Ejemplo n.º 1
0
    def _update(self, data, offset):
        """
        I update the mutable file version represented by this particular
        IMutableVersion by inserting the data in data at the offset
        offset. I return a Deferred that fires when this has been
        completed.
        """
        new_size = data.get_size() + offset
        old_size = self.get_size()
        segment_size = self._version[3]
        num_old_segments = mathutil.div_ceil(old_size,
                                             segment_size)
        num_new_segments = mathutil.div_ceil(new_size,
                                             segment_size)
        log.msg("got %d old segments, %d new segments" % \
                        (num_old_segments, num_new_segments))

        # We do a whole file re-encode if the file is an SDMF file.
        if self._version[2]: # version[2] == SDMF salt, which MDMF lacks
            log.msg("doing re-encode instead of in-place update")
            return self._do_modify_update(data, offset)

        # Otherwise, we can replace just the parts that are changing.
        log.msg("updating in place")
        d = self._do_update_update(data, offset)
        d.addCallback(self._decode_and_decrypt_segments, data, offset)
        d.addCallback(self._build_uploadable_and_finish, data, offset)
        return d
Ejemplo n.º 2
0
    def _update(self, data, offset):
        """
        I update the mutable file version represented by this particular
        IMutableVersion by inserting the data in data at the offset
        offset. I return a Deferred that fires when this has been
        completed.
        """
        new_size = data.get_size() + offset
        old_size = self.get_size()
        segment_size = self._version[3]
        num_old_segments = mathutil.div_ceil(old_size,
                                             segment_size)
        num_new_segments = mathutil.div_ceil(new_size,
                                             segment_size)
        log.msg("got %d old segments, %d new segments" % \
                        (num_old_segments, num_new_segments))

        # We do a whole file re-encode if the file is an SDMF file.
        if self._version[2]: # version[2] == SDMF salt, which MDMF lacks
            log.msg("doing re-encode instead of in-place update")
            return self._do_modify_update(data, offset)

        # Otherwise, we can replace just the parts that are changing.
        log.msg("updating in place")
        d = self._do_update_update(data, offset)
        d.addCallback(self._decode_and_decrypt_segments, data, offset)
        d.addCallback(self._build_uploadable_and_finish, data, offset)
        return d
Ejemplo n.º 3
0
    def _got_all_encoding_parameters(self, params):
        assert not self._codec
        k, happy, n, segsize = params
        self.required_shares = k
        self.min_happiness = happy
        self.num_shares = n
        self.segment_size = segsize
        self.log("got encoding parameters: %d/%d/%d %d" %
                 (k, happy, n, segsize))
        self.log("now setting up codec")

        assert self.segment_size % self.required_shares == 0

        self.num_segments = mathutil.div_ceil(self.file_size,
                                              self.segment_size)

        self._codec = CRSEncoder()
        self._codec.set_params(self.segment_size, self.required_shares,
                               self.num_shares)

        data = self.uri_extension_data
        data['codec_name'] = self._codec.get_encoder_type()
        data['codec_params'] = self._codec.get_serialized_params()

        data['size'] = self.file_size
        data['segment_size'] = self.segment_size
        self.share_size = mathutil.div_ceil(self.file_size,
                                            self.required_shares)
        data['num_segments'] = self.num_segments
        data['needed_shares'] = self.required_shares
        data['total_shares'] = self.num_shares

        # the "tail" is the last segment. This segment may or may not be
        # shorter than all other segments. We use the "tail codec" to handle
        # it. If the tail is short, we use a different codec instance. In
        # addition, the tail codec must be fed data which has been padded out
        # to the right size.
        tail_size = self.file_size % self.segment_size
        if not tail_size:
            tail_size = self.segment_size

        # the tail codec is responsible for encoding tail_size bytes
        padded_tail_size = mathutil.next_multiple(tail_size,
                                                  self.required_shares)
        self._tail_codec = CRSEncoder()
        self._tail_codec.set_params(padded_tail_size, self.required_shares,
                                    self.num_shares)
        data['tail_codec_params'] = self._tail_codec.get_serialized_params()
Ejemplo n.º 4
0
    def _calculate_sizes(self, segment_size):
        # segments of ciphertext
        size = self._verifycap.size
        k = self._verifycap.needed_shares

        # this assert matches the one in encode.py:127 inside
        # Encoded._got_all_encoding_parameters, where the UEB is constructed
        assert segment_size % k == 0

        # the last segment is usually short. We don't store a whole segsize,
        # but we do pad the segment up to a multiple of k, because the
        # encoder requires that.
        tail_segment_size = size % segment_size
        if tail_segment_size == 0:
            tail_segment_size = segment_size
        padded = mathutil.next_multiple(tail_segment_size, k)
        tail_segment_padded = padded

        num_segments = mathutil.div_ceil(size, segment_size)

        # each segment is turned into N blocks. All but the last are of size
        # block_size, and the last is of size tail_block_size
        block_size = segment_size // k
        tail_block_size = tail_segment_padded // k

        return { "tail_segment_size": tail_segment_size,
                 "tail_segment_padded": tail_segment_padded,
                 "num_segments": num_segments,
                 "block_size": block_size,
                 "tail_block_size": tail_block_size
                 }
Ejemplo n.º 5
0
    def _calculate_sizes(self, segment_size):
        # segments of ciphertext
        size = self._verifycap.size
        k = self._verifycap.needed_shares

        # this assert matches the one in encode.py:127 inside
        # Encoded._got_all_encoding_parameters, where the UEB is constructed
        assert segment_size % k == 0

        # the last segment is usually short. We don't store a whole segsize,
        # but we do pad the segment up to a multiple of k, because the
        # encoder requires that.
        tail_segment_size = size % segment_size
        if tail_segment_size == 0:
            tail_segment_size = segment_size
        padded = mathutil.next_multiple(tail_segment_size, k)
        tail_segment_padded = padded

        num_segments = mathutil.div_ceil(size, segment_size)

