Ejemplo n.º 1
0
    def _flushContigIfCompleted(self, window):
        refId, _, _ = window
        refEntry = reference.byName[refId]
        refName = refEntry.fullName
        basesProcessed = self.referenceBasesProcessedById[refId]
        requiredBases = reference.numReferenceBases(refId,
                                                    options.referenceWindows)
        if basesProcessed == requiredBases:
            # This contig is done, so we can dump to file and delete
            # the data structures.
            if self.gffWriter or self.vcfWriter:
                variants = sorted(self.variantsByRefId[refId])
                if self.gffWriter:
                    self.gffWriter.writeVariants(variants)
                if self.vcfWriter:
                    self.vcfWriter.writeVariants(variants)
            del self.variantsByRefId[refId]

            #
            # If the user asked to analyze a window or a set of
            # windows, we output a FAST[AQ] contig per analyzed
            # window.  Otherwise we output a fasta contig per
            # reference contig.
            #
            # We try to be intelligent about naming the output
            # contigs, to include window information where applicable.
            #
            for span in reference.enumerateSpans(refId,
                                                 options.referenceWindows):
                _, s, e = span
                if (s == 0) and (e == refEntry.length):
                    spanName = refName
                else:
                    spanName = refName + "_%d_%d" % (s, e)
                cssName = consensus.consensusContigName(
                    spanName, self._algorithmName)
                # Gather just the chunks pertaining to this span
                chunksThisSpan = [
                    chunk for chunk in self.consensusChunksByRefId[refId]
                    if windows.windowsIntersect(chunk.refWindow, span)
                ]
                css = consensus.join(chunksThisSpan)

                if self.fastaWriter:
                    self.fastaWriter.writeRecord(cssName, css.sequence)
                if self.fastqWriter:
                    self.fastqWriter.writeRecord(cssName, css.sequence,
                                                 css.confidence)

            del self.consensusChunksByRefId[refId]
Ejemplo n.º 2
0
    def _flushContigIfCompleted(self, window):
        refId, _, _ = window
        refEntry = reference.byId[refId]
        refName = refEntry.name
        basesProcessed = self.referenceBasesProcessedById[refId]
        requiredBases = reference.numReferenceBases(refId, options.referenceWindows)
        if basesProcessed == requiredBases:
            # This contig is done, so we can dump to file and delete
            # the data structures.
            if self.gffWriter:
                self.gffWriter.writeVariants(sorted(self.variantsByRefId[refId]))
            del self.variantsByRefId[refId]

            #
            # If the user asked to analyze a window or a set of
            # windows, we output a FAST[AQ] contig per analyzed
            # window.  Otherwise we output a fasta contig per
            # reference contig.
            #
            # We try to be intelligent about naming the output
            # contigs, to include window information where applicable.
            #
            for span in reference.enumerateSpans(refId, options.referenceWindows):
                _, s, e = span
                if (s == 0) and (e == refEntry.length):
                    spanName = refName
                else:
                    spanName = refName + ":%d-%d" % (s, e)
                cssName = consensus.consensusContigName(spanName,
                                                        options.algorithm)
                # Gather just the chunks pertaining to this span
                chunksThisSpan = [ chunk for chunk in self.consensusChunksByRefId[refId]
                                   if windows.windowsIntersect(chunk.refWindow, span) ]
                css = consensus.join(chunksThisSpan)

                if self.fastaWriter:
                    self.fastaWriter.writeRecord(cssName,
                                                 css.sequence)
                if self.fastqWriter:
                    self.fastqWriter.writeRecord(cssName,
                                                 css.sequence,
                                                 css.confidence)

            del self.consensusChunksByRefId[refId]
Ejemplo n.º 3
0
def consensusAndVariantsForWindow(alnFile, refWindow, referenceContig,
                                  depthLimit, arrowConfig):
    """
    High-level routine for calling the consensus for a
    window of the genome given a cmp.h5.

