Ejemplo n.º 1
0
    def __init__(self):

        self.model = load_model(MODEL_PATH)

        self.anomalyModel = AnomalyDetector()
        self.anomalyModel.load(ANOMALY_MODEL_PATH)
        self.anomalyModel.load_inv(ANOMALY_INV_MODEL_PATH)

        with open(DATA_GEN_PATH, 'rb') as dgfile:
            self.datagen = pickle.load(dgfile, encoding='latin1')
            # self.datagen = ImageDataGenerator(
            #     zca_whitening=True,
            # )
        with open(CLASS_LIST, 'r') as clfile:
            self.classList = json.load(clfile)

        with open(TEXT_CLASS_LIST) as f:
            text_class = json.load(f)

        self.text_id_map = {}
        for k, v in text_class.items():
            for t in v:
                self.text_id_map[t] = k

        with open(WIDGET_CLASS_LIST) as f:
            self.widgetClassList = json.load(f)

        self.x = None

        pass
Ejemplo n.º 2
0
    def __init__(self,
                 model_path=None,
                 class_names=None,
                 datagen=None,
                 anomaly=True,
                 input_size=32):
        if not model_path:
            model_path = self.default_settings['model_path']

        if not class_names:
            with open(self.default_settings['validation_metadata']
                      ) as class_names_file:
                class_names = json.load(class_names_file)['class_names']

        if not datagen:
            with open(self.default_settings['datagen'], 'rb') as datagen_file:
                datagen = pickle.load(datagen_file)

        self.anomaly_model = None
        if anomaly:
            self.anomaly_model = AnomalyDetector()
            self.anomaly_model.load(self.default_settings['anomaly_model'])
            self.anomaly_model.load_inv(
                self.default_settings['inv_anomaly_model'])

        self.model = load_model(model_path)
        self.class_names = class_names
        self.datagen = datagen
        self.input_size = input_size
        self.embeddings_model = None
Ejemplo n.º 3
0
def modiPath():
    host_collector_address = base_address + '\\CompleteModel\\HuaJiao_30_host_collector_modipath.pickle'
    whole_result_address = base_address + '\\Path_Modi\\result_huajiao_wvs_1113_modipath_modi'
    path_para_dic_address = base_address + '\\Path_Modi\\modi_path_dict.pickle'
    path_collector = []

    with open(host_collector_address, 'rb') as read_host_collector:
        host_collector = pickle.load(read_host_collector)
    anomaly_detector = AnomalyDetector()
    anomaly_writer = AnomalyWriter(whole_result_address)

    try:
        # save the begin time
        begin_time = datetime.datetime.now()
        detect_time_flag = True
        global study_ready_time
        global detect_ready_time

        with open(url_address, 'rb') as infile:
            record_num = 0
            for line in infile:
                line = line.strip(' \n')
                record = line.split('\t')
                if len(record) == 13 and record[_host] != '':
                    a_record = UrlRecord(record)
                    current_model = host_collector.get_host_model(
                        a_record.get_host())
                    pattern_flag = current_model.getDetectFlag()
                    if pattern_flag == 'Study ready':
                        if detect_time_flag:
                            detect_time_flag = False
                            study_ready_time = datetime.datetime.now()
                            study_interval = study_ready_time - begin_time
                            print 'Study consuming: %s' % study_interval
                        anomaly_status = anomaly_detector.detectpath(
                            a_record, current_model, 'new')
                        path_collector.append(anomaly_status['path_para'])
                        if anomaly_status['Result'] is True:
                            anomaly_writer.writePathResult(
                                a_record, anomaly_status)
                record_num += 1
                if record_num % 1000 == 0:
                    print 'Record completed: ', record_num,
                    print '\tUrl amount: %s\tDifferent url amount: %s\tDifferent sip: %s\t' % (
                        current_model.getUrlAmount(),
                        current_model.getDifUrlAmount(),
                        current_model.getSipAmount())
    except IndexError:
        print 'Lancer says:\n' \
           '\tIt has error through the system.'
        raise

    with open(path_para_dic_address, 'wb') as save:
        pickle.dump(path_collector, save)

