Ejemplo n.º 1
0
class Shaft:
    "The axis of the shaft is always assumed to correspond to the X-axis"
    # List of shaft segments (each segment has a different diameter)
    segments = []
    # The sketch
    sketch = 0
    #featureWindow = None
    # The diagrams
    diagrams = {} # map of function name against Diagram object
    # Calculation of shaft
    Qy = 0 # force in direction of y axis
    Qz = 0 # force in direction of z axis
    Mbz = 0 # bending moment around z axis
    Mby = 0 # bending moment around y axis
    Mtz = 0 # torsion moment around z axis

    def __init__(self, doc):
        self.sketch = ShaftFeature(doc)

    def getLengthTo(self, index):
        "Get the total length of all segments up to the given one"
        result = 0.0
        for i in range(index):
            result += self.segments[i].length
        return result

    def addSegment(self, l, d, di):
        #print "Adding segment: ", l, " : ", d
        self.segments.append(ShaftSegment(l,d,di))
        self.sketch.addSegment(l, d, di)
        # We don't call equilibrium() here because the new segment has no loads defined yet

    def updateSegment(self, index, length = None, diameter = None, innerdiameter = None):
        oldLength = self.segments[index].length
        #print "Old length of ", index, ": ", oldLength, ", new Length: ", length, " diameter: ", diameter
        if length is not None:
            self.segments[index].length = length
        if diameter is not None:
            self.segments[index].diameter = diameter
        if innerdiameter is not None:
            self.segments[index].innerdiameter = innerdiameter
        self.sketch.updateSegment(index, oldLength, self.segments[index].length,
                                  self.segments[index].diameter, self.segments[index].innerdiameter)
        self.equilibrium()
        self.updateDiagrams()

    def updateLoad(self, index, loadType = None, loadSize = None, loadLocation = None):
        if (loadType is not None):
            self.segments[index].loadType = loadType
        if (loadSize is not None):
            self.segments[index].loadSize = loadSize
        if (loadLocation is not None):
            if (loadLocation >= 0) and (loadLocation <= self.segments[index].length):
                self.segments[index].loadLocation = loadLocation
            else:
                # TODO: Show warning
                FreeCAD.Console.PrintMessage("Load location must be inside segment\n")

        #self.feature.updateForces() graphical representation of the forces
        self.equilibrium()
        self.updateDiagrams()

    def updateEdge(self, column, start):
        App.Console.PrintMessage("Not implemented yet - waiting for robust references...")
        return
        if self.sketchClosed is not True:
            return
        # Create a chamfer or fillet at the start or end edge of the segment
        if start is True:
            row = rowStartEdgeType
            idx = 0
        else:
            row = rowEndEdgeType
            idx = 1

        edgeType = self.tableWidget.item(row, column).text().toAscii()[0].upper()
        if not ((edgeType == "C") or (edgeType == "F")):
            return # neither chamfer nor fillet defined

        if edgeType == "C":
            objName = self.doc.addObject("PartDesign::Chamfer","ChamferShaft%u" % (column * 2 + idx))
        else:
            objName = self.doc.addObject("PartDesign::Fillet","FilletShaft%u" % (column * 2 + idx))
        if objName == "":
            return

        edgeName = "Edge%u" % self.getEdgeIndex(column, idx, edgeType)
        self.doc.getObject(objName).Base = (self.doc.getObject("RevolutionShaft"),"[%s]" % edgeName)
        # etc. etc.

