad_genes.count(locus.ID()) > 0
            ]
            proximalGenes = [
                startDict[locus.ID()]['name']
                for locus in tss_50kb_collection.getOverlap(lineLocus, 'both')
                if tad_genes.count(locus.ID()) > 0
            ]
            # print('linked peak to tad genes')
            # print([startDict[x]['name'] for x in tad_genes])
            # print(tad_id_list)
            # print(gffLine)
            # print(overlappingGenes)
            # print(proximalGenes)
        else:
            overlappingGenes = [
                startDict[locus.ID()]['name']
                for locus in tss_1kb_collection.getOverlap(lineLocus, 'both')
            ]
            proximalGenes = [
                startDict[locus.ID()]['name']
                for locus in tss_50kb_collection.getOverlap(lineLocus, 'both')
            ]

        overlappingGenes = utils.uniquify(overlappingGenes)
        #here the tss 50kb locus overlaps the peak
        #overlap takes priority over proximal
        proximalGenes = [
            gene for gene in proximalGenes if overlappingGenes.count(gene) == 0
        ]
        proximalGenes = utils.uniquify(proximalGenes)

        overlappingString = string.join(overlappingGenes, ',')
        proximalString = string.join(proximalGenes, ',')

        newLine += [overlappingString, proximalString]

        peakTable.append(newLine)

    print('Out of %s regions, %s were assigned to at least 1 tad' %
          (len(peakTable), no_tad_count))
    return peakTable
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = '/ark/home/jdm/pipeline/bamliquidator_batch.py'
    if not os.path.isfile(bamliquidator_path):
        bamliquidator_path = 'bamliquidator_batch.py'
        if not os.path.isfile(bamliquidator_path):
            raise ValueError('bamliquidator_batch.py not found in path')

    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.gff" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)

    outputRank = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
    outputRank = outputRank.communicate()
    if len(outputRank[0]) > 0:  # test if mapping worked correctly
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.gff" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        outputControl = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
        outputControl = outputControl.communicate()
        if len(outputControl[0]) > 0:  # test if mapping worked correctly
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable
Beispiel #11
0
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
Beispiel #12
0
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    #get the chromLists from the various bams here
    cmd = 'samtools idxstats %s' % (rankByBamFile)
    idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
    idxStats= idxStats.communicate()
    bamChromList = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
    
    if len(controlBamFile) > 0:
        cmd = 'samtools idxstats %s' % (controlBamFile)
        idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
        idxStats= idxStats.communicate()
        bamChromListControl = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
        bamChromList = [chrom for chrom in bamChromList if bamChromListControl.count(chrom) != 0]



    #now make sure no genes have a bad chrom 
    overallGeneList = [gene for gene in overallGeneList if bamChromList.count(startDict[gene]['chr']) != 0]

    
    #now make an enhancer collection of all transcripts    
    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = 'bamliquidator_batch'


    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.txt" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)
    os.system(cmd)

    #check for completion
    if utils.checkOutput(mappedRankByFile,0.2,5):
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.txt" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        os.system(cmd)

        #check for completion
        if utils.checkOutput(mappedControlFile,0.2,5):
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable
Beispiel #13
0
def findCanidateTFs(genome, enhancer_gff, expressedNM, expressionDictNM,
                    bamFile, TFlist, refseqToNameDict, projectFolder, projectName, promoter):
    '''                                                           
    Assign each Super-Enhancer to the closest active TSS to its center
    Return a dictionary keyed by TF that points to a list of loci 
    '''
    
    #loading in the enhancer gff regions
    enhancer_collection = utils.gffToLocusCollection(enhancer_gff)
    enhancer_loci = enhancer_collection.getLoci()


    #loading in the genome and TF info
    annot_file = genome.returnFeature('annot_file')
    startDict = utils.makeStartDict(annot_file)    

    tf_table = utils.parseTable(genome.returnFeature('tf_file'),'\t')
    refID_list = [line[0] for line in tf_table] #creates a list of all NM IDs for TFs