        # each segment is turned into N blocks. All but the last are of size
        # block_size, and the last is of size tail_block_size
        block_size = segment_size / k
        tail_block_size = tail_segment_padded / k

        return { "tail_segment_size": tail_segment_size,
                 "tail_segment_padded": tail_segment_padded,
                 "num_segments": num_segments,
                 "block_size": block_size,
                 "tail_block_size": tail_block_size,
                 }
Ejemplo n.º 6
0
    def _got_all_encoding_parameters(self, params):
        assert not self._codec
        k, happy, n, segsize = params
        self.required_shares = k
        self.servers_of_happiness = happy
        self.num_shares = n
        self.segment_size = segsize
        self.log("got encoding parameters: %d/%d/%d %d" % (k,happy,n, segsize))
        self.log("now setting up codec")

        assert self.segment_size % self.required_shares == 0

        self.num_segments = mathutil.div_ceil(self.file_size,
                                              self.segment_size)

        self._codec = CRSEncoder()
        self._codec.set_params(self.segment_size,
                               self.required_shares, self.num_shares)

        data = self.uri_extension_data
        data['codec_name'] = self._codec.get_encoder_type()
        data['codec_params'] = self._codec.get_serialized_params()

        data['size'] = self.file_size
        data['segment_size'] = self.segment_size
        self.share_size = mathutil.div_ceil(self.file_size,
                                            self.required_shares)
        data['num_segments'] = self.num_segments
        data['needed_shares'] = self.required_shares
        data['total_shares'] = self.num_shares

        # the "tail" is the last segment. This segment may or may not be
        # shorter than all other segments. We use the "tail codec" to handle
        # it. If the tail is short, we use a different codec instance. In
        # addition, the tail codec must be fed data which has been padded out
        # to the right size.
        tail_size = self.file_size % self.segment_size
        if not tail_size:
            tail_size = self.segment_size

        # the tail codec is responsible for encoding tail_size bytes
        padded_tail_size = mathutil.next_multiple(tail_size,
                                                  self.required_shares)
        self._tail_codec = CRSEncoder()
        self._tail_codec.set_params(padded_tail_size,
                                    self.required_shares, self.num_shares)
        data['tail_codec_params'] = self._tail_codec.get_serialized_params()
Ejemplo n.º 7
0
 def set_params(self, data_size, required_shares, max_shares):
     assert required_shares <= max_shares
     self.data_size = data_size
     self.required_shares = required_shares
     self.max_shares = max_shares
     self.share_size = mathutil.div_ceil(data_size, required_shares)
     self.last_share_padding = mathutil.pad_size(self.share_size, required_shares)
     self.encoder = zfec.Encoder(required_shares, max_shares)
Ejemplo n.º 8
0
 def set_params(self, data_size, required_shares, max_shares):
     assert required_shares <= max_shares
     self.data_size = data_size
     self.required_shares = required_shares
     self.max_shares = max_shares
     self.share_size = mathutil.div_ceil(data_size, required_shares)
     self.last_share_padding = mathutil.pad_size(self.share_size, required_shares)
     self.encoder = zfec.Encoder(required_shares, max_shares)
Ejemplo n.º 9
0
    def set_params(self, data_size, required_shares, max_shares):
        self.data_size = data_size
        self.required_shares = required_shares
        self.max_shares = max_shares

        self.chunk_size = self.required_shares
        self.num_chunks = mathutil.div_ceil(self.data_size, self.chunk_size)
        self.share_size = self.num_chunks
        self.decoder = zfec.Decoder(self.required_shares, self.max_shares)
Ejemplo n.º 10
0
    def set_params(self, data_size, required_shares, max_shares):
        self.data_size = data_size
        self.required_shares = required_shares
        self.max_shares = max_shares

        self.chunk_size = self.required_shares
        self.num_chunks = mathutil.div_ceil(self.data_size, self.chunk_size)
        self.share_size = self.num_chunks
        self.decoder = zfec.Decoder(self.required_shares, self.max_shares)
Ejemplo n.º 11
0
 def remote_measure_peer_response_time(self):
     # I'd like to average together several pings, but I don't want this
     # phase to take more than 10 seconds. Expect worst-case latency to be
     # 300ms.
     results = {}
     sb = self.parent.get_storage_broker()
     everyone = sb.get_connected_servers()
     num_pings = int(mathutil.div_ceil(10, (len(everyone) * 0.3)))
     everyone = list(everyone) * num_pings
     d = self._do_one_ping(None, everyone, results)
     return d
Ejemplo n.º 12
0
 def remote_measure_peer_response_time(self):
     # I'd like to average together several pings, but I don't want this
     # phase to take more than 10 seconds. Expect worst-case latency to be
     # 300ms.
     results = {}
     sb = self.parent.get_storage_broker()
     everyone = sb.get_connected_servers()
     num_pings = int(mathutil.div_ceil(10, (len(everyone) * 0.3)))
     everyone = list(everyone) * num_pings
     d = self._do_one_ping(None, everyone, results)
     return d
Ejemplo n.º 13
0
 def setup_encoding_parameters(self):
     segment_size = len(self.newdata)
     # this must be a multiple of self.required_shares
     segment_size = mathutil.next_multiple(segment_size,
                                           self.required_shares)
     self.segment_size = segment_size
     if segment_size:
         self.num_segments = mathutil.div_ceil(len(self.newdata),
                                               segment_size)
     else:
         self.num_segments = 0
     assert self.num_segments in [0, 1,] # SDMF restrictions
Ejemplo n.º 14
0
 def setup_encoding_parameters(self):
     segment_size = len(self.newdata)
     # this must be a multiple of self.required_shares
     segment_size = mathutil.next_multiple(segment_size,
                                           self.required_shares)
     self.segment_size = segment_size
     if segment_size:
         self.num_segments = mathutil.div_ceil(len(self.newdata),
                                               segment_size)
     else:
         self.num_segments = 0
     assert self.num_segments in [
         0,
         1,
     ]  # SDMF restrictions
Ejemplo n.º 15
0
 def test_odd_sizes(self):
     for j in range(2**6):
         lib = random.randrange(1, 2**8)
         numos = mathutil.div_ceil(lib, 8)
         bs = insecurerandstr(numos)
         # zero-out unused least-sig bits
         if lib%8:
             b=ord(bs[-1])
             b = b >> (8 - (lib%8))
             b = b << (8 - (lib%8))
             bs = bs[:-1] + chr(b)
         asl = base62.b2a_l(bs, lib)
         assert len(asl) == base62.num_chars_that_this_many_octets_encode_to(numos) # the size of the base-62 encoding must be just right
         bs2l = base62.a2b_l(asl, lib)
         assert len(bs2l) == numos # the size of the result must be just right
         assert bs == bs2l
Ejemplo n.º 16
0
    def _guess_offsets(self, verifycap, guessed_segment_size):
        self.guessed_segment_size = guessed_segment_size
        size = verifycap.size
        k = verifycap.needed_shares
        N = verifycap.total_shares
        r = self._node._calculate_sizes(guessed_segment_size)
        # num_segments, block_size/tail_block_size
        # guessed_segment_size/tail_segment_size/tail_segment_padded
        share_size = mathutil.div_ceil(size, k)
        # share_size is the amount of block data that will be put into each
        # share, summed over all segments. It does not include hashes, the
        # UEB, or other overhead.