    Identifies the coverage contours of the window in order to
    identify subintervals where a good consensus can be called.
    Creates the desired "no evidence consensus" where there is
    inadequate coverage.
    """
    winId, winStart, winEnd = refWindow
    logging.info("Arrow operating on %s" %
                 reference.windowToString(refWindow))

    if options.fancyChunking:
        # 1) identify the intervals with adequate coverage for arrow
        #    consensus; restrict to intervals of length > 10
        alnHits = U.readsInWindow(alnFile, refWindow,
                                  depthLimit=20000,
                                  minMapQV=arrowConfig.minMapQV,
                                  strategy="longest",
                                  stratum=options.readStratum,
                                  barcode=options.barcode)
        starts = np.fromiter((hit.tStart for hit in alnHits), np.int)
        ends   = np.fromiter((hit.tEnd   for hit in alnHits), np.int)
        intervals = kSpannedIntervals(refWindow, arrowConfig.minPoaCoverage,
                                      starts, ends, minLength=10)
        coverageGaps = holes(refWindow, intervals)
        allIntervals = sorted(intervals + coverageGaps)
        if len(allIntervals) > 1:
            logging.info("Usable coverage in %s: %r" %
                         (reference.windowToString(refWindow), intervals))

    else:
        allIntervals = [ (winStart, winEnd) ]

    # 2) pull out the reads we will use for each interval
    # 3) call consensusForAlignments on the interval
    subConsensi = []
    variants = []

    for interval in allIntervals:
        intStart, intEnd = interval
        intRefSeq = referenceContig[intStart:intEnd]
        subWin = subWindow(refWindow, interval)

        windowRefSeq = referenceContig[intStart:intEnd]
        alns = U.readsInWindow(alnFile, subWin,
                               depthLimit=depthLimit,
                               minMapQV=arrowConfig.minMapQV,
                               strategy="longest",
                               stratum=options.readStratum,
                               barcode=options.barcode)
        clippedAlns_ = [ aln.clippedTo(*interval) for aln in alns ]
        clippedAlns = U.filterAlns(subWin, clippedAlns_, arrowConfig)

        if len([ a for a in clippedAlns
                 if a.spansReferenceRange(*interval) ]) >= arrowConfig.minPoaCoverage:

            logging.debug("%s: Reads being used: %s" %
                          (reference.windowToString(subWin),
                           " ".join([str(hit.readName) for hit in alns])))

            css = U.consensusForAlignments(subWin,
                                           intRefSeq,
                                           clippedAlns,
                                           arrowConfig)

            siteCoverage = U.coverageInWindow(subWin, alns)

            variants_ = U.variantsFromConsensus(subWin, windowRefSeq,
                                                css.sequence, css.confidence, siteCoverage,
                                                options.aligner,
                                                ai=None)

            filteredVars =  filterVariants(options.minCoverage,
                                           options.minConfidence,
                                           variants_)
            # Annotate?
            if options.annotateGFF:
                annotateVariants(filteredVars, clippedAlns)

            variants += filteredVars

            # Dump?
            shouldDumpEvidence = \
                ((options.dumpEvidence == "all") or
                 (options.dumpEvidence == "variants") and (len(variants) > 0))
            if shouldDumpEvidence:
                logging.info("Arrow does not yet support --dumpEvidence")
#                 dumpEvidence(options.evidenceDirectory,
#                              subWin, windowRefSeq,
#                              clippedAlns, css)
        else:
            css = ArrowConsensus.noCallConsensus(arrowConfig.noEvidenceConsensus,
                                                 subWin, intRefSeq)
        subConsensi.append(css)

    # 4) glue the subwindow consensus objects together to form the
    #    full window consensus
    css = join(subConsensi)

    # 5) Return
    return css, variants
Ejemplo n.º 4
0
def consensusAndVariantsForWindow(alnFile, refWindow, referenceContig,
                                  depthLimit, arrowConfig):
    """
    High-level routine for calling the consensus for a
    window of the genome given a BAM file.

    Identifies the coverage contours of the window in order to
    identify subintervals where a good consensus can be called.
    Creates the desired "no evidence consensus" where there is
    inadequate coverage.
    """
    winId, winStart, winEnd = refWindow
    logging.info("Arrow operating on %s" % reference.windowToString(refWindow))

    if options.fancyChunking:
        # 1) identify the intervals with adequate coverage for arrow
        #    consensus; restrict to intervals of length > 10
        alnHits = U.readsInWindow(alnFile,
                                  refWindow,
                                  depthLimit=20000,
                                  minMapQV=arrowConfig.minMapQV,
                                  strategy="long-and-strand-balanced",
                                  stratum=options.readStratum,
                                  barcode=options.barcode)
        starts = np.fromiter((hit.tStart for hit in alnHits), np.int)
        ends = np.fromiter((hit.tEnd for hit in alnHits), np.int)
        intervals = kSpannedIntervals(refWindow,
                                      arrowConfig.minPoaCoverage,
                                      starts,
                                      ends,
                                      minLength=10)
        coverageGaps = holes(refWindow, intervals)
        allIntervals = sorted(intervals + coverageGaps)
        if len(allIntervals) > 1:
            logging.info("Usable coverage in %s: %r" %
                         (reference.windowToString(refWindow), intervals))

    else:
        allIntervals = [(winStart, winEnd)]