    #make a collection of all TF TSSs
    tssLoci = []
    for refID in refID_list:
        tssLoci.append(utils.makeTSSLocus(refID,startDict,0,0)) #this is a precise 1 coordinate TSS locus
    tssCollection = utils.LocusCollection(tssLoci,50)    



    enhancerTable = [['ENHANCER_ID','CHROM','START','STOP','GENE_LIST']]

    gene_to_enhancer_dict = defaultdict(list)
    # Loop through enhancers
    #all gene nnames stored by refID
    for enhancer in enhancer_loci:
        

        # If the enhancer overlaps a TSS, save it
        overlapping_loci = tssCollection.getOverlap(enhancer, 'both')
        overlapping_refIDs =[locus.ID() for locus in overlapping_loci]

        # Find all gene TSS within 100 kb
        proximal_loci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,100000,100000),'both')
        proximal_refIDs =[locus.ID() for locus in proximal_loci]
        
        # If no genes are within 100 kb, find the closest active gene within 1 million bp
        closest_refID = []
        if len(overlapping_refIDs) == 0 and len(proximal_refIDs) == 0:
        
            distal_loci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,1000000,1000000),'both')
            distal_refIDs =[locus.ID() for locus in distal_loci]

            enhancerCenter = (int(enhancer.start()) + int(enhancer.end())) / 2
            distance_list = [abs(enhancerCenter - startDict[geneID]['start'][0])
                             for geneID in distal_refIDs]
            if len(distance_list) > 0:
                closest_refID = [distalGenes[distance_list.index(min(distance_list))]]

        #now we have all potential gene cases
        all_refIDs = overlappingGenes + proximalGenes + closest_refID
        
        #now we get all names and refIDs
        all_refIDs = utils.uniquify([refID for refID in all_refIDs if len(refID) > 0 ])
        all_names = utils.uniquify([startDict[refID]['name'] for refID in all_refIDs])
        
        #first do enhancer level assignment
        names_string = ','.join(all_names)
        enhancer_table.append([enhancer.ID(),enhancer.chr(),enhancer.start(),enhancer.end(),names_string])

        #now do gene level assignment
        for refID in all_refIDs:
            gene_to_enhancer_dict[refID].append(enhancer.ID())

        #an enhancer can be assigned to multiple genes
        #a promoter can only be assigned to 1 gene
        #promoters don't have enhancerIDs so don't add them yet
        #this should just be an enhancer level table
        #followed by a gene level table



        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)
 

        # If a TSS overlaps an enhancer, assign them together
        if overlappingGenes:
            for gene in overlappingGenes:
                if gene in tf_list:
                    TFtoEnhancerDict[gene].append(enhancer)
                    enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
                
        # Otherwise, assign the enhancer to the most active gene in 100 kb
        elif not overlappingGenes and proximalGenes:
            highestGene = ''
            highestActivity = 0
            for gene in proximalGenes:
                if expressionDictNM[gene] > highestActivity:
                    highestActivity = expressionDictNM[gene]
                    highestGene = gene
            if highestGene in TFlist:
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
            
        elif not overlappingGenes and not proximalGenes and closestGene:
            if closestGene in TFlist:
                gene = closestGene
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])

    # Add promoter is it's not contained in the super
    if promoter:
        for gene in TFtoEnhancerDict.keys():
            promoter = utils.Locus(startDict[gene]['chr'], int(startDict[gene]['start'][0]) - 2000, 
                                   int(startDict[gene]['start'][0]) + 2000, startDict[gene]['sense'])
            overlapBool = False
            for enhancer in TFtoEnhancerDict[gene]:
                if promoter.overlaps(enhancer):
                    overlapBool = True
            if not overlapBool:
                TFtoEnhancerDict[gene].append(promoter)

    seAssignmentFile = projectFolder + projectName + '_ENHANCER_ASSIGNMENT.txt'
    utils.unParseTable(enhancerAssignment, seAssignmentFile, '\t')

    return TFtoEnhancerDict
Beispiel #14
0
def binPeakTable(peak_table_path,activity_path,binSize = 1000000,output = ''):