        # use the upload-side code to get this as accurate as possible
        ht = IncompleteHashTree(N)
        num_share_hashes = len(ht.needed_hashes(0, include_leaf=True))
        wbp = make_write_bucket_proxy(None, None, share_size, r["block_size"],
                                      r["num_segments"], num_share_hashes, 0)
        self._fieldsize = wbp.fieldsize
        self._fieldstruct = wbp.fieldstruct
        self.guessed_offsets = wbp._offsets
Ejemplo n.º 17
0
def calc(filesize, params=(3, 7, 10), segsize=DEFAULT_MAX_SEGMENT_SIZE):
    num_shares = params[2]
    if filesize <= upload.Uploader.URI_LIT_SIZE_THRESHOLD:
        urisize = len(uri.LiteralFileURI("A" * filesize).to_string())
        sharesize = 0
        sharespace = 0
    else:
        u = upload.FileUploader(None)  # XXX changed
        u.set_params(params)
        # unfortunately, Encoder doesn't currently lend itself to answering
        # this question without measuring a filesize, so we have to give it a
        # fake one
        data = BigFakeString(filesize)
        u.set_filehandle(data)
        u.set_encryption_key("a" * 16)
        sharesize, blocksize = u.setup_encoder()
        # how much overhead?
        #  0x20 bytes of offsets
        #  0x04 bytes of extension length
        #  0x1ad bytes of extension (=429)
        # total is 465 bytes
        num_segments = mathutil.div_ceil(filesize, segsize)
        num_share_hashes = int(
            math.log(mathutil.next_power_of_k(num_shares, 2), 2)) + 1
        sharesize = storage.allocated_size(sharesize, num_segments,
                                           num_share_hashes, 429)
        sharespace = num_shares * roundup(sharesize)
        urisize = len(
            uri.pack_uri(storage_index="a" * 32,
                         key="a" * 16,
                         uri_extension_hash="a" * 32,
                         needed_shares=params[0],
                         total_shares=params[2],
                         size=filesize))

    return urisize, sharesize, sharespace
Ejemplo n.º 18
0
def calc(filesize, params=(3,7,10), segsize=DEFAULT_MAX_SEGMENT_SIZE):
    num_shares = params[2]
    if filesize <= upload.Uploader.URI_LIT_SIZE_THRESHOLD:
        urisize = len(uri.LiteralFileURI("A"*filesize).to_string())
        sharesize = 0
        sharespace = 0
    else:
        u = upload.FileUploader(None) # XXX changed
        u.set_params(params)
        # unfortunately, Encoder doesn't currently lend itself to answering
        # this question without measuring a filesize, so we have to give it a
        # fake one
        data = BigFakeString(filesize)
        u.set_filehandle(data)
        u.set_encryption_key("a"*16)
        sharesize, blocksize = u.setup_encoder()
        # how much overhead?
        #  0x20 bytes of offsets
        #  0x04 bytes of extension length
        #  0x1ad bytes of extension (=429)
        # total is 465 bytes
        num_segments = mathutil.div_ceil(filesize, segsize)
        num_share_hashes = int(math.log(mathutil.next_power_of_k(num_shares, 2),
                                    2)) + 1
        sharesize = storage.allocated_size(sharesize, num_segments,
                                           num_share_hashes,
                                           429)
        sharespace = num_shares * roundup(sharesize)
        urisize = len(uri.pack_uri(storage_index="a"*32,
                                   key="a"*16,
                                   uri_extension_hash="a"*32,
                                   needed_shares=params[0],
                                   total_shares=params[2],
                                   size=filesize))

    return urisize, sharesize, sharespace
Ejemplo n.º 19
0
    def _setup_encoding_parameters(self):
        """
        I set up the encoding parameters, including k, n, the number
        of segments associated with this file, and the segment decoders.
        """
        (seqnum,
         root_hash,
         IV,
         segsize,
         datalength,
         k,
         n,
         known_prefix,
         offsets_tuple) = self.verinfo
        self._required_shares = k
        self._total_shares = n
        self._segment_size = segsize
        #self._data_length = datalength # set during __init__()

        if not IV:
            self._version = MDMF_VERSION
        else:
            self._version = SDMF_VERSION

        if datalength and segsize:
            self._num_segments = mathutil.div_ceil(datalength, segsize)
            self._tail_data_size = datalength % segsize
        else:
            self._num_segments = 0
            self._tail_data_size = 0

        self._segment_decoder = codec.CRSDecoder()
        self._segment_decoder.set_params(segsize, k, n)

        if  not self._tail_data_size:
            self._tail_data_size = segsize

        self._tail_segment_size = mathutil.next_multiple(self._tail_data_size,
                                                         self._required_shares)
        if self._tail_segment_size == self._segment_size:
            self._tail_decoder = self._segment_decoder
        else:
            self._tail_decoder = codec.CRSDecoder()
            self._tail_decoder.set_params(self._tail_segment_size,
                                          self._required_shares,
                                          self._total_shares)

        self.log("got encoding parameters: "
                 "k: %d "
                 "n: %d "
                 "%d segments of %d bytes each (%d byte tail segment)" % \
                 (k, n, self._num_segments, self._segment_size,
                  self._tail_segment_size))