    end_time = datetime.datetime.now()
    detect_ready_time = end_time - study_ready_time
    print "Detection consuming: %s" % detect_ready_time
    print 'Whole system test finished.'
Ejemplo n.º 4
0
def train(source, packetnum):
    try:
        fe = createFE(source, packetnum)
        anomDetector = AnomalyDetector(trainOnNum=packetnum)
        while not anomDetector.isTrained():
            if fe.reachedPacketLimit():
                raise RuntimeError('Not enough packets for training.')
            process_packet(fe, anomDetector)
    except KeyboardInterrupt:
        print("\nKeyboard interrupt.\n")
    finally:
        serializeModel(anomDetector)
Ejemplo n.º 5
0
def modiPath():
    host_collector_address = base_address + '\\CompleteModel\\HuaJiao_30_host_collector_modipath.pickle'
    whole_result_address = base_address + '\\Path_Modi\\result_huajiao_wvs_1113_modipath_modi'
    path_para_dic_address = base_address + '\\Path_Modi\\modi_path_dict.pickle'
    path_collector = []

    with open(host_collector_address, 'rb') as read_host_collector:
        host_collector = pickle.load(read_host_collector)
    anomaly_detector = AnomalyDetector()
    anomaly_writer = AnomalyWriter(whole_result_address)

    try:
        # save the begin time
        begin_time = datetime.datetime.now()
        detect_time_flag = True
        global study_ready_time
        global detect_ready_time

        with open(url_address, 'rb') as infile:
            record_num = 0
            for line in infile:
                line = line.strip(' \n')
                record = line.split('\t')
                if len(record) == 13 and record[_host] != '':
                    a_record = UrlRecord(record)
                    current_model = host_collector.get_host_model(a_record.get_host())
                    pattern_flag = current_model.getDetectFlag()
                    if pattern_flag == 'Study ready':
                        if detect_time_flag:
                            detect_time_flag = False
                            study_ready_time = datetime.datetime.now()
                            study_interval = study_ready_time - begin_time
                            print 'Study consuming: %s' % study_interval
                        anomaly_status = anomaly_detector.detectpath(a_record, current_model, 'new')
                        path_collector.append(anomaly_status['path_para'])
                        if anomaly_status['Result'] is True:
                                anomaly_writer.writePathResult(a_record, anomaly_status)
                record_num += 1
                if record_num % 1000 == 0:
                    print 'Record completed: ', record_num,
                    print '\tUrl amount: %s\tDifferent url amount: %s\tDifferent sip: %s\t' % (current_model.getUrlAmount(), current_model.getDifUrlAmount(), current_model.getSipAmount())
    except IndexError:
        print 'Lancer says:\n' \
           '\tIt has error through the system.'
        raise

    with open(path_para_dic_address, 'wb') as save:
        pickle.dump(path_collector, save)

    end_time = datetime.datetime.now()
    detect_ready_time = end_time - study_ready_time
    print "Detection consuming: %s" % detect_ready_time
    print 'Whole system test finished.'
Ejemplo n.º 6
0
def main():
    with open(host_collector_address, 'rb') as read_host_collector:
        host_collector = pickle.load(read_host_collector)
    anomaly_detector = AnomalyDetector()
    anomaly_collector = AnomalyCollector()
    result_controller = ResultController()
    anomaly_writer = AnomalyWriter(whole_result_address)

    try:
        # save the begin time
        begin_time = datetime.datetime.now()
        detect_time_flag = True
        global study_ready_time
        global detect_ready_time

        with open(url_address, 'rb') as infile:
            record_num = 0
            for line in infile:
                line = line.strip(' \n')
                record = line.split('\t')
                if len(record) == 13 and record[_host] != '':
                    a_record = UrlRecord(record)
                    current_model = host_collector.get_host_model(a_record.get_host())
                    pattern_flag = current_model.getDetectFlag()
                    if pattern_flag == 'Study ready':
                        if detect_time_flag:
                            detect_time_flag = False
                            study_ready_time = datetime.datetime.now()
                            study_interval = study_ready_time - begin_time
                            print 'Study consuming: %s' % study_interval
                        anomaly_status = anomaly_detector.detect(a_record, current_model)
                        if anomaly_status['Result'] is True:
                            valid_flag = result_controller.isValid(a_record, anomaly_collector)
                            if valid_flag is True:
                                anomaly_writer.writeCompleteResult(a_record, anomaly_status)
                                # anomaly_writer.writeTimeAttribute(a_record)
                            else:
                                current_model.reStudy()
                record_num += 1
                if record_num % 1000 == 0:
                    print 'Record completed: ', record_num,
                    print '\tUrl amount: %s\tDifferent url amount: %s\tDifferent sip: %s\t' % (current_model.getUrlAmount(), current_model.getDifUrlAmount(), current_model.getSipAmount())
    except IndexError:
        print 'Lancer says:\n' \
           '\tIt has error through the system.'
        raise