    '''
    calculates the promoter/enahncer AUC signal
    across bins
    sets the output to the same path unless otherwise specified
    '''


    if len(output) == 0:
        output = string.replace(peak_table,'.txt','bin_table.txt')

        
    binSize = int(binSize)
    
    stepSize = binSize/2

    activityTable = utils.parseTable(activity_path,'\t')
    startDict = utils.makeStartDict(annotFile)
    tssLoci = []

    print('making tss collection for active genes')
    for line in activityTable:
        tssLoci.append(utils.makeTSSLocus(line[1],startDict,0,0))

    tssCollection = utils.LocusCollection(tssLoci,50)
    

    promoterDict = {}
    enhancerDict = {}
    tssDict = {}
    #hard wired for hg19
    chrom_path = '/ark/home/cl512/pipeline/annotation/hg19.chrom.sizes'

    chrom_table = utils.parseTable(chrom_path,'\t')

    chromDict = {}
    for line in chrom_table:
        chromDict[line[0]] = int(line[1])

    chromList = ['chr'+str(i) for i in range(1,23)] + ['chrX','chrY'] #set the hg19 chroms
    #need to seed the dict
    for chrom in chromList:
        promoterDict[chrom] = defaultdict(float)
        enhancerDict[chrom] = defaultdict(float)
        tssDict[chrom] =defaultdict(int) # dict to count active promoters
    #now as we iterate through the peak table

    peak_table = utils.parseTable(peak_table_path,'\t')
    print('filling in enhancer dict')
    for line in peak_table[1:]:

        chrom = line[1]
        
        signal = float(line[9])*int(line[4])

        #for approximation use the center coordinate to assign bin
        #every region should be in 2 bins
        center = (int(line[2]) + int(line[3]))/2

        first_bin = center/stepSize

        if center % stepSize < stepSize:
            second_bin = first_bin - 1
        else:
            second_bin = first_bin + 1

        if int(line[5]) == 1:
            promoterDict[chrom][first_bin] +=signal
            promoterDict[chrom][second_bin] +=signal
        else:
            enhancerDict[chrom][first_bin] +=signal
            enhancerDict[chrom][second_bin] +=signal
        

    #now load up the new peak table
    outTable = [['BIN','CHROM','START','STOP','TSS_COUNT','PROMOTER','ENHANCER']]
    print('making out table')
    for chrom in chromList:
        print(chrom)
        chromLength = chromDict[chrom]

        for i in range(chromLength/stepSize):
            bin_start = i*stepSize + 1
            bin_stop =  i*stepSize + binSize
            bin_locus = utils.Locus(chrom,bin_start,bin_stop,'.')
            overlapTSSCount = len(tssCollection.getOverlap(bin_locus,'both'))

            bin_id = '%s_%s' % (chrom,str(i+1))

            promoterSignal = promoterDict[chrom][i]
            enhancerSignal = enhancerDict[chrom][i]
            
            newLine = [bin_id,chrom,bin_start,bin_stop,overlapTSSCount,promoterSignal,enhancerSignal]
            outTable.append(newLine)


    utils.unParseTable(outTable,output,'\t')
    return outTable
import numpy as np
from math import log