    def getEdgeIndex(self, column, startIdx):
        # FIXME: This is impossible without robust references anchored in the sketch!!!
        return

    def updateDiagrams(self):
        if (self.Qy == 0) or (self.Mbz == 0):
            return
        if self.Qy.name in self.diagrams:
            # Update diagram
            self.diagrams[self.Qy.name].update(self.Qy, self.getLengthTo(len(self.segments)) / 1000.0)
        else:
            # Create diagram
            self.diagrams[self.Qy.name] = Diagram()
            self.diagrams[self.Qy.name].create("Shear force", self.Qy, self.getLengthTo(len(self.segments)) / 1000.0, "x", "mm", 1000.0, "Q_y", "N", 1.0, 10)
        if self.Mbz.name in self.diagrams:
            # Update diagram
            self.diagrams[self.Mbz.name].update(self.Mbz, self.getLengthTo(len(self.segments)) / 1000.0)
        else:
            # Create diagram
            self.diagrams[self.Mbz.name] = Diagram()
            self.diagrams[self.Mbz.name].create("Bending moment", self.Mbz, self.getLengthTo(len(self.segments)) / 1000.0, "x", "mm", 1000.0, "M_{b,z}", "Nm", 1.0, 10)

    def equilibrium(self):
        # Build equilibrium equations
        forces = {0.0:0.0} # dictionary of (location : outer force)
        moments = {0.0:0.0} # dictionary of (location : outer moment)
        variableNames = [""] # names of all variables
        locations = {} # dictionary of (variableName : location)
        coefficientsFy = [0] # force equilibrium equation
        coefficientsMbz = [0] # moment equilibrium equation

        for i in range(len(self.segments)):
            lType = self.segments[i].loadType
            load = -1 # -1 means unknown (just for debug printing)
            location = -1

            if lType == "Fixed":
                # Fixed segment
                if i == 0:
                    location = 0
                    variableNames.append("Fy%u" % i)
                    coefficientsFy.append(1)
                    coefficientsMbz.append(0)
                    variableNames.append("Mz%u" % i)
                    coefficientsFy.append(0)
                    coefficientsMbz.append(1) # Force does not contribute because location is zero
                elif i == len(self.segments) - 1:
                    location = self.getLengthTo(len(self.segments)) / 1000
                    variableNames.append("Fy%u" % i)
                    coefficientsFy.append(1)
                    coefficientsMbz.append(location)
                    variableNames.append("Mz%u" % i)
                    coefficientsFy.append(0)
                    coefficientsMbz.append(1)
                else:
                    # TODO: Better error message
                    FreeCAD.Console.PrintMessage("Fixed constraint must be at beginning or end of shaft\n")
                    return

                locations["Fy%u" % i] = location
                locations["Mz%u" % i] = location
            elif lType == "Static":
                # Static load (currently force only)
                load = self.segments[i].loadSize
                location = (self.getLengthTo(i) + self.segments[i].loadLocation)  / 1000 # convert to meters
                coefficientsFy[0] = coefficientsFy[0] - load
                forces[location] = load
                coefficientsMbz[0] = coefficientsMbz[0] - load * location
                moments[location] = 0
            #elif lType == "None":
            #    # No loads on segment

            FreeCAD.Console.PrintMessage("Segment: %u, type: %s, load: %f, location: %f\n" % (i, lType, load, location))

        self.printEquilibrium(variableNames, coefficientsFy)
        self.printEquilibrium(variableNames, coefficientsMbz)

        # Build matrix and vector for linear algebra solving algorithm
        try:
            import numpy as np
        except ImportError:
            FreeCAD.Console.PrintMessage("numpy is not installed on your system\n")
            raise ImportError("numpy not installed")
        if (len(coefficientsFy) < 3) or (len(coefficientsMbz) < 3):
            return
        A = np.array([coefficientsFy[1:], coefficientsMbz[1:]])
        b = np.array([coefficientsFy[0], coefficientsMbz[0]])
        solution = np.linalg.solve(A, b)

        # Complete dictionary of forces and moments
        if variableNames[1][0] == "F":
            forces[locations[variableNames[1]]] = solution[0]
        else:
            moments[locations[variableNames[1]]] = solution[0]

        if variableNames[2][0] == "F":
            forces[locations[variableNames[2]]] = solution[1]
        else:
            moments[locations[variableNames[2]]] = solution[1]