    end_time = datetime.datetime.now()
    detect_ready_time = end_time - study_ready_time
    print "Detection consuming: %s" % detect_ready_time
    print 'Whole system test finished.'
Ejemplo n.º 7
0
    def __init__(self, device_name, buffer_size=100, upload_to_iotb=False):
        global plot_this
        self.device_id = device_name
        self.anomaly_detector = AnomalyDetector(
            buffer_size, window_length_sec=10, num_windows=50, plot_time=False, plot=plot_this
        )
        plot_this = False
        self.upload_to_iotb = upload_to_iotb
        self.pkts_since_upload = []

        self.server_on = False
        try:
            r = requests.get(SERVER + "?device_id=d1")
            self.server_on = True
        except requests.exceptions.ConnectionError:
            self.server_on = False
Ejemplo n.º 8
0
class DlInferenceService(object):
    default_settings = {
        'model_path': './saved_models/small_cnn_weights_50_512.h5',
        'validation_metadata': './saved_models/validation_metadata.json',
        'datagen': './saved_models/datagen.pkl',
        'anomaly_model': './saved_models/anomaly.pkl',
        'inv_anomaly_model': './saved_models/inv_anomaly.pkl',
    }

    def __init__(self,
                 model_path=None,
                 class_names=None,
                 datagen=None,
                 anomaly=True,
                 input_size=32):
        if not model_path:
            model_path = self.default_settings['model_path']

        if not class_names:
            with open(self.default_settings['validation_metadata']
                      ) as class_names_file:
                class_names = json.load(class_names_file)['class_names']

        if not datagen:
            with open(self.default_settings['datagen'], 'rb') as datagen_file:
                datagen = pickle.load(datagen_file)

        self.anomaly_model = None
        if anomaly:
            self.anomaly_model = AnomalyDetector()
            self.anomaly_model.load(self.default_settings['anomaly_model'])
            self.anomaly_model.load_inv(
                self.default_settings['inv_anomaly_model'])

        self.model = load_model(model_path)
        self.class_names = class_names
        self.datagen = datagen
        self.input_size = input_size
        self.embeddings_model = None

    def _load_image(self, image_path):
        image = self._preprocess_image(Image.open(image_path))
        return self._image_to_numpy_array(image)

    def _preprocess_image(self, image):
        size = (self.input_size, self.input_size)
        return image.convert('L').resize(size, Image.ANTIALIAS)

    def _image_to_numpy_array(self, image):
        size = (self.input_size, self.input_size, 1)
        output = np.asarray(image, dtype='int32')
        output = output.astype('float32')
        output /= 255
        return output.reshape(size)

    def _image_paths_to_numpy_array(self, image_paths):
        image_count = len(image_paths)
        x_shape = (image_count, self.input_size, self.input_size, 1)
        x = np.zeros(x_shape)

        for idx, image_path in enumerate(image_paths):
            x[idx] = self._load_image(image_path)

        return x

    def _initialize_datagen(self):
        datagen = ImageDataGenerator(zca_whitening=True, )
        return datagen

    def _predict(self, x):
        x = self.datagen.flow(x, batch_size=len(x), shuffle=False).next()
        result = self.model.predict(x)
        return result

    def _predictions_to_class(self, result):
        predicted_class = np.argmax(result, axis=1)
        return predicted_class

    def _initialize_embedding_model(self, embedding_layer_name='embedding'):
        self.embedding_model = Sequential()
        for layer in self.model.layers:
            self.embedding_model.add(layer)
            if layer.name == embedding_layer_name:
                break

    def identify_anomalies(self, x):
        pass

    def generate_embeddings(self, x):
        if not self.embeddings_model:
            self._initialize_embedding_model()

        x = self.datagen.flow(x, batch_size=len(x), shuffle=False).next()
        embeddings = self.embedding_model.predict(x)
        return embeddings

