Ejemplo n.º 1
0
class MnistNetMiniBatch:
    def __init__(self):
        self.d1_layer = Dense(784, 100)
        self.a1_layer = ReLu()
        self.drop1_layer = Dropout(0.5)

        self.d2_layer = Dense(100, 50)
        self.a2_layer = ReLu()
        self.drop2_layer = Dropout(0.25)

        self.d3_layer = Dense(50, 10)
        self.a3_layer = Softmax()

    def forward(self, x, train=True):
        net = self.d1_layer.forward(x)
        net = self.a1_layer.forward(net)
        net = self.drop1_layer.forward(net, train)

        net = self.d2_layer.forward(net)
        net = self.a2_layer.forward(net)
        net = self.drop2_layer.forward(net, train)

        net = self.d3_layer.forward(net)
        net = self.a3_layer.forward(net)

        return (net)

    def backward(self,
                 dz,
                 learning_rate=0.01,
                 mini_batch=True,
                 update=False,
                 len_mini_batch=None):

        dz = self.a3_layer.backward(dz)
        dz = self.d3_layer.backward(dz,
                                    learning_rate=learning_rate,
                                    mini_batch=mini_batch,
                                    update=update,
                                    len_mini_batch=len_mini_batch)

        dz = self.drop2_layer.backward(dz)
        dz = self.a2_layer.backward(dz)
        dz = self.d2_layer.backward(dz,
                                    learning_rate=learning_rate,
                                    mini_batch=mini_batch,
                                    update=update,
                                    len_mini_batch=len_mini_batch)

        dz = self.drop1_layer.backward(dz)
        dz = self.a1_layer.backward(dz)
        dz = self.d1_layer.backward(dz,
                                    learning_rate=learning_rate,
                                    mini_batch=mini_batch,
                                    update=update,
                                    len_mini_batch=len_mini_batch)

        return dz
Ejemplo n.º 2
0
    def test_softmax_calculate_gradient(self):
        # Given
        pre_activation = np.array([[1, 2, 3, 6], [2, 4, 5, 6], [3, 8, 7, 6]])
        target = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])
        softmax = Softmax()

        # When
        activation = softmax.apply_activation(pre_activation)
        grad = softmax.calculate_gradient(activation, target)
Ejemplo n.º 3
0
    def __init__(self):
        self.d1_layer = Dense(784, 100)
        self.a1_layer = ReLu()
        self.drop1_layer = Dropout(0.5)

        self.d2_layer = Dense(100, 50)
        self.a2_layer = ReLu()
        self.drop2_layer = Dropout(0.25)

        self.d3_layer = Dense(50, 10)
        self.a3_layer = Softmax()
Ejemplo n.º 4
0
    def test_softmax_apply_activation(self):
        # Given
        pre_activation = np.array([[1, 2, 3, 6], [2, 4, 5, 6], [3, 8, 7, 6]])
        softmax = Softmax()

        # When
        activation = softmax.apply_activation(pre_activation)

        # Then
        sum_of_columns = 4.0
        self.assertTrue(
            np.isclose(sum_of_columns, np.sum(np.sum(activation, axis=0)),
                       1e-3))
Ejemplo n.º 5
0
def build_model():

    model = NeuralNetwork(loss=CrossEntropy(),
                          n_iterations=800,
                          learning_rate=0.13)
    model.add(Layer(4, 10, activation=Relu()))
    model.add(Layer(10, 3, activation=Softmax()))
    return model
Ejemplo n.º 6
0
    def sequential(self,
                   network=[1, 1, 1],
                   activation=[ReLU(), Softmax()],
                   loss=Cross_entropy(),
                   regu=Default(),
                   weight_type='default'):

        self.net = network
        self.activation1 = activation[0]
        self.activation2 = activation[1]
        self.loss = loss

        self.regu = regu
        self.init_weight(weight_type)
Ejemplo n.º 7
0
 def __init__(self):
     self.layers = []
     self.activation = Softmax()
     self.init()
Ejemplo n.º 8
0
class Network(object):
    def __init__(self):
        self.layers = []
        self.activation = Softmax()
        self.init()

    def init(self):
        for layer in self.layers:
            layer.init()

    def predict(self, x):
        _ = x
        for layer in self.layers:
            _ = layer.forward(_)
        self.y = self.activation.forward(_)
        return self.y