        FreeCAD.Console.PrintMessage(forces)
        FreeCAD.Console.PrintMessage(moments)
        self.Qy = SegmentFunction("Qy")
        self.Qy.buildFromDict("x", forces)
        self.Qy.output()
        self.Mbz = self.Qy.integrated().negate()
        self.Mbz.addSegments(moments) # takes care of boundary conditions
        self.Mbz.name = "Mbz"
        self.Mbz.output()

    def printEquilibrium(self, var, coeff):
        # Auxiliary method for debugging purposes
        for i in range(len(var)):
            if i == 0:
                FreeCAD.Console.PrintMessage("%f = " % coeff[i])
            else:
                FreeCAD.Console.PrintMessage("%f * %s" % (coeff[i], var[i]))
            if (i < len(var) - 1) and (i != 0):
                FreeCAD.Console.PrintMessage(" + ")
        FreeCAD.Console.PrintMessage("\n")
Ejemplo n.º 2
0
    def equilibrium(self):
        # Build equilibrium equations
        try:
            import numpy as np
        except ImportError:
            FreeCAD.Console.PrintMessage(
                "numpy is not installed on your system\n")
            raise ImportError("numpy not installed")

        # Initialization of structures. All three axes are handled separately so everything is 3-fold
        # dictionaries of (location : outer force/moment) with reverse sign, which means that the segment functions for the section force and section moment
        # created from them will have signs as by the convention in
        # http://www.umwelt-campus.de/ucb/fileadmin/users/90_t.preussler/dokumente/Skripte/TEMECH/TMI/Ebene_Balkenstatik.pdf (page 10)
        # (see also example on page 19)
        forces = [{0.0: 0.0}, {0.0: 0.0}, {0.0: 0.0}]
        moments = [{0.0: 0.0}, {0.0: 0.0}, {0.0: 0.0}]
        # Boundary conditions for shaft bending line
        tangents = [[], [], []]  # Tangents to shaft bending line
        translations = [[], [], []]  # Shaft displacement
        # Variable names, e.g. Fx, Mz. Because the system must be exactly determined, not more than two independent variables for each
        # force/moment per axis are possible (if there are more no solution is calculated)
        variableNames = [[""], [""], [""]]
        # # dictionary of (variableName : location) giving the x-coordinate at which the force/moment represented by the variable acts on the shaft
        locations = {}
        # Coefficients of the equilibrium equations in the form a = b * F1 + c * F2 and d = e * M1 + f * M2
        # LHS (variables a1, a2, a3, d3) initialized to zero
        coefficientsF = [[0], [0], [0]]
        coefficientsM = [[0], [0], [0]]

        for i in range(len(self.segments)):
            cType = self.segments[i].constraintType
            constraint = self.segments[i].constraint

            if cType == "Fixed":
                # Fixed segment
                if i == 0:
                    # At beginning of shaft
                    location = 0
                elif i == len(self.segments) - 1:
                    # At end of shaft
                    location = self.getLengthTo(len(
                        self.segments)) / 1000.0  # convert to meters
                else:
                    # TODO: Better error message
                    FreeCAD.Console.PrintMessage(
                        "Fixed constraint must be at beginning or end of shaft\n"
                    )
                    return

                for ax in range(3):
                    # Create a new reaction force
                    variableNames[ax].append("%s%u" % (self.Fstr[ax], i))
                    coefficientsF[ax].append(1)
                    # Register location of reaction force
                    locations["%s%u" % (self.Fstr[ax], i)] = location
                    # Boundary conditions for the translations
                    tangents[ax].append((location, 0.0))
                    translations[ax].append((location, 0.0))
                coefficientsM[0].append(
                    0)  # Reaction force contributes no moment around x axis
                coefficientsM[1].append(
                    location
                )  # Reaction force contributes a positive moment around z axis
                coefficientsM[2].append(
                    -location
                )  # Reaction force contributes a negative moment around y axis

                for ax in range(3):
                    # Create a new reaction moment
                    variableNames[ax].append("%s%u" % (self.Mstr[ax], i))
                    coefficientsF[ax].append(0)
                    coefficientsM[ax].append(1)
                    locations["%s%u" % (self.Mstr[ax], i)] = location