        # Our last task is to tell the downloader where to start and
        # where to stop. We use three parameters for that:
        #   - self._start_segment: the segment that we need to start
        #     downloading from.
        #   - self._current_segment: the next segment that we need to
        #     download.
        #   - self._last_segment: The last segment that we were asked to
        #     download.
        #
        #  We say that the download is complete when
        #  self._current_segment > self._last_segment. We use
        #  self._start_segment and self._last_segment to know when to
        #  strip things off of segments, and how much to strip.
        if self._offset:
            self.log("got offset: %d" % self._offset)
            # our start segment is the first segment containing the
            # offset we were given.
            start = self._offset // self._segment_size

            _assert(start <= self._num_segments,
                    start=start, num_segments=self._num_segments,
                    offset=self._offset, segment_size=self._segment_size)
            self._start_segment = start
            self.log("got start segment: %d" % self._start_segment)
        else:
            self._start_segment = 0

        # We might want to read only part of the file, and need to figure out
        # where to stop reading. Our end segment is the last segment
        # containing part of the segment that we were asked to read.
        _assert(self._read_length > 0, self._read_length)
        end_data = self._offset + self._read_length

        # We don't actually need to read the byte at end_data, but the one
        # before it.
        end = (end_data - 1) // self._segment_size
        _assert(0 <= end < self._num_segments,
                end=end, num_segments=self._num_segments,
                end_data=end_data, offset=self._offset,
                read_length=self._read_length, segment_size=self._segment_size)
        self._last_segment = end
        self.log("got end segment: %d" % self._last_segment)

        self._current_segment = self._start_segment
Ejemplo n.º 20
0
def roundup(size, blocksize=4096):
    return blocksize * mathutil.div_ceil(size, blocksize)
Ejemplo n.º 21
0
    def do_test(self, size, required_shares, max_shares, fewer_shares=None):
        data0s = [os.urandom(mathutil.div_ceil(size, required_shares)) for i in range(required_shares)]
        enc = CRSEncoder()
        enc.set_params(size, required_shares, max_shares)
        params = enc.get_params()
        assert params == (size, required_shares, max_shares)
        log.msg("params: %s" % (params,))
        d = enc.encode(data0s)
        def _done_encoding_all(shares_and_shareids):
            (shares, shareids) = shares_and_shareids
            self.failUnlessEqual(len(shares), max_shares)
            self.shares = shares
            self.shareids = shareids
        d.addCallback(_done_encoding_all)
        if fewer_shares is not None:
            # also validate that the desired_shareids= parameter works
            desired_shareids = random.sample(range(max_shares), fewer_shares)
            d.addCallback(lambda res: enc.encode(data0s, desired_shareids))
            def _check_fewer_shares(some_shares_and_their_shareids):
                (some_shares, their_shareids) = some_shares_and_their_shareids
                self.failUnlessEqual(tuple(their_shareids), tuple(desired_shareids))
            d.addCallback(_check_fewer_shares)

        def _decode(shares_and_shareids):
            (shares, shareids) = shares_and_shareids
            dec = CRSDecoder()
            dec.set_params(*params)
            d1 = dec.decode(shares, shareids)
            return d1

        def _check_data(decoded_shares):
            self.failUnlessEqual(len(''.join(decoded_shares)), len(''.join(data0s)))
            self.failUnlessEqual(len(decoded_shares), len(data0s))
            for (i, (x, y)) in enumerate(zip(data0s, decoded_shares)):
                self.failUnlessEqual(x, y, "%s: %r != %r....  first share was %r" % (str(i), x, y, data0s[0],))
            self.failUnless(''.join(decoded_shares) == ''.join(data0s), "%s" % ("???",))
            # 0data0sclipped = tuple(data0s)
            # data0sclipped[-1] =
            # self.failUnless(tuple(decoded_shares) == tuple(data0s))

        def _decode_some(res):
            log.msg("_decode_some")
            # decode with a minimal subset of the shares
            some_shares = self.shares[:required_shares]
            some_shareids = self.shareids[:required_shares]
            return _decode((some_shares, some_shareids))
        d.addCallback(_decode_some)
        d.addCallback(_check_data)

        def _decode_some_random(res):
            log.msg("_decode_some_random")
            # use a randomly-selected minimal subset
            l = random.sample(zip(self.shares, self.shareids), required_shares)
            some_shares = [ x[0] for x in l ]
            some_shareids = [ x[1] for x in l ]
            return _decode((some_shares, some_shareids))
        d.addCallback(_decode_some_random)
        d.addCallback(_check_data)

        def _decode_multiple(res):
            log.msg("_decode_multiple")
            # make sure we can re-use the decoder object
            shares1 = random.sample(self.shares, required_shares)
            sharesl1 = random.sample(zip(self.shares, self.shareids), required_shares)
            shares1 = [ x[0] for x in sharesl1 ]
            shareids1 = [ x[1] for x in sharesl1 ]
            sharesl2 = random.sample(zip(self.shares, self.shareids), required_shares)
            shares2 = [ x[0] for x in sharesl2 ]
            shareids2 = [ x[1] for x in sharesl2 ]
            dec = CRSDecoder()
            dec.set_params(*params)
            d1 = dec.decode(shares1, shareids1)
            d1.addCallback(_check_data)
            d1.addCallback(lambda res: dec.decode(shares2, shareids2))
            d1.addCallback(_check_data)
            return d1
        d.addCallback(_decode_multiple)

        return d
Ejemplo n.º 22
0
    def _parse_and_validate(self, data):
        self.share_size = mathutil.div_ceil(self._verifycap.size,
                                            self._verifycap.needed_shares)

        d = uri.unpack_extension(data)

        # There are several kinds of things that can be found in a UEB.
        # First, things that we really need to learn from the UEB in order to
        # do this download. Next: things which are optional but not redundant
        # -- if they are present in the UEB they will get used. Next, things
        # that are optional and redundant. These things are required to be
        # consistent: they don't have to be in the UEB, but if they are in
        # the UEB then they will be checked for consistency with the
        # already-known facts, and if they are inconsistent then an exception
        # will be raised. These things aren't actually used -- they are just
        # tested for consistency and ignored. Finally: things which are
        # deprecated -- they ought not be in the UEB at all, and if they are
        # present then a warning will be logged but they are otherwise
        # ignored.