# Annotation file for hg19

annotationFile = '/ark/home/cl512/pipeline/annotation/hg19_refseq.ucsc'
startDict = utils.makeStartDict(annotationFile)

print 'making TSS loci'
tssLoci = []
counter = 0
for gene in startDict:
    counter += 1
    if counter % 1000 == 0:
        print counter
    tssLoci.append(utils.makeTSSLocus(gene, startDict, 100000,
                                      100000))  # proximal = within 100kb
tssCollection = utils.LocusCollection(tssLoci, 200)

print 'converting gene names'
refseqToNameDict = {}
annotTable = utils.parseTable(annotationFile, '\t')
for line in annotTable:
    gid = line[1]
    genename = upper(line[12])
    refseqToNameDict[gid] = genename

nameToRefseqDict = defaultdict(list)
annotTable = utils.parseTable(annotationFile, '\t')
for line in annotTable:
    gid = line[1]
    genename = upper(line[12])
Beispiel #16
0
def loadAnnotFile(genome,window,geneList=[],skip_cache=False):
    """
    load in the annotation and create a startDict and tss collection for a set of refseq IDs a given genome
    20170213, add by Quanhu Sheng
    return validGenes
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
        'RN6': 'annotation/rn6_refseq.ucsc',
        }

    annotFile = whereAmI + '/' + genomeDict[string.upper(genome)]

    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash, annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')


    # We're still here, so either caching was disabled, or the cache doesn't exist

    startDict = utils.makeStartDict(annotFile, geneList)
    tssLoci =[]
    validGenes = []
    for gene in geneList:
        if gene in startDict:
            tssLoci.append(utils.makeTSSLocus(gene,startDict,window,window))
            validGenes.append(gene)
        else:
            print('\tWARNING: gene %s not in annotation database. Ignoring.' % gene)

    tssCollection = utils.LocusCollection(tssLoci,50)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((startDict, tssCollection), cache_fh, cPickle.HIGHEST_PROTOCOL)

    return startDict, tssCollection, validGenes
Beispiel #17
0
def regionStitching(referenceCollection,
                    name,
                    outFolder,
                    stitchWindow,
                    tssWindow,
                    annotFile,
                    removeTSS=True):
    print('PERFORMING REGION STITCHING')
    # first have to turn bound region file into a locus collection

    # need to make sure this names correctly... each region should have a unique name
    #referenceCollection

    debugOutput = []
    # filter out all bound regions that overlap the TSS of an ACTIVE GENE
    if removeTSS:

        print('REMOVING TSS FROM REGIONS USING AN EXCLUSION WINDOW OF %sBP' %
              (tssWindow))
        # first make a locus collection of TSS

        startDict = utils.makeStartDict(annotFile)

        # now makeTSS loci for active genes
        removeTicker = 0
        # this loop makes a locus centered around +/- tssWindow of transcribed genes
        # then adds it to the list tssLoci
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(
                utils.makeTSSLocus(geneID, startDict, tssWindow, tssWindow))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)

        # gives all the loci in referenceCollection
        boundLoci = referenceCollection.getLoci()

        # this loop will check if each bound region is contained by the TSS exclusion zone
        # this will drop out a lot of the promoter only regions that are tiny
        # typical exclusion window is around 2kb
        for locus in boundLoci:
            if len(tssCollection.getContainers(locus, 'both')) > 0:

                # if true, the bound locus overlaps an active gene
                referenceCollection.remove(locus)
                debugOutput.append([locus.__str__(), locus.ID(), 'CONTAINED'])
                removeTicker += 1
        print('REMOVED %s LOCI BECAUSE THEY WERE CONTAINED BY A TSS' %
              (removeTicker))

    # referenceCollection is now all enriched region loci that don't overlap an active TSS

    if stitchWindow == '':
        print('DETERMINING OPTIMUM STITCHING PARAMTER')
        optCollection = copy.deepcopy(referenceCollection)
        stitchWindow = optimizeStitching(optCollection,
                                         name,
                                         outFolder,
                                         stepSize=500)
    print('USING A STITCHING PARAMETER OF %s' % stitchWindow)
    stitchedCollection = referenceCollection.stitchCollection(
        stitchWindow, 'both')

    if removeTSS:
        # now replace any stitched region that overlap 2 distinct genes
        # with the original loci that were there
        fixedLoci = []
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, 50, 50))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)
        removeTicker = 0
        originalTicker = 0
        for stitchedLocus in stitchedCollection.getLoci():
            overlappingTSSLoci = tssCollection.getOverlap(
                stitchedLocus, 'both')
            tssNames = [
                startDict[tssLocus.ID()]['name']
                for tssLocus in overlappingTSSLoci
            ]
            tssNames = utils.uniquify(tssNames)
            if len(tssNames) > 2:

                # stitchedCollection.remove(stitchedLocus)
                originalLoci = referenceCollection.getOverlap(
                    stitchedLocus, 'both')
                originalTicker += len(originalLoci)
                fixedLoci += originalLoci
                debugOutput.append([
                    stitchedLocus.__str__(),
                    stitchedLocus.ID(), 'MULTIPLE_TSS'
                ])
                removeTicker += 1
            else:
                fixedLoci.append(stitchedLocus)

        print(
            'REMOVED %s STITCHED LOCI BECAUSE THEY OVERLAPPED MULTIPLE TSSs' %
            (removeTicker))
        print('ADDED BACK %s ORIGINAL LOCI' % (originalTicker))
        fixedCollection = utils.LocusCollection(fixedLoci, 50)
        return fixedCollection, debugOutput, stitchWindow
    else:
        return stitchedCollection, debugOutput, stitchWindow
Beispiel #18
0
def make_mycn_stats_table(nb_all_chip_dataFile,outFile):

    '''
    making a table of conserved mycn peaks w/ some additional stats
    mycn and h3k27ac signal is avg. background normalized across 4 samples
    active tss defined as the union of all H3K27ac occupied promoters in NB
    active enhancers defined as the union of all H3K27ac sites outside of promoters
    '''
    dataDict = pipeline_dfci.loadDataTable(nb_all_chip_dataFile)

    print('SETTING UP OUTPUT TABLE')
    outTable = [['PEAK_ID','CHROM','START','STOP','LENGTH','ACTIVE_TSS_OVERLAP','ENHANCER_OVERLAP','CPG_ISLAND_OVERLAP','CPG_ISLAND_FRACTION','GC_FREQ','MYCN_RANK','AVG_MYCN_SIGNAL','AVG_H3K27AC_SIGNAL','CANON_EBOX_COUNT','NONCANON_EBOX_COUNT','TOTAL_EBOX_COUNT','CANON_EXP','NON_CANON_EXP','GABPA_COUNT','GABPA_EXP','GATA_COUNT','GATA_EXP']]

    dinuc = nmers(2,['A','T','G','C'])

    #input files
    mycnSignalFile = '%sHG19_NB_MYCN_CONSERVED_-0_+0_NB_ALL_SIGNAL.txt' % (signalFolder)
    h3k27acSignalFile = '%sHG19_NB_MYCN_CONSERVED_-500_+500_NB_ALL_SIGNAL.txt' % (signalFolder)
    mycnRankFile = '%smeta_rose/NB_MYCN/NB_MYCN_0KB_STITCHED_ENHANCER_REGION_RANK_CONSERVED.txt' % (projectFolder)
    activeGeneFile = '%sHG19_NB_H3K27AC_ACTIVE_UNION.txt' % (geneListFolder)
    #note, this is the ucsc hg19 cpg islands extended file
    #to download and format run ./beds/download_cpg.sh
    cpgFile = '%sbeds/hg19_cpg_islands.bed' % (projectFolder)
    enhancerFile = '%smeta_rose/NB_H3K27AC/NB_H3K27AC_AllEnhancers.table.txt' % (projectFolder)

    print('LOADING MYCN BINDING DATA')
    mycnSignalTable = utils.parseTable(mycnSignalFile,'\t')