    def train(self, x, target):
        y = self.predict(x)
        _ = self.activation.backward(y, target)
        for layer in reversed(self.layers):
            _ = layer.backward(_)
            layer.update()
        return self.activation.loss(y, target)

    def dump_params(self):
        odict = {}
        odict["layers"] = [(l.W, l.b) for l in self.layers]
        return odict

    def load_params(self, idict):
        for l, p in zip(self.layers, idict["layers"]):
            l.W, l.b = p

    def __test(self):
        """
        >>> from layers import Fullconnect
        >>> from nonlinears import ReLU, Tanh
        >>> from activations import Softmax, Sigmoid, Identity
        >>> from updaters import GradientDescent, NotUpdate
        >>>
        >>> learning_rate = 0.01
        >>> np.random.seed(0xC0FFEE)
        >>>
        >>> # Multiclass classification
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Softmax()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:6.64
        epoch:0005 loss:0.65
        epoch:0010 loss:0.36
        epoch:0015 loss:0.25
        >>>
        >>> y = n.predict( np.array( [[1, 6, 3], [5, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['0.99', '0.01']
        >>> [_ for _ in np.argmax(y, -1)]
        [0, 1, 0]
        >>>
        >>> # Multiple-class classification
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Sigmoid()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  4, 5, 4, 5,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  5, 4, 5, 4,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:29.39
        epoch:0005 loss:4.78
        epoch:0010 loss:3.38
        epoch:0015 loss:2.64
        >>>
        >>> y = n.predict( np.array( [[5, 6, 3], [4, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['0.86', '0.96']
        >>>
        >>> # Regression
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Identity()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:52.82
        epoch:0005 loss:1.81
        epoch:0010 loss:1.26
        epoch:0015 loss:0.89
        >>>
        >>> y = n.predict( np.array( [[1, 6, 5], [5, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['1.19', '-0.00']
        >>>
        >>> # Auto-encoder
        >>> n = Network()
        >>> n.layers.append( Fullconnect( 2, 10, Tanh.function, Tanh.derivative, GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 10, Tanh.function, Tanh.derivative, GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 10, updater=NotUpdate()) )
        >>> n.layers.append( Fullconnect(10,  2, updater=NotUpdate()) )
        >>> n.activation = Identity()
        >>>
        >>> # for auto-encoder (weight share)
        >>> n.layers[2].W = n.layers[1].W.T
        >>> n.layers[3].W = n.layers[0].W.T
        >>>
        >>> x = np.array( [[1, 2, 1, 2,  5, 6, 5, 6,  5, 6, 5, 6],
        ...                [5, 4, 4, 5,  5, 4, 5, 4,  1, 2, 2, 1]] ).T
        >>>
        >>> for epoch in range(0, 301):
        ...     loss = n.train( x=x, target=x )
        ...     if epoch%100 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:98.38
        epoch:0100 loss:9.83
        epoch:0200 loss:1.79
        epoch:0300 loss:1.82
        """

        pass
Ejemplo n.º 9
0
val = df.drop(train.index)

yr = train.iloc[:, 0].to_numpy()
X_train, y_train = train.iloc[:, 1:].to_numpy() / 255.0, onehotcode(yr)

X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
y_train = y_train.reshape((y_train.shape[0], y_train.shape[1], 1))
print(X_train.shape, y_train.shape)

X_val, y_val = val.iloc[:, 1:].to_numpy() / 255.0, val.iloc[:, 0].to_numpy()

X_val = X_val.reshape((X_val.shape[0], X_val.shape[1], 1))
print(X_val.shape, y_val.shape)

nn = NN()
nn.sequential(network=[784, 128, 10],
              activation=[Tanh(), Softmax()],
              loss=Cross_entropy(),
              regu=Ridge(n=X_train.shape[0], lmda=5),
              weight_type='glorot_normal')
nn.load_model('tanL2128')
#nn.fit(X_train,y_train,X_val,y_val,32,2)
#nn.save_model('tanL2128')
nn.weight_heatmap()

df2 = pd.read_csv('mnist_test.csv')
X_test, y_test = df2.iloc[:, 1:].to_numpy() / 255.0, df2.iloc[:, 0].to_numpy()
X_test = X_test.reshape((X_test.shape[0], 28, 28))
print(X_test.shape, y_test.shape)
nn.annote_test(X_test[:100], 10, 10)
Ejemplo n.º 10
0
 def __init__(self):
     self.layers = []
     self.activation = Softmax()
     self.init()
Ejemplo n.º 11
0
class Network(object):
    def __init__(self):
        self.layers = []
        self.activation = Softmax()
        self.init()