        # First, things that we really need to learn from the UEB:
        # segment_size, crypttext_root_hash, and share_root_hash.
        self.segment_size = d['segment_size']

        self.block_size = mathutil.div_ceil(self.segment_size,
                                            self._verifycap.needed_shares)
        self.num_segments = mathutil.div_ceil(self._verifycap.size,
                                              self.segment_size)

        self.tail_data_size = self._verifycap.size % self.segment_size
        if not self.tail_data_size:
            self.tail_data_size = self.segment_size
        # padding for erasure code
        self.tail_segment_size = mathutil.next_multiple(self.tail_data_size,
                                                        self._verifycap.needed_shares)

        # Ciphertext hash tree root is mandatory, so that there is at most
        # one ciphertext that matches this read-cap or verify-cap. The
        # integrity check on the shares is not sufficient to prevent the
        # original encoder from creating some shares of file A and other
        # shares of file B.
        self.crypttext_root_hash = d['crypttext_root_hash']

        self.share_root_hash = d['share_root_hash']


        # Next: things that are optional and not redundant: crypttext_hash
        if d.has_key('crypttext_hash'):
            self.crypttext_hash = d['crypttext_hash']
            if len(self.crypttext_hash) != CRYPTO_VAL_SIZE:
                raise BadURIExtension('crypttext_hash is required to be hashutil.CRYPTO_VAL_SIZE bytes, not %s bytes' % (len(self.crypttext_hash),))


        # Next: things that are optional, redundant, and required to be
        # consistent: codec_name, codec_params, tail_codec_params,
        # num_segments, size, needed_shares, total_shares
        if d.has_key('codec_name'):
            if d['codec_name'] != "crs":
                raise UnsupportedErasureCodec(d['codec_name'])

        if d.has_key('codec_params'):
            ucpss, ucpns, ucpts = codec.parse_params(d['codec_params'])
            if ucpss != self.segment_size:
                raise BadURIExtension("inconsistent erasure code params: "
                                      "ucpss: %s != self.segment_size: %s" %
                                      (ucpss, self.segment_size))
            if ucpns != self._verifycap.needed_shares:
                raise BadURIExtension("inconsistent erasure code params: ucpns: %s != "
                                      "self._verifycap.needed_shares: %s" %
                                      (ucpns, self._verifycap.needed_shares))
            if ucpts != self._verifycap.total_shares:
                raise BadURIExtension("inconsistent erasure code params: ucpts: %s != "
                                      "self._verifycap.total_shares: %s" %
                                      (ucpts, self._verifycap.total_shares))

        if d.has_key('tail_codec_params'):
            utcpss, utcpns, utcpts = codec.parse_params(d['tail_codec_params'])
            if utcpss != self.tail_segment_size:
                raise BadURIExtension("inconsistent erasure code params: utcpss: %s != "
                                      "self.tail_segment_size: %s, self._verifycap.size: %s, "
                                      "self.segment_size: %s, self._verifycap.needed_shares: %s"
                                      % (utcpss, self.tail_segment_size, self._verifycap.size,
                                         self.segment_size, self._verifycap.needed_shares))
            if utcpns != self._verifycap.needed_shares:
                raise BadURIExtension("inconsistent erasure code params: utcpns: %s != "
                                      "self._verifycap.needed_shares: %s" % (utcpns,
                                                                             self._verifycap.needed_shares))
            if utcpts != self._verifycap.total_shares:
                raise BadURIExtension("inconsistent erasure code params: utcpts: %s != "
                                      "self._verifycap.total_shares: %s" % (utcpts,
                                                                            self._verifycap.total_shares))

        if d.has_key('num_segments'):
            if d['num_segments'] != self.num_segments:
                raise BadURIExtension("inconsistent num_segments: size: %s, "
                                      "segment_size: %s, computed_num_segments: %s, "
                                      "ueb_num_segments: %s" % (self._verifycap.size,
                                                                self.segment_size,
                                                                self.num_segments, d['num_segments']))

        if d.has_key('size'):
            if d['size'] != self._verifycap.size:
                raise BadURIExtension("inconsistent size: URI size: %s, UEB size: %s" %
                                      (self._verifycap.size, d['size']))

        if d.has_key('needed_shares'):
            if d['needed_shares'] != self._verifycap.needed_shares:
                raise BadURIExtension("inconsistent needed shares: URI needed shares: %s, UEB "
                                      "needed shares: %s" % (self._verifycap.total_shares,
                                                             d['needed_shares']))

        if d.has_key('total_shares'):
            if d['total_shares'] != self._verifycap.total_shares:
                raise BadURIExtension("inconsistent total shares: URI total shares: %s, UEB "
                                      "total shares: %s" % (self._verifycap.total_shares,
                                                            d['total_shares']))

        # Finally, things that are deprecated and ignored: plaintext_hash,
        # plaintext_root_hash
        if d.get('plaintext_hash'):
            log.msg("Found plaintext_hash in UEB. This field is deprecated for security reasons "
                    "and is no longer used.  Ignoring.  %s" % (self,))
        if d.get('plaintext_root_hash'):
            log.msg("Found plaintext_root_hash in UEB. This field is deprecated for security "
                    "reasons and is no longer used.  Ignoring.  %s" % (self,))

        return self
Ejemplo n.º 23
0
 def _get_share_size(self):
     share_size = mathutil.div_ceil(self.file_size, self.required_shares)
     overhead = self._compute_overhead()
     return share_size + overhead
Ejemplo n.º 24
0
 def _get_share_size(self):
     share_size = mathutil.div_ceil(self.file_size, self.required_shares)
     overhead = self._compute_overhead()
     return share_size + overhead
Ejemplo n.º 25
0
    def _parse_and_validate(self, data):
        self.share_size = mathutil.div_ceil(self._verifycap.size,
                                            self._verifycap.needed_shares)

        d = uri.unpack_extension(data)

        # There are several kinds of things that can be found in a UEB.
        # First, things that we really need to learn from the UEB in order to
        # do this download. Next: things which are optional but not redundant
        # -- if they are present in the UEB they will get used. Next, things
        # that are optional and redundant. These things are required to be
        # consistent: they don't have to be in the UEB, but if they are in
        # the UEB then they will be checked for consistency with the
        # already-known facts, and if they are inconsistent then an exception
        # will be raised. These things aren't actually used -- they are just
        # tested for consistency and ignored. Finally: things which are
        # deprecated -- they ought not be in the UEB at all, and if they are
        # present then a warning will be logged but they are otherwise
        # ignored.