            elif cType == "Force":
                # Static force (currently force on midpoint of segment only)
                force = constraint.DirectionVector.multiply(constraint.Force)
                # TODO: Extract value of the location from geometry
                location = (self.getLengthTo(i) +
                            self.segments[i].length / 2.0) / 1000.0
                # The force itself
                for ax in range(3):
                    if abs(force[ax]) > 0.0:
                        coefficientsF[ax][0] = coefficientsF[ax][0] - force[
                            ax]  # neg. because this coefficient is on the LHS of the equilibrium equation
                        self.addTo(
                            forces[ax], location, -force[ax]
                        )  # neg. to fulfill the convention mentioned above
                # Moments created by the force (by definition no moment is created by the force in x-direction)
                if abs(force[1]) > 0.0:
                    coefficientsM[1][0] = coefficientsM[1][
                        0] - force[1] * location  # moment around z-axis
                    self.addTo(moments[1], location, 0)
                if abs(force[2]) > 0.0:
                    coefficientsM[2][0] = coefficientsM[2][
                        0] + force[2] * location  # moment around y-axis
                    self.addTo(moments[2], location,
                               0)  # No outer moment acts here!

            elif cType == "Bearing":
                location = constraint.BasePoint.x / 1000.0  # TODO: This assumes that the shaft feature starts with the first segment at (0,0,0)  and its axis corresponds to the x-axis
                # Bearing reaction forces. TODO: the bearing is assumed to not induce any reaction moments
                start = (0 if constraint.AxialFree == False else 1)
                for ax in range(start, 3):
                    variableNames[ax].append("%s%u" % (self.Fstr[ax], i))
                    coefficientsF[ax].append(1)
                    locations["%s%u" % (self.Fstr[ax], i)] = location
                    # Boundary condition
                    translations[ax].append((location, 0.0))
                if constraint.AxialFree == False:
                    coefficientsM[0].append(
                        0
                    )  # Reaction force contributes no moment around x axis
                coefficientsM[1].append(
                    location
                )  # Reaction force contributes a positive moment around z axis
                coefficientsM[2].append(
                    -location
                )  # Reaction force contributes a negative moment around y axis

            elif cType == "Gear":
                force = constraint.DirectionVector.multiply(constraint.Force)
                location = constraint.BasePoint.x / 1000.0
                lever = [
                    0, constraint.Diameter / 2.0 / 1000.0 *
                    math.sin(constraint.ForceAngle / 180.0 * math.pi),
                    constraint.Diameter / 2.0 / 1000.0 *
                    math.cos(constraint.ForceAngle / 180.0 * math.pi)
                ]

                # Effect of the gear force
                for ax in range(3):
                    if abs(force[ax]) > 0.0:
                        # Effect of the force
                        coefficientsF[ax][0] = coefficientsF[ax][0] - force[ax]
                        self.addTo(forces[ax], location, -force[ax])
                # Moments created by the force (by definition no moment is created by the force in x-direction)
                if abs(force[1]) > 0.0:
                    coefficientsM[1][0] = coefficientsM[1][
                        0] - force[1] * location  # moment around z-axis
                    self.addTo(moments[1], location, 0)
                if abs(force[2]) > 0.0:
                    coefficientsM[2][0] = coefficientsM[2][
                        0] + force[2] * location  # moment around y-axis
                    self.addTo(moments[2], location,
                               0)  # No outer moment acts here!