    def classify(self, x):
        predictions = self._predict(x)
        print(predictions.shape)
        anomalies = np.zeros(len(predictions))
        if self.anomaly_model:
            anomalies = self.anomaly_model.predict(predictions)
        return [
            self.class_names[prediction] if not anomalies[idx] else 'anomaly'
            for idx, prediction in enumerate(
                self._predictions_to_class(predictions))
        ]

    def classify_paths(self, image_paths):
        x = self._image_paths_to_numpy_array(image_paths)
        return self.classify(x)

    def classify_images(self, images):
        image_count = len(images)
        x_shape = (image_count, self.input_size, self.input_size, 1)
        x = np.zeros(x_shape)

        for idx, image in enumerate(images):
            x[idx] = self._image_to_numpy_array(self._preprocess_image(image))

        return self.classify(x)

    def create_npy(self, image_paths, out_path):
        x = self._image_paths_to_numpy_array(image_paths)
        np.save(out_path, x)

    def make_preprocessed_images(self, npy, augment=False):
        x = np.load(npy)
        if augment:
            x = self.datagen.flow(x, batch_size=10, shuffle=False).next()
        for idx, row in enumerate(x):
            print(row.shape)
            bla = Image.fromarray(row.reshape(32, 32) * 255).convert('RGB')
            out_dir = '{}_preprocessed{}'.format(
                npy, '_augmented' if augment else '')
            if not os.path.exists(out_dir):
                os.mkdir(out_dir)
            bla.save('{}/{}.png'.format(out_dir, idx))
Ejemplo n.º 9
0
from Evaluation import Evaluation
from StableFrameList import StableFrameList
from MaskList import MaskList
from Misc import Image
from AnomalyDetector import AnomalyDetector
import ResultRefinement as rr

#Initilize detector
print('Parse detector result ...')
dayNightDetector = DayNightDetector()
detectorDay = DetectorDay(Config.data_path + '/result_8_3_3_clas.txt',
                          Config.data_path + '/result_8_3_3_nclas.txt')
detectorNight = DetectorNight(Config.data_path +
                              '/extracted-bboxes-dark-videos')
#evalFunc = Evaluation(Config.data_path + '/test_groundtruth.txt')
anomalyDetector = AnomalyDetector()
stableList = StableFrameList(Config.data_path +
                             '/unchanged_scene_periods.json')
maskList = MaskList(Config.data_path + '/masks_refine_v3')

for video_id in range(1, 101):
    print("Processing video ", video_id)
    detector = detectorDay
    if dayNightDetector.checkNight(video_id):
        detector = detectorNight

    stableIntervals = stableList[video_id]
    print(stableIntervals)
    confs = {}
    print(detector.name)
Ejemplo n.º 10
0
def main():
    host_collector = HostCollector()
    anomaly_detector = AnomalyDetector()
    anomaly_collector = AnomalyCollector()
    result_controller = ResultController()
    anomaly_writer = AnomalyWriter(whole_result_address)

    try:
        # save the begin time
        begin_time = datetime.datetime.now()
        detect_time_flag = True
        global study_ready_time
        global detect_ready_time

        with open(url_address, 'rb') as infile:
            record_num = 0
            study_record_num = 0
            for line in infile:
                record = line.strip(' \n').split('\t')
                if len(record) == 13 and record[_host] != '':
                    a_url = UrlRecord(record)
                    current_model = host_collector.getHostModel(
                        a_url.get_host())
                    pattern_flag = current_model.getDetectFlag()
                    # Judge Host-model's pattern('Study ready' or 'Study...')
                    if pattern_flag == 'Study ready':
                        if detect_time_flag:
                            detect_time_flag = False
                            study_ready_time = datetime.datetime.now()
                            study_interval = study_ready_time - begin_time
                            study_record_num = record_num
                            print 'Study consuming: %s' % study_interval
                            print 'Study Record: %s' % study_record_num
                            print '\tUrl amount: %s\tDifferent url amount: %s\tDifferent sip: %s\t' % \
                                (current_model.getUrlAmount(), current_model.getDifUrlAmount(),
                                 current_model.getSipAmount())
                        # Detect whether the record is anomaly
                        anomaly_status = anomaly_detector.detect(
                            a_url, current_model)
                        # If the record is detected to be anomaly
                        if anomaly_status['Result'] is True:
                            valid_flag = result_controller.isValid(
                                a_url, anomaly_collector)
                            if valid_flag is True:
                                anomaly_writer.writeResult(
                                    a_url, anomaly_status)
                            else:
                                current_model.reStudy()
                    elif pattern_flag == 'Study...':
                        current_model.add_record(a_url)
                    else:
                        raise ValueError(
                            'Lancer says: pattern selection error.')
                record_num += 1
                if record_num % 10000 == 0:
                    print 'Record completed: ', record_num,
            else:
                detect_record_num = record_num - study_record_num
                end_time = datetime.datetime.now()
                detect_ready_time = end_time - study_ready_time
                print 'Detect Record: %s' % detect_record_num
                print "Detection consuming: %s" % detect_ready_time
                print 'Whole system test finished.'