    def init(self):
        for layer in self.layers:
            layer.init()

    def predict(self, x):
        _ = x
        for layer in self.layers:
            _ = layer.forward(_)
        self.y = self.activation.forward(_)
        return self.y

    def train(self, x, target):
        y = self.predict(x)
        _ = self.activation.backward(y, target)
        for layer in reversed(self.layers):
            _ = layer.backward(_)
            layer.update()
        return self.activation.loss(y, target)

    def dump_params(self):
        odict = {}
        odict['layers'] = [(l.W, l.b) for l in self.layers]
        return odict

    def load_params(self, idict):
        for l, p in zip(self.layers, idict['layers']):
            l.W, l.b = p

    def __test(self):
        '''
        >>> from layers import Fullconnect
        >>> from nonlinears import ReLU, Tanh
        >>> from activations import Softmax, Sigmoid, Identity
        >>> from updaters import GradientDescent, NotUpdate
        >>>
        >>> learning_rate = 0.01
        >>> np.random.seed(0xC0FFEE)
        >>>
        >>> # Multiclass classification
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Softmax()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:6.64
        epoch:0005 loss:0.65
        epoch:0010 loss:0.36
        epoch:0015 loss:0.25
        >>>
        >>> y = n.predict( np.array( [[1, 6, 3], [5, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['0.99', '0.01']
        >>> [_ for _ in np.argmax(y, -1)]
        [0, 1, 0]
        >>>
        >>> # Multiple-class classification
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Sigmoid()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  4, 5, 4, 5,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  5, 4, 5, 4,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:29.39
        epoch:0005 loss:4.78
        epoch:0010 loss:3.38
        epoch:0015 loss:2.64
        >>>
        >>> y = n.predict( np.array( [[5, 6, 3], [4, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['0.86', '0.96']
        >>>
        >>> # Regression
        >>> n = Network()
        >>> n.layers.append( Fullconnect(2, 10, ReLU.function, ReLU.derivative, updater=GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 2, updater=GradientDescent(learning_rate)) )
        >>> n.activation = Identity()
        >>>
        >>> for epoch in range(0, 20):
        ...     loss = n.train( x = np.array([ [1, 2, 1, 2,  5, 6, 5, 6],
        ...                                    [5, 4, 4, 5,  1, 2, 2, 1]]).T,
        ...                target = np.array([ [1, 1, 1, 1,  0, 0, 0, 0],
        ...                                    [0, 0, 0, 0,  1, 1, 1, 1]]).T )
        ...     if epoch%5 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:52.82
        epoch:0005 loss:1.81
        epoch:0010 loss:1.26
        epoch:0015 loss:0.89
        >>>
        >>> y = n.predict( np.array( [[1, 6, 5], [5, 1, 4]] ).T )
        >>> print ['%.2f'%_ for _ in y[0]]
        ['1.19', '-0.00']
        >>>
        >>> # Auto-encoder
        >>> n = Network()
        >>> n.layers.append( Fullconnect( 2, 10, Tanh.function, Tanh.derivative, GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 10, Tanh.function, Tanh.derivative, GradientDescent(learning_rate)) )
        >>> n.layers.append( Fullconnect(10, 10, updater=NotUpdate()) )
        >>> n.layers.append( Fullconnect(10,  2, updater=NotUpdate()) )
        >>> n.activation = Identity()
        >>>
        >>> # for auto-encoder (weight share)
        >>> n.layers[2].W = n.layers[1].W.T
        >>> n.layers[3].W = n.layers[0].W.T
        >>>
        >>> x = np.array( [[1, 2, 1, 2,  5, 6, 5, 6,  5, 6, 5, 6],
        ...                [5, 4, 4, 5,  5, 4, 5, 4,  1, 2, 2, 1]] ).T
        >>>
        >>> for epoch in range(0, 301):
        ...     loss = n.train( x=x, target=x )
        ...     if epoch%100 == 0:
        ...         print 'epoch:%04d loss:%.2f'%(epoch, loss)
        epoch:0000 loss:98.38
        epoch:0100 loss:9.83
        epoch:0200 loss:1.79
        epoch:0300 loss:1.82
        '''

        pass