        # First, things that we really need to learn from the UEB:
        # segment_size, crypttext_root_hash, and share_root_hash.
        self.segment_size = d['segment_size']

        self.block_size = mathutil.div_ceil(self.segment_size,
                                            self._verifycap.needed_shares)
        self.num_segments = mathutil.div_ceil(self._verifycap.size,
                                              self.segment_size)

        self.tail_data_size = self._verifycap.size % self.segment_size
        if not self.tail_data_size:
            self.tail_data_size = self.segment_size
        # padding for erasure code
        self.tail_segment_size = mathutil.next_multiple(
            self.tail_data_size, self._verifycap.needed_shares)

        # Ciphertext hash tree root is mandatory, so that there is at most
        # one ciphertext that matches this read-cap or verify-cap. The
        # integrity check on the shares is not sufficient to prevent the
        # original encoder from creating some shares of file A and other
        # shares of file B.
        self.crypttext_root_hash = d['crypttext_root_hash']

        self.share_root_hash = d['share_root_hash']

        # Next: things that are optional and not redundant: crypttext_hash
        if d.has_key('crypttext_hash'):
            self.crypttext_hash = d['crypttext_hash']
            if len(self.crypttext_hash) != CRYPTO_VAL_SIZE:
                raise BadURIExtension(
                    'crypttext_hash is required to be hashutil.CRYPTO_VAL_SIZE bytes, not %s bytes'
                    % (len(self.crypttext_hash), ))

        # Next: things that are optional, redundant, and required to be
        # consistent: codec_name, codec_params, tail_codec_params,
        # num_segments, size, needed_shares, total_shares
        if d.has_key('codec_name'):
            if d['codec_name'] != "crs":
                raise UnsupportedErasureCodec(d['codec_name'])

        if d.has_key('codec_params'):
            ucpss, ucpns, ucpts = codec.parse_params(d['codec_params'])
            if ucpss != self.segment_size:
                raise BadURIExtension("inconsistent erasure code params: "
                                      "ucpss: %s != self.segment_size: %s" %
                                      (ucpss, self.segment_size))
            if ucpns != self._verifycap.needed_shares:
                raise BadURIExtension(
                    "inconsistent erasure code params: ucpns: %s != "
                    "self._verifycap.needed_shares: %s" %
                    (ucpns, self._verifycap.needed_shares))
            if ucpts != self._verifycap.total_shares:
                raise BadURIExtension(
                    "inconsistent erasure code params: ucpts: %s != "
                    "self._verifycap.total_shares: %s" %
                    (ucpts, self._verifycap.total_shares))

        if d.has_key('tail_codec_params'):
            utcpss, utcpns, utcpts = codec.parse_params(d['tail_codec_params'])
            if utcpss != self.tail_segment_size:
                raise BadURIExtension(
                    "inconsistent erasure code params: utcpss: %s != "
                    "self.tail_segment_size: %s, self._verifycap.size: %s, "
                    "self.segment_size: %s, self._verifycap.needed_shares: %s"
                    % (utcpss, self.tail_segment_size, self._verifycap.size,
                       self.segment_size, self._verifycap.needed_shares))
            if utcpns != self._verifycap.needed_shares:
                raise BadURIExtension(
                    "inconsistent erasure code params: utcpns: %s != "
                    "self._verifycap.needed_shares: %s" %
                    (utcpns, self._verifycap.needed_shares))
            if utcpts != self._verifycap.total_shares:
                raise BadURIExtension(
                    "inconsistent erasure code params: utcpts: %s != "
                    "self._verifycap.total_shares: %s" %
                    (utcpts, self._verifycap.total_shares))

        if d.has_key('num_segments'):
            if d['num_segments'] != self.num_segments:
                raise BadURIExtension(
                    "inconsistent num_segments: size: %s, "
                    "segment_size: %s, computed_num_segments: %s, "
                    "ueb_num_segments: %s" %
                    (self._verifycap.size, self.segment_size,
                     self.num_segments, d['num_segments']))

        if d.has_key('size'):
            if d['size'] != self._verifycap.size:
                raise BadURIExtension(
                    "inconsistent size: URI size: %s, UEB size: %s" %
                    (self._verifycap.size, d['size']))

        if d.has_key('needed_shares'):
            if d['needed_shares'] != self._verifycap.needed_shares:
                raise BadURIExtension(
                    "inconsistent needed shares: URI needed shares: %s, UEB "
                    "needed shares: %s" %
                    (self._verifycap.total_shares, d['needed_shares']))

        if d.has_key('total_shares'):
            if d['total_shares'] != self._verifycap.total_shares:
                raise BadURIExtension(
                    "inconsistent total shares: URI total shares: %s, UEB "
                    "total shares: %s" %
                    (self._verifycap.total_shares, d['total_shares']))

        # Finally, things that are deprecated and ignored: plaintext_hash,
        # plaintext_root_hash
        if d.get('plaintext_hash'):
            log.msg(
                "Found plaintext_hash in UEB. This field is deprecated for security reasons "
                "and is no longer used.  Ignoring.  %s" % (self, ))
        if d.get('plaintext_root_hash'):
            log.msg(
                "Found plaintext_root_hash in UEB. This field is deprecated for security "
                "reasons and is no longer used.  Ignoring.  %s" % (self, ))

        return self
Ejemplo n.º 26
0
    def _setup_encoding_parameters(self):
        """
        I set up the encoding parameters, including k, n, the number
        of segments associated with this file, and the segment decoders.
        """
        (seqnum,
         root_hash,
         IV,
         segsize,
         datalength,
         k,
         n,
         known_prefix,
         offsets_tuple) = self.verinfo
        self._required_shares = k
        self._total_shares = n
        self._segment_size = segsize
        self._data_length = datalength

        if not IV:
            self._version = MDMF_VERSION
        else:
            self._version = SDMF_VERSION

        if datalength and segsize:
            self._num_segments = mathutil.div_ceil(datalength, segsize)
            self._tail_data_size = datalength % segsize
        else:
            self._num_segments = 0
            self._tail_data_size = 0

        self._segment_decoder = codec.CRSDecoder()
        self._segment_decoder.set_params(segsize, k, n)

        if  not self._tail_data_size:
            self._tail_data_size = segsize

        self._tail_segment_size = mathutil.next_multiple(self._tail_data_size,
                                                         self._required_shares)
        if self._tail_segment_size == self._segment_size:
            self._tail_decoder = self._segment_decoder
        else:
            self._tail_decoder = codec.CRSDecoder()
            self._tail_decoder.set_params(self._tail_segment_size,
                                          self._required_shares,
                                          self._total_shares)

        self.log("got encoding parameters: "
                 "k: %d "
                 "n: %d "
                 "%d segments of %d bytes each (%d byte tail segment)" % \
                 (k, n, self._num_segments, self._segment_size,
                  self._tail_segment_size))

        if self._block_hash_trees is not None:
            for i in xrange(self._total_shares):
                # So we don't have to do this later.
                self._block_hash_trees[i] = hashtree.IncompleteHashTree(self._num_segments)

