Beispiel #1
0
def testGridGraphSegmentationFelzenszwalbSegmentation():
    dataRGB = numpy.random.random([3, 3, 3]).astype(numpy.float32)
    dataRGB = taggedView(dataRGB, 'xyc')
    data = numpy.random.random([3, 3]).astype(numpy.float32)
    edata = numpy.random.random([3 * 2 - 1, 3 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(g0, edata)

    labels = graphs.felzenszwalbSegmentation(graph=g0,
                                             edgeWeights=ew,
                                             k=1.0,
                                             nodeNumStop=5)

    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 5

    data = numpy.random.random([3, 3, 3]).astype(numpy.float32)
    edata = numpy.random.random([3 * 2 - 1, 3 * 2 - 1,
                                 3 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(g0, edata)

    labels = graphs.felzenszwalbSegmentation(graph=g0,
                                             edgeWeights=ew,
                                             k=1.0,
                                             nodeNumStop=15)

    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 15
Beispiel #2
0
def testGridGraphSegmentationFelzenszwalbSegmentation():
    dataRGB  = numpy.random.random([3,3,3]).astype(numpy.float32)
    dataRGB  = taggedView(dataRGB,'xyc')
    data  = numpy.random.random([3,3]).astype(numpy.float32)
    edata = numpy.random.random([3*2-1,3*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(g0,edata)

    labels = graphs.felzenszwalbSegmentation(graph=g0,edgeWeights=ew,k=1.0,nodeNumStop=5)

    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 5


    
    data  = numpy.random.random([3,3,3]).astype(numpy.float32)
    edata = numpy.random.random([3*2-1,3*2-1,3*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(g0,edata)

    labels = graphs.felzenszwalbSegmentation(graph=g0,edgeWeights=ew,k=1.0,nodeNumStop=15)

    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 15
Beispiel #3
0
def testGridGraphWatersheds():

    data = numpy.random.random([10, 10, 10]).astype(numpy.float32)
    edata = numpy.random.random([10 * 2 - 1, 10 * 2 - 1,
                                 10 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0, image=edata)

    # generate seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0, nodeWeights=data)
    # node weighted watershed seeds
    labelsNodeWeightedA = graphs.nodeWeightedWatersheds(graph=g0,
                                                        nodeWeights=data,
                                                        seeds=seeds)
    # node weighted watershed seeds
    labelsNodeWeightedB = graphs.nodeWeightedWatersheds(graph=g0,
                                                        nodeWeights=data)
    # edge weighted watershed seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0, nodeWeights=data)
    labelsEdgeWeighted = graphs.edgeWeightedWatersheds(graph=g0,
                                                       edgeWeights=ew,
                                                       seeds=seeds)

    assert numpy.array_equal(labelsNodeWeightedA, labelsNodeWeightedB)

    data = numpy.random.random([10, 10]).astype(numpy.float32)
    edata = numpy.random.random([10 * 2 - 1, 10 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0, image=edata)

    # generate seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0, nodeWeights=data)
    # node weighted watershed seeds
    labelsNodeWeightedA = graphs.nodeWeightedWatersheds(graph=g0,
                                                        nodeWeights=data,
                                                        seeds=seeds)
    # node weighted watershed seeds
    labelsNodeWeightedB = graphs.nodeWeightedWatersheds(graph=g0,
                                                        nodeWeights=data)
    # edge weighted watershed seeds
    labelsEdgeWeighted = graphs.edgeWeightedWatersheds(graph=g0,
                                                       edgeWeights=ew,
                                                       seeds=seeds)

    assert numpy.array_equal(labelsNodeWeightedA, labelsNodeWeightedB)
Beispiel #4
0
def testGridGraphAgglomerativeClustering():
    dataRGB = numpy.random.random([10, 10, 3]).astype(numpy.float32)
    dataRGB = vigra.taggedView(dataRGB, 'xyc')
    data = numpy.random.random([10, 10]).astype(numpy.float32)
    edata = numpy.random.random([10 * 2 - 1, 10 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0, image=edata)
    #ew = taggedView(ew,'xyz')

    labels = graphs.agglomerativeClustering(graph=g0,
                                            edgeWeights=ew,
                                            nodeFeatures=dataRGB,
                                            nodeNumStop=5)
    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 5

    labels = graphs.agglomerativeClustering(graph=g0,
                                            edgeWeights=ew,
                                            nodeNumStop=5)
    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 5

    dataRGB = numpy.random.random([10, 10, 10, 3]).astype(numpy.float32)
    dataRGB = vigra.taggedView(dataRGB, 'xyzc')
    data = numpy.random.random([10, 10, 10]).astype(numpy.float32)
    edata = numpy.random.random([10 * 2 - 1, 10 * 2 - 1,
                                 10 * 2 - 1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)