    # 2) pull out the reads we will use for each interval
    # 3) call consensusForAlignments on the interval
    subConsensi = []
    variants = []

    for interval in allIntervals:
        intStart, intEnd = interval
        intRefSeq = referenceContig[intStart:intEnd]
        subWin = subWindow(refWindow, interval)

        windowRefSeq = referenceContig[intStart:intEnd]
        alns = U.readsInWindow(alnFile,
                               subWin,
                               depthLimit=depthLimit,
                               minMapQV=arrowConfig.minMapQV,
                               strategy="long-and-strand-balanced",
                               stratum=options.readStratum,
                               barcode=options.barcode)
        clippedAlns_ = [aln.clippedTo(*interval) for aln in alns]
        clippedAlns = U.filterAlns(subWin, clippedAlns_, arrowConfig)

        if len([a for a in clippedAlns if a.spansReferenceRange(*interval)
                ]) >= arrowConfig.minPoaCoverage:

            logging.debug("%s: Reads being used: %s" %
                          (reference.windowToString(subWin), " ".join(
                              [str(hit.readName) for hit in alns])))

            alnsUsed = [] if options.reportEffectiveCoverage else None
            css = U.consensusForAlignments(subWin,
                                           intRefSeq,
                                           clippedAlns,
                                           arrowConfig,
                                           alnsUsed=alnsUsed)

            # Tabulate the coverage implied by these alignments, as
            # well as the post-filtering ("effective") coverage
            siteCoverage = U.coverageInWindow(subWin, alns)
            effectiveSiteCoverage = U.coverageInWindow(
                subWin, alnsUsed) if options.reportEffectiveCoverage else None

            variants_, newPureCss = U.variantsFromConsensus(
                subWin,
                windowRefSeq,
                css.sequence,
                css.confidence,
                siteCoverage,
                effectiveSiteCoverage,
                options.aligner,
                ai=None,
                diploid=arrowConfig.polishDiploid)

            # Annotate?
            if options.annotateGFF:
                annotateVariants(variants_, clippedAlns)

            variants += variants_

            # The nascent consensus sequence might contain ambiguous bases, these
            # need to be removed as software in the wild cannot deal with such
            # characters and we only use IUPAC for *internal* bookkeeping.
            if arrowConfig.polishDiploid:
                css.sequence = newPureCss
        else:
            css = ArrowConsensus.noCallConsensus(
                arrowConfig.noEvidenceConsensus, subWin, intRefSeq)
        subConsensi.append(css)

    # 4) glue the subwindow consensus objects together to form the
    #    full window consensus
    css = join(subConsensi)

    # 5) Return
    return css, variants
Ejemplo n.º 5
0
def consensusAndVariantsForWindow(alnFile, refWindow, referenceContig,
                                  depthLimit, arrowConfig):
    """
    High-level routine for calling the consensus for a
    window of the genome given a cmp.h5.

    Identifies the coverage contours of the window in order to
    identify subintervals where a good consensus can be called.
    Creates the desired "no evidence consensus" where there is
    inadequate coverage.
    """
    winId, winStart, winEnd = refWindow
    logging.info("Arrow operating on %s" % reference.windowToString(refWindow))

    if options.fancyChunking:
        # 1) identify the intervals with adequate coverage for arrow
        #    consensus; restrict to intervals of length > 10
        alnHits = U.readsInWindow(alnFile,
                                  refWindow,
                                  depthLimit=20000,
                                  minMapQV=arrowConfig.minMapQV,
                                  strategy="long-and-strand-balanced",
                                  stratum=options.readStratum,
                                  barcode=options.barcode)
        starts = np.fromiter((hit.tStart for hit in alnHits), np.int)
        ends = np.fromiter((hit.tEnd for hit in alnHits), np.int)
        intervals = kSpannedIntervals(refWindow,
                                      arrowConfig.minPoaCoverage,
                                      starts,
                                      ends,
                                      minLength=10)
        coverageGaps = holes(refWindow, intervals)
        allIntervals = sorted(intervals + coverageGaps)
        if len(allIntervals) > 1:
            logging.info("Usable coverage in %s: %r" %
                         (reference.windowToString(refWindow), intervals))

    else:
        allIntervals = [(winStart, winEnd)]