                # Moments created by the force and lever
                if abs(force[0]) > 0.0:
                    momenty = force[0] * lever[2]
                    momentz = force[0] * lever[1]
                    coefficientsM[1][0] = coefficientsM[1][
                        0] + momentz  # moment around z-axis
                    self.addTo(moments[1], location, momentz)
                    coefficientsM[2][0] = coefficientsM[2][
                        0] - momenty  # moment around y-axis
                    self.addTo(moments[2], location, -momenty)
                if abs(force[1]) > 0.0:
                    moment = force[1] * lever[2]
                    coefficientsM[0][0] = coefficientsM[0][0] + moment
                    self.addTo(moments[0], location, moment)
                if abs(force[2]) > 0.0:
                    moment = force[2] * lever[1]
                    coefficientsM[0][0] = coefficientsM[0][0] - moment
                    self.addTo(moments[0], location, -moment)
            elif cType == "Pulley":
                forceAngle1 = (constraint.ForceAngle + constraint.BeltAngle +
                               90.0) / 180.0 * math.pi
                forceAngle2 = (constraint.ForceAngle - constraint.BeltAngle +
                               90.0) / 180.0 * math.pi
                #FreeCAD.Console.PrintMessage("BeltForce1: %f, BeltForce2: %f\n" % (constraint.BeltForce1,  constraint.BeltForce2))
                #FreeCAD.Console.PrintMessage("Angle1: %f, Angle2: %f\n" % (forceAngle1,  forceAngle2))
                force = [
                    0, -constraint.BeltForce1 * math.sin(forceAngle1) -
                    constraint.BeltForce2 * math.sin(forceAngle2),
                    constraint.BeltForce1 * math.cos(forceAngle1) +
                    constraint.BeltForce2 * math.cos(forceAngle2)
                ]
                location = constraint.BasePoint.x / 1000.0

                # Effect of the pulley forces
                for ax in range(3):
                    if abs(force[ax]) > 0.0:
                        # Effect of the force
                        coefficientsF[ax][0] = coefficientsF[ax][0] - force[ax]
                        self.addTo(forces[ax], location, -force[ax])
                # Moments created by the force (by definition no moment is created by the force in x-direction)
                if abs(force[1]) > 0.0:
                    coefficientsM[1][0] = coefficientsM[1][
                        0] - force[1] * location  # moment around z-axis
                    self.addTo(moments[1], location, 0)
                if abs(force[2]) > 0.0:
                    coefficientsM[2][0] = coefficientsM[2][
                        0] + force[2] * location  # moment around y-axis
                    self.addTo(moments[2], location,
                               0)  # No outer moment acts here!

                # Torque
                moment = constraint.Force * (1 if constraint.IsDriven is True
                                             else -1)
                coefficientsM[0][0] = coefficientsM[0][0] + moment
                self.addTo(moments[0], location, moment)

        areas = [None, None, None]
        areamoments = [None, None, None]
        bendingmoments = [None, None, None]
        torquemoments = [None, None, None]

        for ax in range(3):
            FreeCAD.Console.PrintMessage("Axis: %u\n" % ax)
            self.printEquilibrium(variableNames[ax], coefficientsF[ax])
            self.printEquilibrium(variableNames[ax], coefficientsM[ax])

            if len(coefficientsF[ax]) <= 1:
                # Note: coefficientsF and coefficientsM always have the same length
                FreeCAD.Console.PrintMessage(
                    "Matrix is singular, no solution possible\n")
                self.parent.updateButtons(ax, False)
                continue

            # Handle special cases. Note that the code above should ensure that coefficientsF and coefficientsM always have same length
            solution = [None, None]
            if len(coefficientsF[ax]) == 2:
                if coefficientsF[ax][1] != 0.0 and coefficientsF[ax][0] != 0.0:
                    solution[0] = coefficientsF[ax][0] / coefficientsF[ax][1]
                if coefficientsM[ax][1] != 0.0 and coefficientsM[ax][0] != 0.0:
                    solution[1] = coefficientsM[ax][0] / coefficientsM[ax][1]
                    if abs(solution[0] - solution[1]) < 1E9:
                        FreeCAD.Console.PrintMessage(
                            "System is statically undetermined. No solution possible.\n"
                        )
                        self.parent.updateButtons(ax, False)
                        continue
            else:
                # Build matrix and vector for linear algebra solving algorithm
                # TODO: This could easily be done manually... there are only 2 variables and 6 coefficients
                A = np.array([coefficientsF[ax][1:], coefficientsM[ax][1:]])
                b = np.array([coefficientsF[ax][0], coefficientsM[ax][0]])
                try:
                    solution = np.linalg.solve(A, b)  # A * solution = b
                except np.linalg.linalg.LinAlgError, e:
                    FreeCAD.Console.PrintMessage(e.message)
                    FreeCAD.Console.PrintMessage(". No solution possible.\n")
                    self.parent.updateButtons(ax, False)
                    continue