    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0, image=edata)
    #ew = taggedView(ew,'xyz')

    labels = graphs.agglomerativeClustering(graph=g0,
                                            edgeWeights=ew,
                                            nodeFeatures=dataRGB,
                                            nodeNumStop=5)
    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 5

    labels = graphs.agglomerativeClustering(graph=g0,
                                            edgeWeights=ew,
                                            nodeNumStop=5)
    g1 = graphs.regionAdjacencyGraph(graph=g0, labels=labels)
    assert g1.nodeNum == 5
Beispiel #5
0
def testGridGraphAgglomerativeClustering():
    dataRGB  = numpy.random.random([10,10,3]).astype(numpy.float32)
    dataRGB  = vigra.taggedView(dataRGB,'xyc')
    data  = numpy.random.random([10,10]).astype(numpy.float32)
    edata = numpy.random.random([10*2-1,10*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)


    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0,image=edata)
    #ew = taggedView(ew,'xyz')

    
    labels = graphs.agglomerativeClustering(graph=g0,edgeWeights=ew,nodeFeatures=dataRGB,nodeNumStop=5)
    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 5
    
    labels = graphs.agglomerativeClustering(graph=g0,edgeWeights=ew,nodeNumStop=5)
    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 5



    dataRGB  = numpy.random.random([10,10,10,3]).astype(numpy.float32)
    dataRGB  = vigra.taggedView(dataRGB,'xyzc')
    data  = numpy.random.random([10,10,10]).astype(numpy.float32)
    edata = numpy.random.random([10*2-1,10*2-1,10*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)


    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0,image=edata)
    #ew = taggedView(ew,'xyz')

    
    labels = graphs.agglomerativeClustering(graph=g0,edgeWeights=ew,nodeFeatures=dataRGB,nodeNumStop=5)
    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 5
    
    labels = graphs.agglomerativeClustering(graph=g0,edgeWeights=ew,nodeNumStop=5)
    g1  = graphs.regionAdjacencyGraph(graph=g0,labels=labels)
    assert g1.nodeNum == 5
Beispiel #6
0
def testGridGraphWatersheds():

    data  = numpy.random.random([10,10,10]).astype(numpy.float32)
    edata = numpy.random.random([10*2-1,10*2-1,10*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)


    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0,image=edata)

    # generate seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0,nodeWeights=data)
    # node weighted watershed seeds
    labelsNodeWeightedA  = graphs.nodeWeightedWatersheds(graph=g0,nodeWeights=data,seeds=seeds)
    # node weighted watershed seeds
    labelsNodeWeightedB  = graphs.nodeWeightedWatersheds(graph=g0,nodeWeights=data)
    # edge weighted watershed seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0,nodeWeights=data)
    labelsEdgeWeighted  = graphs.edgeWeightedWatersheds(graph=g0,edgeWeights=ew,seeds=seeds)

    assert numpy.array_equal(labelsNodeWeightedA,labelsNodeWeightedB)

    data  = numpy.random.random([10,10]).astype(numpy.float32)
    edata = numpy.random.random([10*2-1,10*2-1]).astype(numpy.float32)
    g0 = graphs.gridGraph(data.shape)


    ew = graphs.edgeFeaturesFromInterpolatedImage(graph=g0,image=edata)

    # generate seeds
    seeds = graphs.nodeWeightedWatershedsSeeds(graph=g0,nodeWeights=data)
    # node weighted watershed seeds
    labelsNodeWeightedA  = graphs.nodeWeightedWatersheds(graph=g0,nodeWeights=data,seeds=seeds)
    # node weighted watershed seeds
    labelsNodeWeightedB  = graphs.nodeWeightedWatersheds(graph=g0,nodeWeights=data)
    # edge weighted watershed seeds
    labelsEdgeWeighted  = graphs.edgeWeightedWatersheds(graph=g0,edgeWeights=ew,seeds=seeds)

    assert numpy.array_equal(labelsNodeWeightedA,labelsNodeWeightedB)
img = vigra.impex.readImage(filepath)

# get super-pixels with slic on LAB image
imgLab = vigra.colors.transform_RGB2Lab(img)
labels, nseg = vigra.analysis.slicSuperpixels(imgLab, slicWeight,
                                              superpixelDiameter)
labels = vigra.analysis.labelImage(labels)