        # Store the completed Host Model.
        with open(host_collector_address, 'wb') as save_host_collector:
            pickle.dump(host_collector, save_host_collector)

    except IndexError:
        print 'Lancer says:\n\tIt has error through the system.'
        raise
Ejemplo n.º 11
0
class IconDetector:
    def __init__(self):

        self.model = load_model(MODEL_PATH)

        self.anomalyModel = AnomalyDetector()
        self.anomalyModel.load(ANOMALY_MODEL_PATH)
        self.anomalyModel.load_inv(ANOMALY_INV_MODEL_PATH)

        with open(DATA_GEN_PATH, 'rb') as dgfile:
            self.datagen = pickle.load(dgfile, encoding='latin1')
            # self.datagen = ImageDataGenerator(
            #     zca_whitening=True,
            # )
        with open(CLASS_LIST, 'r') as clfile:
            self.classList = json.load(clfile)

        with open(TEXT_CLASS_LIST) as f:
            text_class = json.load(f)

        self.text_id_map = {}
        for k, v in text_class.items():
            for t in v:
                self.text_id_map[t] = k

        with open(WIDGET_CLASS_LIST) as f:
            self.widgetClassList = json.load(f)

        self.x = None

        pass

    def preprocessImgpath(self, imgpath):

        image = Image.open(imgpath)
        self.preprocess(image)

        pass

    def preprocess(self, image):

        imageSize = (INPUT_SIZE, INPUT_SIZE)
        image = image.convert('L').resize(imageSize, Image.ANTIALIAS)

        singleArrSize = (INPUT_SIZE, INPUT_SIZE, 1)
        image = np.asarray(image, dtype='int32')
        image = image.astype('float32')
        image /= 255
        image = image.reshape(singleArrSize)

        xShape = (1, INPUT_SIZE, INPUT_SIZE, 1)
        x = np.zeros(xShape)
        x[0] = image
        self.x = x

        pass

    def predict(self):

        x = self.datagen.flow(self.x, batch_size=1, shuffle=False).next()
        # preImg = Image.fromarray(x.reshape(32, 32) * 255).convert('RGB')
        # preImg.save("./n.png")
        prediction = self.model.predict(x)
        anomalies = np.zeros(1)
        if self.anomalyModel:
            anomalies = self.anomalyModel.predict(prediction)

        predictClass = np.argmax(prediction, axis=1)

        if anomalies[0]:
            print("[INFO] predict result : anomaly")
            return 99  # 其它图标
        else:
            print("[INFO] predict result : " +
                  self.classList[str(predictClass[0])])
            return predictClass[0]

        pass
Ejemplo n.º 12
0
def main():
    host_collector = HostCollector()
    anomaly_detector = AnomalyDetector()
    anomaly_collector = AnomalyCollector()
    result_controller = ResultController()
    anomaly_writer = AnomalyWriter(whole_result_address)

    try:
        # save the begin time
        begin_time = datetime.datetime.now()
        detect_time_flag = True
        global study_ready_time
        global detect_ready_time