            # Complete dictionary of forces and moments with the two reaction forces that were calculated
            for i in range(2):
                if solution[i] is None:
                    continue
                FreeCAD.Console.PrintMessage(
                    "Reaction force/moment: %s = %f\n" %
                    (variableNames[ax][i + 1], solution[i]))
                if variableNames[ax][i + 1][0] == "M":
                    moments[ax][locations[variableNames[ax][i +
                                                            1]]] = -solution[i]
                else:
                    forces[ax][locations[variableNames[ax][i +
                                                           1]]] = -solution[i]

            FreeCAD.Console.PrintMessage(forces[ax])
            FreeCAD.Console.PrintMessage("\n")
            FreeCAD.Console.PrintMessage(moments[ax])
            FreeCAD.Console.PrintMessage("\n")

            # Forces
            self.F[ax] = SegmentFunction(self.Fstr[ax])
            self.F[ax].buildFromDict("x", forces[ax])
            self.parent.updateButton(1, ax, not self.F[ax].isZero())
            self.F[ax].output()
            # Moments
            if ax == 0:
                self.M[0] = SegmentFunction(self.Mstr[0])
                self.M[0].buildFromDict("x", moments[0])
            elif ax == 1:
                self.M[1] = self.F[1].integrated().negate()
                self.M[1].name = self.Mstr[1]
                self.M[1].addSegments(
                    moments[1])  # takes care of boundary conditions
            elif ax == 2:
                self.M[2] = self.F[2].integrated()
                self.M[2].name = self.Mstr[2]
                self.M[2].addSegments(
                    moments[2])  # takes care of boundary conditions
            self.parent.updateButton(2, ax, not self.M[ax].isZero())
            self.M[ax].output()

            # Areas and area moments
            location = 0.0
            areas[ax] = IntervalFunction()  # A [m²]
            areamoments[ax] = IntervalFunction()  # I [m⁴]
            bendingmoments[ax] = IntervalFunction()  # W_b [m³]
            torquemoments[ax] = IntervalFunction()  # W_t [m³]

            for i in range(len(self.segments)):
                od = self.segments[i].diameter / 1000.0
                id = self.segments[i].innerdiameter / 1000.0
                length = self.segments[i].length / 1000.0
                areas[ax].addInterval(
                    location, length,
                    math.pi / 4.0 * (math.pow(od, 2.0) - math.pow(id, 2.0)))
                areamoment = math.pi / 64.0 * (math.pow(od, 4.0) -
                                               math.pow(id, 4.0))
                areamoments[ax].addInterval(location, length, areamoment)
                bendingmoments[ax].addInterval(location, length,
                                               areamoment / (od / 2.0))
                torquemoments[ax].addInterval(location, length,
                                              2 * (areamoment / (od / 2.0)))
                location += length

            # Bending line
            if ax > 0:
                if len(tangents[ax]) + len(translations[ax]) == 2:
                    # TODO: Get Young's module from material type instead of using 210000 N/mm² = 2.1E12 N/m²
                    self.w[ax] = TranslationFunction(self.M[ax].negated(),
                                                     2.1E12, areamoments[ax],
                                                     tangents[ax],
                                                     translations[ax])
                    self.w[ax].name = self.wstr[ax]
                    self.parent.updateButton(3, ax, not self.w[ax].isZero())
                else:
                    self.parent.updateButton(3, ax, False)