# compute gradient on interpolated image
imgLabBig = vigra.resize(imgLab, [imgLab.shape[0]*2-1, imgLab.shape[1]*2-1])
gradMag = vigra.filters.gaussianGradientMagnitude(imgLabBig, sigmaGradMag)

# get 2D grid graph and  edgeMap for grid graph
# from gradMag of interpolated image
gridGraph = graphs.gridGraph(img.shape[0:2])
gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGraph,
                                                                  gradMag)
# get region adjacency graph from super-pixel labels
rag = graphs.regionAdjacencyGraph(gridGraph, labels)

# accumulate edge weights from gradient magnitude
edgeWeights = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)

# accumulate node features from grid graph node map
# which is just a plain image (with channels)
nodeFeatures = rag.accumulateNodeFeatures(imgLab)

# do agglomerativeClustering
labels = graphs.agglomerativeClustering(graph=rag, edgeWeights=edgeWeights,
                                        beta=beta, nodeFeatures=nodeFeatures,
                                        nodeNumStop=nodeNumStop)
Beispiel #8
0
# get super-pixels with slic on LAB image
imgLab = vigra.colors.transform_RGB2Lab(img)
labels, nseg = vigra.analysis.slicSuperpixels(imgLab, slicWeight,
                                              superpixelDiameter)
labels = vigra.analysis.labelImage(labels)

# compute gradient on interpolated image
imgLabBig = vigra.resize(imgLab,
                         [imgLab.shape[0] * 2 - 1, imgLab.shape[1] * 2 - 1])
gradMag = vigra.filters.gaussianGradientMagnitude(imgLabBig, sigmaGradMag)

# get 2D grid graph and  edgeMap for grid graph
# from gradMag of interpolated image
gridGraph = graphs.gridGraph(img.shape[0:2])
gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(
    gridGraph, gradMag)

# get region adjacency graph from super-pixel labels
rag = graphs.regionAdjacencyGraph(gridGraph, labels)

# accumulate edge weights from gradient magnitude
edgeIndicator = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)

# accumulate node features from grid graph node map
# which is just a plain image (with channels)
nodeFeatures = rag.accumulateNodeFeatures(imgLab)
resultFeatures = graphs.recursiveGraphSmoothing(rag,
                                                nodeFeatures,
                                                edgeIndicator,
                                                gamma=gamma,
                                                edgeThreshold=edgeThreshold,
def calculate_distances():

    """
    compute distances between color markers instead of existing synapses
    markers of the same color should be in the same neuron
    """

    files_2d = glob.glob(inputdir + d2_pattern)
    files_2d = sorted(files_2d, key=str.lower)

    files_3d = glob.glob(inputdir + d3_pattern)
    files_3d = sorted(files_3d, key=str.lower)

    files_markers = glob.glob(inputdir + marker_pattern)
    files_markers = sorted(files_markers, key=str.lower)

    debug_dirs = glob.glob(debugdir)
    debug_dirs = sorted(debug_dirs, key=str.lower)

    files_raw = glob.glob(inputdir + raw_pattern)
    files_raw = sorted(files_raw, key=str.lower)

    #print files_2d, files_3d, files_markers, debug_dirs, files_raw


    first = 0
    last = 4
    all_distances_same = []
    all_distances_diff = []
    nsamesame = 0
    nsamediff = 0
    ndiffdiff = 0
    ndiffsame = 0

    for f2name, f3name, mname, ddir, rawname in zip(files_2d[first:last], files_3d[first:last],
                                                    files_markers[first:last], debug_dirs[first:last],
                                                    files_raw[first:last]):


        print "processing files:"
        print f2name
        print f3name
        print mname
        print ddir
        print rawname

        tempGraph = Graph()
        edgeIndicators = []
        instances = []

        if debug_images:
            rawim = vigra.readImage(rawname)
            vigra.impex.writeImage(rawim, ddir + "/raw.tiff")

        #print "processing files:", f2name, f3name, mname

        f2 = h5py.File(f2name)
        f3 = h5py.File(f3name)


        if use_2d_only:
            d2 = f2["exported_data"][5, :, :, 0]
            d3 = f2["exported_data"][5, :, :, 2]
        else:
            d2 = f2["exported_data"][..., 0]
            d3 = f3["exported_data"][5, :, :, 2] # 5 because we only want the central slice, there are 11 in total
            d3 = d3.swapaxes(0, 1)

        # print d2.shape, d3.shape

        combined = d2 + d3
        if use_2d_only:
            #convert to float
            combined = combined.astype(numpy.float32)
            combined = combined/255.