        # Our last task is to tell the downloader where to start and
        # where to stop. We use three parameters for that:
        #   - self._start_segment: the segment that we need to start
        #     downloading from. 
        #   - self._current_segment: the next segment that we need to
        #     download.
        #   - self._last_segment: The last segment that we were asked to
        #     download.
        #
        #  We say that the download is complete when
        #  self._current_segment > self._last_segment. We use
        #  self._start_segment and self._last_segment to know when to
        #  strip things off of segments, and how much to strip.
        if self._offset:
            self.log("got offset: %d" % self._offset)
            # our start segment is the first segment containing the
            # offset we were given. 
            start = self._offset // self._segment_size

            assert start < self._num_segments
            self._start_segment = start
            self.log("got start segment: %d" % self._start_segment)
        else:
            self._start_segment = 0


        # If self._read_length is None, then we want to read the whole
        # file. Otherwise, we want to read only part of the file, and
        # need to figure out where to stop reading.
        if self._read_length is not None:
            # our end segment is the last segment containing part of the
            # segment that we were asked to read.
            self.log("got read length %d" % self._read_length)
            if self._read_length != 0:
                end_data = self._offset + self._read_length

                # We don't actually need to read the byte at end_data,
                # but the one before it.
                end = (end_data - 1) // self._segment_size

                assert end < self._num_segments
                self._last_segment = end
            else:
                self._last_segment = self._start_segment
            self.log("got end segment: %d" % self._last_segment)
        else:
            self._last_segment = self._num_segments - 1

        self._current_segment = self._start_segment
Ejemplo n.º 27
0
def roundup(size, blocksize=4096):
    return blocksize * mathutil.div_ceil(size, blocksize)
Ejemplo n.º 28
0
    def do_forms(self, getarg):
        filled = getarg("filled", bool)

        def get_and_set(name, options, default=None, astype=int):
            current_value = getarg(name, astype)
            i_select = T.select(name=name)
            for (count, description) in options:
                count = astype(count)
                if ((current_value is not None and count == current_value)
                        or (current_value is None and count == default)):
                    o = T.option(value=str(count),
                                 selected="true")[description]
                else:
                    o = T.option(value=str(count))[description]
                i_select = i_select[o]
            if current_value is None:
                current_value = default
            return current_value, i_select

        sections = {}

        def add_input(section, text, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([T.div[text, ": ", entry], "\n"])

        def add_output(section, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([entry, "\n"])

        def build_section(section):
            return T.fieldset[T.legend[section], sections[section]]

        def number(value, suffix=""):
            scaling = 1
            if value < 1:
                fmt = "%1.2g%s"
            elif value < 100:
                fmt = "%.1f%s"
            elif value < 1000:
                fmt = "%d%s"
            elif value < 1e6:
                fmt = "%.2fk%s"
                scaling = 1e3
            elif value < 1e9:
                fmt = "%.2fM%s"
                scaling = 1e6
            elif value < 1e12:
                fmt = "%.2fG%s"
                scaling = 1e9
            elif value < 1e15:
                fmt = "%.2fT%s"
                scaling = 1e12
            elif value < 1e18:
                fmt = "%.2fP%s"
                scaling = 1e15
            else:
                fmt = "huge! %g%s"
            return fmt % (value / scaling, suffix)

        user_counts = [
            (5, "5 users"),
            (50, "50 users"),
            (200, "200 users"),
            (1000, "1k users"),
            (10000, "10k users"),
            (50000, "50k users"),
            (100000, "100k users"),
            (500000, "500k users"),
            (1000000, "1M users"),
        ]
        num_users, i_num_users = get_and_set("num_users", user_counts, 50000)
        add_input("Users", "How many users are on this network?", i_num_users)

        files_per_user_counts = [
            (100, "100 files"),
            (1000, "1k files"),
            (10000, "10k files"),
            (100000, "100k files"),
            (1e6, "1M files"),
        ]
        files_per_user, i_files_per_user = get_and_set("files_per_user",
                                                       files_per_user_counts,
                                                       1000)
        add_input("Users", "How many files for each user? (avg)",
                  i_files_per_user)

        space_per_user_sizes = [
            (1e6, "1MB"),
            (10e6, "10MB"),
            (100e6, "100MB"),
            (200e6, "200MB"),
            (1e9, "1GB"),
            (2e9, "2GB"),
            (5e9, "5GB"),
            (10e9, "10GB"),
            (100e9, "100GB"),
            (1e12, "1TB"),
        ]
        # current allmydata average utilization 127MB per user
        space_per_user, i_space_per_user = get_and_set("space_per_user",
                                                       space_per_user_sizes,
                                                       200e6)
        add_input("Users", "How much data for each user? (avg)",
                  i_space_per_user)

        sharing_ratios = [
            (1.0, "1.0x"),
            (1.1, "1.1x"),
            (2.0, "2.0x"),
        ]
        sharing_ratio, i_sharing_ratio = get_and_set("sharing_ratio",
                                                     sharing_ratios, 1.0,
                                                     float)
        add_input(
            "Users", "What is the sharing ratio? (1.0x is no-sharing and"
            " no convergence)", i_sharing_ratio)