    #making a signal dictionary for MYCN binding
    names_list = ['BE2C_MYCN','KELLY_MYCN','NGP_MYCN','SHEP21_0HR_MYCN_NOSPIKE']
    background_list = [dataDict[name]['background'] for name in names_list]
    header = mycnSignalTable[0]
    chip_columns = [header.index(name) for name in names_list]
    background_columns = [header.index(background_name) for background_name in background_list]
    
    mycn_sig_dict = {}
    #this only works if the first column are unique identifiers
    if len(mycnSignalTable) != len(utils.uniquify([line[0] for line in mycnSignalTable])):
        print('Error: Column 1 of must contain unique identifiers.' % (mycnSignalFile))
        sys.exit()
    for line in mycnSignalTable[1:]:
        line_sig = []
        for i in range(len(names_list)):
            line_sig.append(float(line[chip_columns[i]]) - float(line[background_columns[i]]))
        mycn_sig_dict[line[0]] = numpy.mean(line_sig)


    
    print('LOADING MYCN RANK DATA')
    mycnRankTable = utils.parseTable(mycnRankFile,'\t')

    print('LOADING H3K27AC BINDING DATA')
    h3k27acSignalTable = utils.parseTable(h3k27acSignalFile,'\t')
    #making a signal dictionary for background subtracted H3K27ac binding
    names_list = ['BE2C_H3K27AC','KELLY_H3K27AC','NGP_H3K27AC','SHEP21_0HR_H3K27AC_NOSPIKE']
    background_list = [dataDict[name]['background'] for name in names_list]
    header = h3k27acSignalTable[0]
    chip_columns = [header.index(name) for name in names_list]
    background_columns = [header.index(background_name) for background_name in background_list]
    
    h3k27ac_sig_dict = {}
    #this only works if the first column are unique identifiers
    if len(h3k27acSignalTable) != len(utils.uniquify([line[0] for line in h3k27acSignalTable])):
        print('Error: Column 1 of must contain unique identifiers.' % (h3k27acSignalFile))
        sys.exit()
    for line in h3k27acSignalTable[1:]:
        line_sig = []
        for i in range(len(names_list)):
            line_sig.append(float(line[chip_columns[i]]) - float(line[background_columns[i]]))
        h3k27ac_sig_dict[line[0]] = numpy.mean(line_sig)



    #making the cpg collection
    print('LOADING CPGS ISLANDS')
    cpgBed = utils.parseTable(cpgFile,'\t')
    cpgLoci = []
    for line in cpgBed:
        cpgLoci.append(utils.Locus(line[0],line[1],line[2],'.',line[-1]))
    cpgCollection = utils.LocusCollection(cpgLoci,50)
        
    #next make the tss collection of active promoters
    print('LOADING ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    activeTable = utils.parseTable(activeGeneFile,'\t')
    tss_1kb_loci = []
    for line in activeTable:
        tss_1kb_loci.append(utils.makeTSSLocus(line[1],startDict,1000,1000))
    tss_1kb_collection = utils.LocusCollection(tss_1kb_loci,50)


    #enhancer file
    print("LOADING ACTIVE ENHANCERS")
    enhancerTable = utils.parseTable(enhancerFile,'\t')
    print('STARTING WITH THE FOLLOWING NUMBER OF ENHANCERS IN NB')
    print(len(enhancerTable) - 6)
    enhancerLoci = []
    for line in enhancerTable:
        if line[0][0] != '#' and line[0][0] != 'R':
            try:
                lineLocus = utils.Locus(line[1],int(line[2]),int(line[3]),'.',line[0])
                enhancerLoci.append(lineLocus)
            except IndexError:
                print(line)
                sys.exit()
    enhancerCollection = utils.LocusCollection(enhancerLoci,50)

    print('CLASSIFYING MYCN PEAKS')
    ticker = 0
    for i in range(1,len(mycnSignalTable)):
        if ticker%100 == 0:
            print(ticker)
        ticker +=1

        line = mycnSignalTable[i]        