        markedNodes = extractMarkedNodes(mname)
        # print
        opUpsample = OpUpsampleByTwo(graph=tempGraph)
        combined = numpy.reshape(combined, combined.shape + (1,) + (1,))

        combined = combined.view(vigra.VigraArray)
        combined.axistags = vigra.defaultAxistags('xytc')
        opUpsample.Input.setValue(combined)
        upsampledMembraneProbs = opUpsample.Output[:].wait()
        # get rid of t
        upsampledMembraneProbs = upsampledMembraneProbs[:, :, 0, :]
        upsampledMembraneProbs = upsampledMembraneProbs.view(vigra.VigraArray)
        upsampledMembraneProbs.axistags = vigra.defaultAxistags('xyc')

        # try to filter
        upsampledSmoothedMembraneProbs = computeDistanceRaw(upsampledMembraneProbs, 1.6, ddir)
        upsampledMembraneProbs = filter_by_size(upsampledSmoothedMembraneProbs, ddir)
        upsampledMembraneProbs = upsampledMembraneProbs.view(vigra.VigraArray)
        upsampledMembraneProbs.axistags = vigra.defaultAxistags('xyc')


        edgeIndicators.append(computeDistanceHessian(upsampledMembraneProbs, 5.0, ddir))
        edgeIndicators.append(upsampledSmoothedMembraneProbs)

        segm = superpixels(combined.squeeze())
        if debug_images:
            vigra.impex.writeImage(segm, ddir + "/superpixels.tiff")

        gridGr = graphs.gridGraph((d2.shape[0], d2.shape[1]))  # !on original pixels

        for iind, indicator in enumerate(edgeIndicators):
            gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGr, indicator)
            instance = vigra.graphs.ShortestPathPathDijkstra(gridGr)
            instances.append(instance)
            distances_same = []
            distances_diff = []
            for color, points in markedNodes.iteritems():
                #going over points of *same* color
                if len(points)>1:
                    print "Processing color", color
                for i in range(len(points)):
                    node = map(long, points[i])
                    sourceNode = gridGr.coordinateToNode(node)
                    instance.run(gridGraphEdgeIndicator, sourceNode, target=None)
                    distances_all = instance.distances()
                    sp_this = segm[node[0], node[1]]
                    for j in range(i + 1, len(points)):
                        # go over points of the same color

                        other_node = map(long, points[j])
                        distances_same.append(distances_all[other_node[0], other_node[1]])

                        sp_other = segm[other_node[0], other_node[1]]
                        if sp_this==sp_other:
                            nsamesame = nsamesame + 1
                            #print "same color in the same superpixel!"
                        else:
                            nsamediff += 1
                        #targetNode = gridGr.coordinateToNode(other_node)
                        #path = instance.run(gridGraphEdgeIndicator, sourceNode).path(pathType='coordinates',
                        #                                                             target=targetNode)
                        #max_on_path = numpy.max(distances_all[path])
                        #min_on_path = numpy.min(distances_all[path])
                        # print max_on_path, min_on_path
                        # print path.shape
                        #print "distance b/w", node, other_node, " = ", distances_all[other_node[0], other_node[1]]

                    for newcolor, newpoints in markedNodes.iteritems():
                        # go over points of other colors
                        if color == newcolor:
                            continue
                        for newi in range(len(newpoints)):
                            other_node = map(long, newpoints[newi])
                            sp_other = segm[other_node[0], other_node[1]]
                            if sp_this==sp_other:
                                ndiffsame += 1
                            else:
                                ndiffdiff += 1
                            distances_diff.append(distances_all[other_node[0], other_node[1]])

                    # highlight the source point in image
                    distances_all[node[0], node[1]] = numpy.max(distances_all)
                    outfile = ddir + "/" + str(node[0]) + "_" + str(node[1]) + "_" + str(iind) + ".tiff"
                    vigra.impex.writeImage(distances_all, outfile)

            while len(all_distances_diff)<len(edgeIndicators):
                all_distances_diff.append([])
                all_distances_same.append([])

            all_distances_diff[iind].extend(distances_diff)
            all_distances_same[iind].extend(distances_same)
            #print "summary for edge indicator:", iind
            #print "points of same color:", distances_same
            #print "points of other colors:", distances_diff
                    # print distances_same