    # 2) pull out the reads we will use for each interval
    # 3) call consensusForAlignments on the interval
    subConsensi = []
    variants = []

    for interval in allIntervals:
        intStart, intEnd = interval
        intRefSeq = referenceContig[intStart:intEnd]
        subWin = subWindow(refWindow, interval)

        windowRefSeq = referenceContig[intStart:intEnd]
        alns = U.readsInWindow(alnFile,
                               subWin,
                               depthLimit=depthLimit,
                               minMapQV=arrowConfig.minMapQV,
                               strategy="long-and-strand-balanced",
                               stratum=options.readStratum,
                               barcode=options.barcode)
        clippedAlns_ = [aln.clippedTo(*interval) for aln in alns]
        clippedAlns = U.filterAlns(subWin, clippedAlns_, arrowConfig)

        if len([a for a in clippedAlns if a.spansReferenceRange(*interval)
                ]) >= arrowConfig.minPoaCoverage:

            logging.debug("%s: Reads being used: %s" %
                          (reference.windowToString(subWin), " ".join(
                              [str(hit.readName) for hit in alns])))

            alnsUsed = [] if options.reportEffectiveCoverage else None
            css = U.consensusForAlignments(subWin,
                                           intRefSeq,
                                           clippedAlns,
                                           arrowConfig,
                                           alnsUsed=alnsUsed)

            # Tabulate the coverage implied by these alignments, as
            # well as the post-filtering ("effective") coverage
            siteCoverage = U.coverageInWindow(subWin, alns)
            effectiveSiteCoverage = U.coverageInWindow(
                subWin, alnsUsed) if options.reportEffectiveCoverage else None

            variants_ = U.variantsFromConsensus(subWin,
                                                windowRefSeq,
                                                css.sequence,
                                                css.confidence,
                                                siteCoverage,
                                                effectiveSiteCoverage,
                                                options.aligner,
                                                ai=None)

            filteredVars = filterVariants(options.minCoverage,
                                          options.minConfidence, variants_)
            # Annotate?
            if options.annotateGFF:
                annotateVariants(filteredVars, clippedAlns)

            variants += filteredVars

            # Dump?
            maybeDumpEvidence = \
                ((options.dumpEvidence == "all") or
                 (options.dumpEvidence == "outliers") or
                 (options.dumpEvidence == "variants") and (len(variants) > 0))
            if maybeDumpEvidence:
                refId, refStart, refEnd = subWin
                refName = reference.idToName(refId)
                windowDirectory = os.path.join(options.evidenceDirectory,
                                               refName,
                                               "%d-%d" % (refStart, refEnd))
                ev = ArrowEvidence.fromConsensus(css)
                if options.dumpEvidence != "outliers":
                    ev.save(windowDirectory)
                elif (np.max(ev.delta) > 20):
                    # Mathematically I don't think we should be seeing
                    # deltas > 6 in magnitude, but let's just restrict
                    # attention to truly bonkers outliers.
                    ev.save(windowDirectory)

        else:
            css = ArrowConsensus.noCallConsensus(
                arrowConfig.noEvidenceConsensus, subWin, intRefSeq)
        subConsensi.append(css)

    # 4) glue the subwindow consensus objects together to form the
    #    full window consensus
    css = join(subConsensi)

    # 5) Return
    return css, variants
Ejemplo n.º 6
0
def consensusAndVariantsForWindow(alnFile, refWindow, referenceContig,
                                  depthLimit, arrowConfig):
    """
    High-level routine for calling the consensus for a
    window of the genome given a cmp.h5.