        mycn_signal = round(mycn_sig_dict[line[0]],4)
        h3k27ac_signal = round(h3k27ac_sig_dict[line[0]],4)
        
        peakID = line[0]
        locusString = line[1]
        chrom = locusString.split('(')[0]
        [start,stop] = [int(x) for x in line[1].split(':')[-1].split('-')]
        lineLocus = utils.Locus(chrom,start,stop,'.',peakID)
        
        tssOverlap = 0
        if tss_1kb_collection.getOverlap(lineLocus,'both'):
            tssOverlap = 1

        enhancerOverlap = 0
        if enhancerCollection.getOverlap(lineLocus,'both') and tssOverlap == 0:
            enhancerOverlap = 1

        cpgIslandOverlap = 0
        if cpgCollection.getOverlap(lineLocus,'both'):
            cpgIslandOverlap = 1

        #now do fractional cpgOverlap
        overlappingCpGLoci = cpgCollection.getOverlap(lineLocus,'both')
        overlappingBases = 0
        for locus in overlappingCpGLoci:
            cpgStart = max(locus.start(),lineLocus.start())
            cpgEnd = min(locus.end(),lineLocus.end())
            overlappingBases += (cpgEnd-cpgStart)
        overlapFraction = round(float(overlappingBases)/lineLocus.len(),2)
        
        #now get the seq
        lineSeq = string.upper(utils.fetchSeq(genomeDirectory,chrom,start,stop,True))
        gcFreq = round(float(lineSeq.count('GC') + lineSeq.count('CG'))/len(lineSeq),2)
            
        dinuc_dict = {}
        for nmer in dinuc:
            dinuc_dict[nmer] = float(lineSeq.count('GC'))/len(lineSeq)

        
        mycnRankLine = mycnRankTable[i]
        mycnRank = numpy.mean([float(x) for x in mycnRankLine[6:]])

        canonMatchList = re.findall('CACGTG',lineSeq)
        canon_count = len(canonMatchList)

        eboxMatchList = re.findall('CA..TG',lineSeq)
        ebox_count = len(eboxMatchList)

        non_canon_count = ebox_count-canon_count

        #get the expected values
        canon_exp = dinuc_dict['CA']*dinuc_dict['CG']*dinuc_dict['TG']*(len(lineSeq) - 5)
        canon_exp = round(canon_exp,2)
        notCG = 1- dinuc_dict['CG']
        non_exp = dinuc_dict['CA']*notCG*dinuc_dict['TG']*(len(lineSeq) - 5)
        non_exp = round(non_exp,2)



        #for gata and GABPA
        gabpaMatchList = re.findall('CGGAAG',lineSeq) + re.findall('CTTCCG',lineSeq)
        gabpa_count = len(gabpaMatchList)

        gabpa_exp_f = dinuc_dict['CG'] * dinuc_dict['GA'] * dinuc_dict['AG']*(len(lineSeq) - 5)
        gabpa_exp_r = dinuc_dict['CT'] * dinuc_dict['TC'] * dinuc_dict['CG']*(len(lineSeq) - 5)
        
        gabpa_exp = round(gabpa_exp_f,2) + round(gabpa_exp_r,2)

        gataMatchList = re.findall('GATAA',lineSeq) + re.findall('TTATC',lineSeq)
        gata_count = len(gataMatchList)

        an_freq = 1 - dinuc_dict['AA'] - dinuc_dict['AT'] - dinuc_dict['AG'] -dinuc_dict['AC']
        cn_freq = 1 - dinuc_dict['CA'] - dinuc_dict['CT'] - dinuc_dict['CG'] -dinuc_dict['CC']
        gata_exp_f = dinuc_dict['GA'] * dinuc_dict['TA'] * an_freq*(len(lineSeq) - 5)
        gata_exp_r = dinuc_dict['TT'] * dinuc_dict['AT'] * cn_freq*(len(lineSeq) - 5)
        gata_exp = round(gata_exp_f,2) + round(gata_exp_r,2)