                    # vigra.impex.writeImage(combined, f2name+"_combined.tiff")
                    # vigra.impex.writeImage(d3, f2name+"_synapse.tiff")
                    # vigra.impex.writeImage(d2, f2name+"_membrane.tiff")


    print "same color in the same superpixels:", nsamesame
    print "same color, different superpixels:", nsamediff
    print "diff color, same superpixel:", ndiffsame
    print "diff color, diff superpixels", ndiffdiff

    analyze_distances(all_distances_same, all_distances_diff)
        def process_branch( branch_index, branch_rois ):
            # opFeatures and opThreshold are declared locally so this whole block can be parallelized!
            # (We use Input.setValue() instead of Input.connect() here.)
            opFeatures = OpPixelFeaturesPresmoothed(graph=tempGraph)
            
            # Compute the Hessian slicewise and create gridGraphs
            standard_scales = [0.3, 0.7, 1.0, 1.6, 3.5, 5.0, 10.0]
            standard_feature_ids = ['GaussianSmoothing', 'LaplacianOfGaussian', \
                                    'GaussianGradientMagnitude', 'DifferenceOfGaussians', \
                                    'StructureTensorEigenvalues', 'HessianOfGaussianEigenvalues']
        
            opFeatures.Scales.setValue(standard_scales)
            opFeatures.FeatureIds.setValue(standard_feature_ids)
            
            # Select Hessian Eigenvalues at scale 5.0
            scale_index = standard_scales.index(5.0)
            feature_index = standard_feature_ids.index('HessianOfGaussianEigenvalues')
            selection_matrix = numpy.zeros( (6,7), dtype=bool ) # all False
            selection_matrix[feature_index][scale_index] = True
            opFeatures.Matrix.setValue(selection_matrix)
        
            # opFeatures and opThreshold are declared locally so this whole block can be parallelized!
            # (We use Input.setValue() instead of Input.connect() here.)
            opThreshold = OpThresholdTwoLevels(graph=tempGraph)
            opThreshold.Channel.setValue(0) # We select SYNAPSE_CHANNEL before the data is given to opThreshold
            opThreshold.SmootherSigma.setValue({'x': 2.0, 'y': 2.0, 'z': 1.0}) #NOTE: two-level is much better. Maybe we can afford it?

            #opThreshold.CurOperator.setValue(0) # 0==one-level
            #opThreshold.SingleThreshold.setValue(0.4) #FIXME: solve the mess with uint8/float in predictions

            opThreshold.CurOperator.setValue(1) # 1==two-level
            opThreshold.HighThreshold.setValue(0.4)
            opThreshold.LowThreshold.setValue(0.2)
            
            previous_slice_objects = None
            previous_slice_roi = None
            conn_ids = [x.id for x in connector_infos]
            connector_infos_dict = dict(zip(conn_ids, connector_infos))

            branch_node_count = len(branch_rois)
            for node_index_in_branch, (node_info, roi) in enumerate(branch_rois):
                with Timer() as timer:
                    skeletonCoord = (node_info.x_px, node_info.y_px, node_info.z_px)
                    logger.debug("skeleton point: {}".format( skeletonCoord ))
                    #Add channel dimension
                    roi_with_channel = numpy.zeros((2, roi.shape[1]+1), dtype=numpy.uint32)
                    roi_with_channel[:, :-1] = roi[:]
                    roi_with_channel[0, -1] = 0
                    roi_with_channel[1, -1] = 1
                    iz = roi[0][2]
                    roi_hessian = (roi_with_channel[0]*2, roi_with_channel[1]*2-1)
                    for x in range(roi.shape[1]):
                        if roi[0][x] == 0:
                            roi_hessian[0][x] = 0
                    roi_hessian[0][2] = iz
                    roi_hessian[1][2] = iz+1
                    #we need the second eigenvalue
                    roi_hessian[0][-1] = 1
                    roi_hessian[1][-1] = 2
                    
                    WITH_CONNECTORS_ONLY = True
                    if WITH_CONNECTORS_ONLY:
                        if not node_info.id in node_to_connector.keys():
                            continue
                    
                    if debug_images:
                        outdir1 = outdir+"raw/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".png"
                        data = opPixelClassification3d.InputImages[-1](roi_with_channel[0], roi_with_channel[1]).wait()
                        vigra.impex.writeImage(data.squeeze().astype(numpy.uint8), outfile)
                        '''
                        outdir2 = outdir + "synapse_pred/"
                        outfile = outdir2+"%.02d"%iz + ".png"
                        data = opThreshold.InputImage(roi_with_channel[0], roi_with_channel[1]).wait()
                        vigra.impex.writeImage(data.squeeze().astype(numpy.uint8), outfile)
                        '''
                    start_pred = time.time()
                    prediction_roi = numpy.append( roi_with_channel[:,:-1], [[0],[4]], axis=1 )
                    synapse_prediction_roi = numpy.append( prediction_roi[:,:-1], [[SYNAPSE_CHANNEL],[SYNAPSE_CHANNEL+1]], axis=1 )
                    membrane_prediction_roi = numpy.append( prediction_roi[:,:-1], [[MEMBRANE_CHANNEL],[MEMBRANE_CHANNEL+1]], axis=1 )
                    