            # Normal/shear stresses and torque/bending stresses
            self.sigmaN[ax] = StressFunction(self.F[ax], areas[ax])
            self.sigmaN[ax].name = self.sigmaNstr[ax]
            self.parent.updateButton(4, ax, not self.sigmaN[ax].isZero())
            if ax == 0:
                self.sigmaB[ax] = StressFunction(self.M[ax], torquemoments[ax])
            else:
                self.sigmaB[ax] = StressFunction(self.M[ax],
                                                 bendingmoments[ax])
            self.sigmaB[ax].name = self.sigmaBstr[ax]
            self.parent.updateButton(5, ax, not self.sigmaB[ax].isZero())
Ejemplo n.º 3
0
    def equilibrium(self):
        # Build equilibrium equations
        forces = {0.0:0.0} # dictionary of (location : outer force)
        moments = {0.0:0.0} # dictionary of (location : outer moment)
        variableNames = [""] # names of all variables
        locations = {} # dictionary of (variableName : location)
        coefficientsFy = [0] # force equilibrium equation
        coefficientsMbz = [0] # moment equilibrium equation

        for i in range(len(self.segments)):
            lType = self.segments[i].loadType
            load = -1 # -1 means unknown (just for debug printing)
            location = -1

            if lType == "Fixed":
                # Fixed segment
                if i == 0:
                    location = 0
                    variableNames.append("Fy%u" % i)
                    coefficientsFy.append(1)
                    coefficientsMbz.append(0)
                    variableNames.append("Mz%u" % i)
                    coefficientsFy.append(0)
                    coefficientsMbz.append(1) # Force does not contribute because location is zero
                elif i == len(self.segments) - 1:
                    location = self.getLengthTo(len(self.segments)) / 1000
                    variableNames.append("Fy%u" % i)
                    coefficientsFy.append(1)
                    coefficientsMbz.append(location)
                    variableNames.append("Mz%u" % i)
                    coefficientsFy.append(0)
                    coefficientsMbz.append(1)
                else:
                    # TODO: Better error message
                    FreeCAD.Console.PrintMessage("Fixed constraint must be at beginning or end of shaft\n")
                    return

                locations["Fy%u" % i] = location
                locations["Mz%u" % i] = location
            elif lType == "Static":
                # Static load (currently force only)
                load = self.segments[i].loadSize
                location = (self.getLengthTo(i) + self.segments[i].loadLocation)  / 1000 # convert to meters
                coefficientsFy[0] = coefficientsFy[0] - load
                forces[location] = load
                coefficientsMbz[0] = coefficientsMbz[0] - load * location
                moments[location] = 0
            #elif lType == "None":
            #    # No loads on segment

            FreeCAD.Console.PrintMessage("Segment: %u, type: %s, load: %f, location: %f\n" % (i, lType, load, location))

        self.printEquilibrium(variableNames, coefficientsFy)
        self.printEquilibrium(variableNames, coefficientsMbz)

        # Build matrix and vector for linear algebra solving algorithm
        try:
            import numpy as np
        except ImportError:
            FreeCAD.Console.PrintMessage("numpy is not installed on your system\n")
            raise ImportError("numpy not installed")
        if (len(coefficientsFy) < 3) or (len(coefficientsMbz) < 3):
            return
        A = np.array([coefficientsFy[1:], coefficientsMbz[1:]])
        b = np.array([coefficientsFy[0], coefficientsMbz[0]])
        solution = np.linalg.solve(A, b)

        # Complete dictionary of forces and moments
        if variableNames[1][0] == "F":
            forces[locations[variableNames[1]]] = solution[0]
        else:
            moments[locations[variableNames[1]]] = solution[0]

        if variableNames[2][0] == "F":
            forces[locations[variableNames[2]]] = solution[1]
        else:
            moments[locations[variableNames[2]]] = solution[1]

        FreeCAD.Console.PrintMessage(forces)
        FreeCAD.Console.PrintMessage(moments)
        self.Qy = SegmentFunction("Qy")
        self.Qy.buildFromDict("x", forces)
        self.Qy.output()
        self.Mbz = self.Qy.integrated().negate()
        self.Mbz.addSegments(moments) # takes care of boundary conditions
        self.Mbz.name = "Mbz"
        self.Mbz.output()