    Identifies the coverage contours of the window in order to
    identify subintervals where a good consensus can be called.
    Creates the desired "no evidence consensus" where there is
    inadequate coverage.
    """
    winId, winStart, winEnd = refWindow
    logging.info("Arrow operating on %s" %
                 reference.windowToString(refWindow))

    if options.fancyChunking:
        # 1) identify the intervals with adequate coverage for arrow
        #    consensus; restrict to intervals of length > 10
        alnHits = U.readsInWindow(alnFile, refWindow,
                                  depthLimit=20000,
                                  minMapQV=arrowConfig.minMapQV,
                                  strategy="long-and-strand-balanced",
                                  stratum=options.readStratum,
                                  barcode=options.barcode)
        starts = np.fromiter((hit.tStart for hit in alnHits), np.int)
        ends   = np.fromiter((hit.tEnd   for hit in alnHits), np.int)
        intervals = kSpannedIntervals(refWindow, arrowConfig.minPoaCoverage,
                                      starts, ends, minLength=10)
        coverageGaps = holes(refWindow, intervals)
        allIntervals = sorted(intervals + coverageGaps)
        if len(allIntervals) > 1:
            logging.info("Usable coverage in %s: %r" %
                         (reference.windowToString(refWindow), intervals))

    else:
        allIntervals = [ (winStart, winEnd) ]

    # 2) pull out the reads we will use for each interval
    # 3) call consensusForAlignments on the interval
    subConsensi = []
    variants = []

    for interval in allIntervals:
        intStart, intEnd = interval
        intRefSeq = referenceContig[intStart:intEnd]
        subWin = subWindow(refWindow, interval)

        windowRefSeq = referenceContig[intStart:intEnd]
        alns = U.readsInWindow(alnFile, subWin,
                               depthLimit=depthLimit,
                               minMapQV=arrowConfig.minMapQV,
                               strategy="long-and-strand-balanced",
                               stratum=options.readStratum,
                               barcode=options.barcode)
        clippedAlns_ = [ aln.clippedTo(*interval) for aln in alns ]
        clippedAlns = U.filterAlns(subWin, clippedAlns_, arrowConfig)

        if len([ a for a in clippedAlns
                 if a.spansReferenceRange(*interval) ]) >= arrowConfig.minPoaCoverage:

            logging.debug("%s: Reads being used: %s" %
                          (reference.windowToString(subWin),
                           " ".join([str(hit.readName) for hit in alns])))

            alnsUsed = [] if options.reportEffectiveCoverage else None
            css = U.consensusForAlignments(subWin,
                                           intRefSeq,
                                           clippedAlns,
                                           arrowConfig,
                                           alnsUsed=alnsUsed)

            # Tabulate the coverage implied by these alignments, as
            # well as the post-filtering ("effective") coverage
            siteCoverage = U.coverageInWindow(subWin, alns)
            effectiveSiteCoverage = U.coverageInWindow(subWin, alnsUsed) if options.reportEffectiveCoverage else None

            variants_ = U.variantsFromConsensus(subWin, windowRefSeq,
                                                css.sequence, css.confidence, siteCoverage, effectiveSiteCoverage,
                                                options.aligner,
                                                ai=None)

            filteredVars =  filterVariants(options.minCoverage,
                                           options.minConfidence,
                                           variants_)
            # Annotate?
            if options.annotateGFF:
                annotateVariants(filteredVars, clippedAlns)

            variants += filteredVars

            # Dump?
            maybeDumpEvidence = \
                ((options.dumpEvidence == "all") or
                 (options.dumpEvidence == "outliers") or
                 (options.dumpEvidence == "variants") and (len(variants) > 0))
            if maybeDumpEvidence:
                refId, refStart, refEnd = subWin
                refName = reference.idToName(refId)
                windowDirectory = os.path.join(
                    options.evidenceDirectory,
                    refName,
                    "%d-%d" % (refStart, refEnd))
                ev = ArrowEvidence.fromConsensus(css)
                if options.dumpEvidence != "outliers":
                    ev.save(windowDirectory)
                elif (np.max(ev.delta) > 20):
                    # Mathematically I don't think we should be seeing
                    # deltas > 6 in magnitude, but let's just restrict
                    # attention to truly bonkers outliers.
                    ev.save(windowDirectory)

        else:
            css = ArrowConsensus.noCallConsensus(arrowConfig.noEvidenceConsensus,
                                                 subWin, intRefSeq)
        subConsensi.append(css)

    # 4) glue the subwindow consensus objects together to form the
    #    full window consensus
    css = join(subConsensi)

    # 5) Return
    return css, variants
Ejemplo n.º 7
0
def consensusAndVariantsForWindow(alnFile, refWindow, referenceContig,
                                  depthLimit, arrowConfig):
    """
    High-level routine for calling the consensus for a
    window of the genome given a BAM file.