                    #synapse_predictions = opPixelClassification3d.PredictionProbabilities[-1](*prediction_roi).wait()                    
                    synapse_predictions = opSynapsePredictionCache.Output(*synapse_prediction_roi).wait()
                    synapse_predictions = vigra.taggedView( synapse_predictions, "xytc" )

                    if debug_images:
                        outdir1 = outdir+"membrane/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".png"
                        #membrane_predictions = opPixelClassification2d.HeadlessPredictionProbabilities[-1](*prediction_roi).wait()
                        membrane_predictions = opMembranePredictionCache.Output(*membrane_prediction_roi).wait()
                        vigra.impex.writeImage(membrane_predictions[..., 0].squeeze(), outfile)
                    
                    stop_pred = time.time()
                    timing_logger.debug( "spent in first 3d prediction: {}".format( stop_pred-start_pred ) )
                    opThreshold.InputImage.setValue(synapse_predictions)
                    opThreshold.InputImage.meta.drange = opPixelClassification3d.PredictionProbabilities[-1].meta.drange
                    synapse_cc = opThreshold.Output[:].wait()
                    if debug_images:
                        outdir1 = outdir+"predictions_roi/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".tiff"
                        #norm = numpy.where(synapse_cc[:, :, 0, 0]>0, 255, 0)
                        vigra.impex.writeImage(synapse_predictions[...,0,0], outfile)
        
                    if debug_images:
                        outdir1 = outdir+"synapses_roi/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".tiff"
                        norm = numpy.where(synapse_cc[:, :, 0, 0]>0, 255, 0)
                        vigra.impex.writeImage(norm.astype(numpy.uint8), outfile)
                    
                    if numpy.sum(synapse_cc)==0:
                        print "NO SYNAPSES IN THIS SLICE:", iz
                        timing_logger.debug( "ROI TIMER: {}".format( timer.seconds() ) )
                        continue
                    
                    # Distances over Hessian
                    start_hess = time.time()
                    roi_hessian = ( tuple(map(long, roi_hessian[0])), tuple(map(long, roi_hessian[1])) )
                    upsampled_combined_membranes = opUpsample.Output(*roi_hessian).wait()
                    upsampled_combined_membranes = vigra.taggedView(upsampled_combined_membranes, opUpsample.Output.meta.axistags )
                    opFeatures.Input.setValue(upsampled_combined_membranes)
                    eigenValues = opFeatures.Output[...,1:2].wait() #we need the second eigenvalue
                    eigenValues = numpy.abs(eigenValues[:, :, 0, 0])
                    stop_hess = time.time()
                    timing_logger.debug( "spent for hessian: {}".format( stop_hess-start_hess ) )
                    shape_x = roi[1][0]-roi[0][0]
                    shape_y =  roi[1][1]-roi[0][1]
                    shape_x = long(shape_x)
                    shape_y = long(shape_y)
                    start_gr = time.time()
                    gridGr = graphs.gridGraph((shape_x, shape_y )) # !on original pixels
                    gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGr, eigenValues) 
                    #gridGraphs.append(gridGr)
                    #graphEdges.append(gridGraphEdgeIndicator)
                    stop_gr = time.time()
                    timing_logger.debug( "creating graph: {}".format( stop_gr - start_gr ) )
                    if debug_images:
                        outdir1 = outdir+"hessianUp/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".tiff"
                        logger.debug( "saving hessian to file: {}".format( outfile ) )
                        vigra.impex.writeImage(eigenValues, outfile )
                    
                    instance = vigra.graphs.ShortestPathPathDijkstra(gridGr)
                    relative_coord = [skeletonCoord[0]-roi[0][0], skeletonCoord[1]-roi[0][1]]
                    relative_coord = map(long, relative_coord)
                    sourceNode = gridGr.coordinateToNode(relative_coord)
                    start_dij = time.time()
                    instance.run(gridGraphEdgeIndicator, sourceNode, target=None)
                    
                    distances = instance.distances()
                    stop_dij = time.time()
                    timing_logger.debug( "spent in dijkstra {}".format( stop_dij - start_dij ) )
                    if debug_images:
                        outdir1 = outdir+"distances/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".tiff"
                        logger.debug( "saving distances to file:".format( outfile ) )
                        # Create a "white" pixel at the source node
                        distances[skeletonCoord[0]-roi[0][0], skeletonCoord[1]-roi[0][1]] = numpy.max(distances)
                        vigra.impex.writeImage(distances, outfile )