        with open(url_address, 'rb') as infile:
            record_num = 0
            study_record_num = 0
            for line in infile:
                record = line.strip(' \n').split('\t')
                if len(record) == 13 and record[_host] != '':
                    a_url = UrlRecord(record)
                    current_model = host_collector.getHostModel(a_url.get_host())
                    pattern_flag = current_model.getDetectFlag()
                    # Judge Host-model's pattern('Study ready' or 'Study...')
                    if pattern_flag == 'Study ready':
                        if detect_time_flag:
                            detect_time_flag = False
                            study_ready_time = datetime.datetime.now()
                            study_interval = study_ready_time - begin_time
                            study_record_num = record_num
                            print 'Study consuming: %s' % study_interval
                            print 'Study Record: %s' % study_record_num
                            print '\tUrl amount: %s\tDifferent url amount: %s\tDifferent sip: %s\t' % \
                                (current_model.getUrlAmount(), current_model.getDifUrlAmount(),
                                 current_model.getSipAmount())
                        # Detect whether the record is anomaly
                        anomaly_status = anomaly_detector.detect(a_url, current_model)
                        # If the record is detected to be anomaly
                        if anomaly_status['Result'] is True:
                            valid_flag = result_controller.isValid(a_url, anomaly_collector)
                            if valid_flag is True:
                                anomaly_writer.writeResult(a_url, anomaly_status)
                            else:
                                current_model.reStudy()
                    elif pattern_flag == 'Study...':
                        current_model.add_record(a_url)
                    else:
                        raise ValueError('Lancer says: pattern selection error.')
                record_num += 1
                if record_num % 10000 == 0:
                    print 'Record completed: ', record_num,
            else:
                detect_record_num = record_num - study_record_num
                end_time = datetime.datetime.now()
                detect_ready_time = end_time - study_ready_time
                print 'Detect Record: %s' % detect_record_num
                print "Detection consuming: %s" % detect_ready_time
                print 'Whole system test finished.'

        # Store the completed Host Model.
        with open(host_collector_address, 'wb') as save_host_collector:
            pickle.dump(host_collector, save_host_collector)

    except IndexError:
        print 'Lancer says:\n\tIt has error through the system.'
        raise
Ejemplo n.º 13
0
class IOTdevice:
    def __init__(self, device_name, buffer_size=100, upload_to_iotb=False):
        global plot_this
        self.device_id = device_name
        self.anomaly_detector = AnomalyDetector(
            buffer_size, window_length_sec=10, num_windows=50, plot_time=False, plot=plot_this
        )
        plot_this = False
        self.upload_to_iotb = upload_to_iotb
        self.pkts_since_upload = []

        self.server_on = False
        try:
            r = requests.get(SERVER + "?device_id=d1")
            self.server_on = True
        except requests.exceptions.ConnectionError:
            self.server_on = False

        # self.window_anomaly_detector = WindowAnomalyDetector(window_length_sec=20, num_windows=30, ML_alg=sklearn.svm.OneClassSVM)

    def build_model(self, pf):
        """build database of pktFeatures. Upload every 10 packets. Featurizer is non json so must convert to dict"""

        get_pkt_type = {
            ICMP: "ICMP",
            DNS: "DNS",
            STP: "STP",
            DHCP: "DHCP",
            TCP: "TCP",
            UDP: "UDP",
            IP: "IP",
            ARP: "ARP",
            Ether: "Ether",
        }
        features = {}
        features["arrival_time"] = pf.arrival_time
        features["len_bytes"] = pf.len_bytes
        features["pkt_type"] = get_pkt_type[pf.pkt_type]
        features["features"] = pf.features

        self.pkts_since_upload.append(features)

        if len(self.pkts_since_upload) >= pkts_per_upload:
            self.upload_model()

    def upload_model(self):
        """upload features to SERVER"""

        payload = {"device_id": self.device_id, "data": self.pkts_since_upload}
        r = requests.post(SERVER, json=payload)
        # print payload

    def download_model(self):
        """download model if device was identified"""
        if self.server_on:
            r = requests.get(SERVER + "?device_id=" + self.device_id)
            # if model found on server
            if r.status_code == 200:
                try:
                    data = pickle.loads(r.content)
                    for each_pkt in data:
                        self.anomaly_detector.add_training_data(Featurizer(each_pkt))
                except:
                    # print "Model for device {} not found on server".format(self.device_id)
                    pass

    def handle_pkt(self, pkt):
        pf = PktFeaturizer(pkt)

        if self.server_on:
            self.build_model(pf)

        prediction, distance = self.anomaly_detector.predict(pf)
        self.anomaly_detector.add_training_data(pf)
        # self.window_anomaly_detector.predict(pf)
        # self.window_anomaly_detector.add_training_data(pf)

        return prediction
Ejemplo n.º 14
0
import pandas as pd
from AnomalyDetector import AnomalyDetector
from datetime import datetime

g = pd.read_csv('../data/gageids.csv', header=None, dtype='str')

ad = AnomalyDetector('streamanomaly', datetime.now())
ad.getAnomalies(g[0].values)