    Identifies the coverage contours of the window in order to
    identify subintervals where a good consensus can be called.
    Creates the desired "no evidence consensus" where there is
    inadequate coverage.
    """
    winId, winStart, winEnd = refWindow
    logging.info("Arrow operating on %s" %
                 reference.windowToString(refWindow))

    if options.fancyChunking:
        # 1) identify the intervals with adequate coverage for arrow
        #    consensus; restrict to intervals of length > 10
        alnHits = U.readsInWindow(alnFile, refWindow,
                                  depthLimit=20000,
                                  minMapQV=arrowConfig.minMapQV,
                                  strategy="long-and-strand-balanced",
                                  stratum=options.readStratum,
                                  barcode=options.barcode)
        starts = np.fromiter((hit.tStart for hit in alnHits), np.int)
        ends   = np.fromiter((hit.tEnd   for hit in alnHits), np.int)
        intervals = kSpannedIntervals(refWindow, arrowConfig.minPoaCoverage,
                                      starts, ends, minLength=10)
        coverageGaps = holes(refWindow, intervals)
        allIntervals = sorted(intervals + coverageGaps)
        if len(allIntervals) > 1:
            logging.info("Usable coverage in %s: %r" %
                         (reference.windowToString(refWindow), intervals))

    else:
        allIntervals = [ (winStart, winEnd) ]

    # 2) pull out the reads we will use for each interval
    # 3) call consensusForAlignments on the interval
    subConsensi = []
    variants = []

    for interval in allIntervals:
        intStart, intEnd = interval
        intRefSeq = referenceContig[intStart:intEnd]
        subWin = subWindow(refWindow, interval)

        windowRefSeq = referenceContig[intStart:intEnd]
        alns = U.readsInWindow(alnFile, subWin,
                               depthLimit=depthLimit,
                               minMapQV=arrowConfig.minMapQV,
                               strategy="long-and-strand-balanced",
                               stratum=options.readStratum,
                               barcode=options.barcode)
        clippedAlns_ = [ aln.clippedTo(*interval) for aln in alns ]
        clippedAlns = U.filterAlns(subWin, clippedAlns_, arrowConfig)

        if len([ a for a in clippedAlns
                 if a.spansReferenceRange(*interval) ]) >= arrowConfig.minPoaCoverage:

            logging.debug("%s: Reads being used: %s" %
                          (reference.windowToString(subWin),
                           " ".join([str(hit.readName) for hit in alns])))

            alnsUsed = [] if options.reportEffectiveCoverage else None
            css = U.consensusForAlignments(subWin,
                                           intRefSeq,
                                           clippedAlns,
                                           arrowConfig,
                                           alnsUsed=alnsUsed)

            # Tabulate the coverage implied by these alignments, as
            # well as the post-filtering ("effective") coverage
            siteCoverage = U.coverageInWindow(subWin, alns)
            effectiveSiteCoverage = U.coverageInWindow(subWin, alnsUsed) if options.reportEffectiveCoverage else None

            variants_, newPureCss = U.variantsFromConsensus(subWin, windowRefSeq, css.sequence, css.confidence,
                                                            siteCoverage, effectiveSiteCoverage,
                                                            options.aligner, ai=None,
                                                            diploid=arrowConfig.polishDiploid)

            # Annotate?
            if options.annotateGFF:
                annotateVariants(variants_, clippedAlns)

            variants += variants_

            # The nascent consensus sequence might contain ambiguous bases, these
            # need to be removed as software in the wild cannot deal with such
            # characters and we only use IUPAC for *internal* bookkeeping.
            if arrowConfig.polishDiploid:
                css.sequence = newPureCss
        else:
            css = ArrowConsensus.noCallConsensus(arrowConfig.noEvidenceConsensus,
                                                 subWin, intRefSeq)
        subConsensi.append(css)

    # 4) glue the subwindow consensus objects together to form the
    #    full window consensus
    css = join(subConsensi)

    # 5) Return
    return css, variants