        
        

        newLine = [peakID,chrom,start,stop,lineLocus.len(),tssOverlap,enhancerOverlap,cpgIslandOverlap,overlapFraction,gcFreq,mycnRank,mycn_signal,h3k27ac_signal,canon_count,non_canon_count,ebox_count,canon_exp,non_exp,gabpa_count,gabpa_exp,gata_count,gata_exp]
        outTable.append(newLine)

    utils.unParseTable(outTable,outFile,'\t')
    
    return outFile
Beispiel #19
0
def loadAnnotFile(genome, window, geneList=[], skip_cache=False):
    """
    load in the annotation and create a startDict and tss collection for a set of refseq IDs a given genome
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
        'RN6': 'annotation/rn6_refseq.ucsc',
        'HG38': 'annotation/hg38_refseq.ucsc',
    }

    genomeDirectoryDict = {
        'HG19':
        '/storage/cylin/grail/genomes/Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/',
        'RN6':
        '/storage/cylin/grail/genomes/Rattus_norvegicus/UCSC/rn6/Sequence/Chromosomes/',
        'MM9':
        '/storage/cylin/grail/genomes/Mus_musculus/UCSC/mm9/Sequence/Chromosomes/',
        'MM10':
        '/storage/cylin/grail/genomes/Mus_musculus/UCSC/mm10/Sequence/Chromosomes/',
        'HG38':
        '/storage/cylin/grail/genomes/Homo_sapiens/UCSC/hg38/Sequence/Chromosomes/',
    }

    mouse_convert_file = '%s/annotation/HMD_HumanPhenotype.rpt' % (whereAmI)

    #making a dictionary for mouse to human conversion
    mouse_convert_dict = defaultdict(str)

    mouse_convert_table = utils.parseTable(mouse_convert_file, '\t')
    for line in mouse_convert_table:
        mouse_convert_dict[line[4]] = line[0]

    genomeDirectory = genomeDirectoryDict[string.upper(genome)]

    #making a chrom_dict that is a list of all chroms with sequence
    chrom_list = utils.uniquify([
        name.split('.')[0] for name in os.listdir(genomeDirectory)
        if len(name) > 0
    ])

    annotFile = whereAmI + '/' + genomeDict[string.upper(genome)]

    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(
            annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash,
                                              annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')

    # We're still here, so either caching was disabled, or the cache doesn't exist

    startDict = utils.makeStartDict(annotFile, geneList)
    tssLoci = []
    if geneList == []:
        geneList = startDict.keys()
    for gene in geneList:
        tssLoci.append(utils.makeTSSLocus(gene, startDict, window, window))

    tssCollection = utils.LocusCollection(tssLoci, 50)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((startDict, tssCollection), cache_fh,
                         cPickle.HIGHEST_PROTOCOL)

    return startDict, tssCollection, genomeDirectory, chrom_list, mouse_convert_dict
annotFile = '/storage/goodell/home/jmreyes/pipeline/annotation/%s_refseq.ucsc' % (
    genome)

startDict = utils.makeStartDict(annotFile)
startLoci = []
#for TR, -30, +300 and genebody +0

for gene in startDict.keys():
    geneChrom = startDict[gene]['chr']
    geneStart = startDict[gene]['start']
    geneEnd = startDict[gene]['end']
    geneSense = startDict[gene]['sense']

    #    newLocus  = [geneChrom, gene, '', geneStart]

    newLocus = utils.makeTSSLocus(gene, startDict, 0, 0)

    startLoci.append([
        newLocus.chr(),
        newLocus.start(),
        newLocus.end() + 1,
        newLocus.sense(), startDict[gene]['name'],
        newLocus.ID()
    ])

utils.unParseTable(startLoci, projectFolder + 'HG19_genes.bed', '\t')

#================================================================================
#===============================MAIN RUN=========================================
#================================================================================