                    # Distances over raw membrane probabilities
                    roi_upsampled_membrane = numpy.asarray( roi_hessian )
                    roi_upsampled_membrane[:, -1] = [0,1]
                    roi_upsampled_membrane = (map(long, roi_upsampled_membrane[0]), map(long, roi_upsampled_membrane[1]))
                    connector_distances = None
                    connector_coords = None
                    if node_info.id in node_to_connector.keys():
                        connectors = node_to_connector[node_info.id]
                        connector_info = connector_infos_dict[connectors[0]]
                        #Convert to pixels
                        con_x_px = int(connector_info.x_nm / float(X_RES))
                        con_y_px = int(connector_info.y_nm / float(Y_RES))
                        con_z_px = int(connector_info.z_nm / float(Z_RES))
                        connector_coords = (con_x_px-roi[0][0], con_y_px-roi[0][1])
                        if con_x_px>roi[0][0] and con_x_px<roi[1][0] and con_y_px>roi[0][1] and con_y_px<roi[1][1]:
                            #this connector is inside our prediction roi, compute the distance field                                                                                                        "
                            con_relative = [long(con_x_px-roi[0][0]), long(con_y_px-roi[0][1])]
    
                            sourceNode = gridGr.coordinateToNode(con_relative)
                            instance.run(gridGraphEdgeIndicator, sourceNode, target=None)
                            connector_distances = instance.distances()
                        else:
                            connector_distances = None
                    
                    upsampled_membrane_probabilities = opUpsample.Output(*roi_upsampled_membrane).wait().squeeze()
                    upsampled_membrane_probabilities = vigra.filters.gaussianSmoothing(upsampled_membrane_probabilities, sigma=1.0)
                    #print "UPSAMPLED MEMBRANE SHAPE: {} MAX: {} MIN: {}".format( upsampled_membrane_probabilities.shape, upsampled_membrane_probabilities.max(), upsampled_membrane_probabilities.min() )
                    gridGrRaw = graphs.gridGraph((shape_x, shape_y )) # !on original pixels
                    gridGraphRawEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGrRaw, upsampled_membrane_probabilities) 
                    #gridGraphs.append(gridGrRaw)
                    #graphEdges.append(gridGraphRawEdgeIndicator)
                    instance_raw = vigra.graphs.ShortestPathPathDijkstra(gridGrRaw)
                    sourceNode = gridGrRaw.coordinateToNode(relative_coord)
                    instance_raw.run(gridGraphRawEdgeIndicator, sourceNode, target=None)
                    distances_raw = instance_raw.distances()

                    stop_dij = time.time()
                    timing_logger.debug( "spent in dijkstra (raw probs) {}".format( stop_dij - start_dij ) )
                    if debug_images:
                        outdir1 = outdir+"distances_raw/"
                        try:
                            os.makedirs(outdir1)
                        except os.error:
                            pass
                        outfile = outdir1+"/{}-{}".format( iz, node_info.id ) + ".tiff"
                        logger.debug( "saving distances (raw probs) to file:".format( outfile ) )
                        # Create a "white" pixel at the source node
                        distances_raw[skeletonCoord[0]-roi[0][0], skeletonCoord[1]-roi[0][1]] = numpy.max(distances_raw)
                        vigra.impex.writeImage(distances_raw, outfile )
    
                    if numpy.sum(synapse_cc)==0:
                        continue
                    

                    with max_label_lock:                    
                        synapse_objects_4d, maxLabelCurrent = normalize_synapse_ids( synapse_cc, 
                                                                                     roi,
                                                                                     previous_slice_objects, 
                                                                                     previous_slice_roi,
                                                                                     maxLabelSoFar[0] )
    
                        maxLabelSoFar[0] = maxLabelCurrent
                        synapse_objects = synapse_objects_4d.squeeze()

                        #add this synapse to the exported list
                        previous_slice_objects = synapse_objects
                        previous_slice_roi = roi
                    '''
                    if numpy.sum(synapse_cc)==0:
                        print "NO SYNAPSES IN THIS SLICE:", iz
                        timing_logger.debug( "ROI TIMER: {}".format( timer.seconds() ) )
                        continue
                    '''
                    synapseIds = set(synapse_objects.flat)
                    synapseIds.remove(0)
                    for sid in synapseIds:
                        #find the pixel positions of this synapse
                        syn_pixel_coords = numpy.where(synapse_objects == sid)
                        synapse_size = len( syn_pixel_coords[0] )
                        #syn_pixel_coords = numpy.unravel_index(syn_pixels, distances.shape)
                        #FIXME: offset by roi
                        syn_average_x = numpy.average(syn_pixel_coords[0])+roi[0][0]
                        syn_average_y = numpy.average(syn_pixel_coords[1])+roi[0][1]
                        
                        syn_distances = distances[syn_pixel_coords]
                        mindist = numpy.min(syn_distances)
                        
                        syn_distances_raw = distances_raw[syn_pixel_coords]
                        mindist_raw = numpy.min(syn_distances_raw)

                        if connector_distances is not None:
                            syn_distances_connector = connector_distances[syn_pixel_coords]
                            min_conn_distance = numpy.min(syn_distances_connector)
                            
                        elif connector_coords is not None:
                            euclidean_dists = [scipy.spatial.distance.euclidean(connector_coords, xy) for xy in zip(syn_pixel_coords[0], syn_pixel_coords[1])]
                            min_conn_distance = numpy.min(euclidean_dists)
                        else:
                            min_conn_distance = 99999.0
                            
                        # Determine average uncertainty
                        # Get probabilities for this synapse's pixels
                        flat_predictions = synapse_predictions.view(numpy.ndarray)[synapse_objects_4d[...,0] == sid]

                        # If we pulled the data from cache, there may be only one channel.
                        # In that case, we can't quite compute a proper uncertainty, 
                        #  so we'll just pretend there were only two prediction channels to begin with.
                        if flat_predictions.shape[-1] > 1:
                            # Sort along channel axis
                            flat_predictions.sort(axis=-1)
                            # What's the difference between the highest and second-highest class?
                            certainties = flat_predictions[:,-1] - flat_predictions[:,-2]
                        else:
                            # Pretend there were only two channels
                            certainties = flat_predictions[:,0] - (1 - flat_predictions[:,0])
                        avg_certainty = numpy.average(certainties)
                        avg_uncertainty = 1.0 - avg_certainty                        

                        fields = {}
                        fields["synapse_id"] = int(sid)
                        fields["x_px"] = int(syn_average_x + 0.5)
                        fields["y_px"] = int(syn_average_y + 0.5)
                        fields["z_px"] = iz
                        fields["size_px"] = synapse_size
                        fields["distance_hessian"] = mindist
                        fields["distance_raw_probs"] = mindist_raw
                        fields["detection_uncertainty"] = avg_uncertainty
                        fields["node_id"] = node_info.id
                        fields["node_x_px"] = node_info.x_px
                        fields["node_y_px"] = node_info.y_px
                        fields["node_z_px"] = node_info.z_px
                        if min_conn_distance!=99999.0:
                            connectors = node_to_connector[node_info.id]
                            connector_info = connector_infos_dict[connectors[0]]
                            fields["nearest_connector_id"] = connector_info.id
                            fields["nearest_connector_distance_nm"] = min_conn_distance
                            fields["nearest_connector_x_nm"] = connector_info.x_nm
                            fields["nearest_connector_y_nm"] = connector_info.y_nm
                            fields["nearest_connector_z_nm"] = connector_info.z_nm
                        else:
                            fields["nearest_connector_id"] = -1
                            fields["nearest_connector_distance_nm"] = min_conn_distance
                            fields["nearest_connector_x_nm"] = -1
                            fields["nearest_connector_y_nm"] = -1
                            fields["nearest_connector_z_nm"] = -1
                                        
                        

                        with f_out_lock:
                            csv_writer.writerow( fields )                                                
                            fout.flush()

                    with f_out_lock:
                        node_overall_index[0] += 1
                        progress_callback( ProgressInfo( node_overall_index[0], 
                                                         skeleton_node_count, 
                                                         branch_index, 
                                                         skeleton_branch_count, 
                                                         node_index_in_branch, 
                                                         branch_node_count,
                                                         maxLabelCurrent ) )
            
                        
                    #Sanity check
                    #outfile = outdir+"hessianUp/"+ "%.02d"%iz + ".tiff"
                    #vigra.impex.writeImage(eigenValues, outfile)
                    #outfile = outdir+"distances/"+ "%.02d"%iz + ".tiff"
                    #vigra.impex.writeImage(distances, outfile)
                timing_logger.debug( "ROI TIMER: {}".format( timer.seconds() ) )