        # Encoding parameters
        encoding_choices = [
            ("3-of-10-5", "3.3x (3-of-10, repair below 5)"),
            ("3-of-10-8", "3.3x (3-of-10, repair below 8)"),
            ("5-of-10-7", "2x (5-of-10, repair below 7)"),
            ("8-of-10-9", "1.25x (8-of-10, repair below 9)"),
            ("27-of-30-28", "1.1x (27-of-30, repair below 28"),
            ("25-of-100-50", "4x (25-of-100, repair below 50)"),
        ]
        encoding_parameters, i_encoding_parameters = \
                             get_and_set("encoding_parameters",
                                         encoding_choices, "3-of-10-5", str)
        encoding_pieces = encoding_parameters.split("-")
        k = int(encoding_pieces[0])
        assert encoding_pieces[1] == "of"
        n = int(encoding_pieces[2])
        # we repair the file when the number of available shares drops below
        # this value
        repair_threshold = int(encoding_pieces[3])

        add_input("Servers", "What are the default encoding parameters?",
                  i_encoding_parameters)

        # Server info
        num_server_choices = [
            (5, "5 servers"),
            (10, "10 servers"),
            (15, "15 servers"),
            (30, "30 servers"),
            (50, "50 servers"),
            (100, "100 servers"),
            (200, "200 servers"),
            (300, "300 servers"),
            (500, "500 servers"),
            (1000, "1k servers"),
            (2000, "2k servers"),
            (5000, "5k servers"),
            (10e3, "10k servers"),
            (100e3, "100k servers"),
            (1e6, "1M servers"),
        ]
        num_servers, i_num_servers = \
                     get_and_set("num_servers", num_server_choices, 30, int)
        add_input("Servers", "How many servers are there?", i_num_servers)

        # availability is measured in dBA = -dBF, where 0dBF is 100% failure,
        # 10dBF is 10% failure, 20dBF is 1% failure, etc
        server_dBA_choices = [
            (10, "90% [10dBA] (2.4hr/day)"),
            (13, "95% [13dBA] (1.2hr/day)"),
            (20, "99% [20dBA] (14min/day or 3.5days/year)"),
            (23, "99.5% [23dBA] (7min/day or 1.75days/year)"),
            (30, "99.9% [30dBA] (87sec/day or 9hours/year)"),
            (40, "99.99% [40dBA] (60sec/week or 53min/year)"),
            (50, "99.999% [50dBA] (5min per year)"),
        ]
        server_dBA, i_server_availability = \
                    get_and_set("server_availability",
                                server_dBA_choices,
                                20, int)
        add_input("Servers", "What is the server availability?",
                  i_server_availability)

        drive_MTBF_choices = [
            (40, "40,000 Hours"),
        ]
        drive_MTBF, i_drive_MTBF = \
                    get_and_set("drive_MTBF", drive_MTBF_choices, 40, int)
        add_input("Drives", "What is the hard drive MTBF?", i_drive_MTBF)
        # http://www.tgdaily.com/content/view/30990/113/
        # http://labs.google.com/papers/disk_failures.pdf
        # google sees:
        #  1.7% of the drives they replaced were 0-1 years old
        #  8% of the drives they repalced were 1-2 years old
        #  8.6% were 2-3 years old
        #  6% were 3-4 years old, about 8% were 4-5 years old

        drive_size_choices = [
            (100, "100 GB"),
            (250, "250 GB"),
            (500, "500 GB"),
            (750, "750 GB"),
        ]
        drive_size, i_drive_size = \
                    get_and_set("drive_size", drive_size_choices, 750, int)
        drive_size = drive_size * 1e9
        add_input("Drives", "What is the capacity of each hard drive?",
                  i_drive_size)
        drive_failure_model_choices = [
            ("E", "Exponential"),
            ("U", "Uniform"),
        ]
        drive_failure_model, i_drive_failure_model = \
                             get_and_set("drive_failure_model",
                                         drive_failure_model_choices,
                                         "E", str)
        add_input("Drives", "How should we model drive failures?",
                  i_drive_failure_model)

        # drive_failure_rate is in failures per second
        if drive_failure_model == "E":
            drive_failure_rate = 1.0 / (drive_MTBF * 1000 * 3600)
        else:
            drive_failure_rate = 0.5 / (drive_MTBF * 1000 * 3600)

        # deletion/gc/ownership mode
        ownership_choices = [
            ("A", "no deletion, no gc, no owners"),
            ("B", "deletion, no gc, no owners"),
            ("C", "deletion, share timers, no owners"),
            ("D", "deletion, no gc, yes owners"),
            ("E", "deletion, owner timers"),
        ]
        ownership_mode, i_ownership_mode = \
                        get_and_set("ownership_mode", ownership_choices,
                                    "A", str)
        add_input("Servers", "What is the ownership mode?", i_ownership_mode)

        # client access behavior
        access_rates = [
            (1, "one file per day"),
            (10, "10 files per day"),
            (100, "100 files per day"),
            (1000, "1k files per day"),
            (10e3, "10k files per day"),
            (100e3, "100k files per day"),
        ]
        download_files_per_day, i_download_rate = \
                                get_and_set("download_rate", access_rates,
                                            100, int)
        add_input("Users", "How many files are downloaded per day?",
                  i_download_rate)
        download_rate = 1.0 * download_files_per_day / (24 * 60 * 60)

        upload_files_per_day, i_upload_rate = \
                              get_and_set("upload_rate", access_rates,
                                          10, int)
        add_input("Users", "How many files are uploaded per day?",
                  i_upload_rate)
        upload_rate = 1.0 * upload_files_per_day / (24 * 60 * 60)

        delete_files_per_day, i_delete_rate = \
                              get_and_set("delete_rate", access_rates,
                                          10, int)
        add_input("Users", "How many files are deleted per day?",
                  i_delete_rate)
        delete_rate = 1.0 * delete_files_per_day / (24 * 60 * 60)

        # the value is in days
        lease_timers = [
            (1, "one refresh per day"),
            (7, "one refresh per week"),
        ]
        lease_timer, i_lease = \
                     get_and_set("lease_timer", lease_timers,
                                 7, int)
        add_input(
            "Users", "How frequently do clients refresh files or accounts? "
            "(if necessary)", i_lease)
        seconds_per_lease = 24 * 60 * 60 * lease_timer

        check_timer_choices = [
            (1, "every week"),
            (4, "every month"),
            (8, "every two months"),
            (16, "every four months"),
        ]
        check_timer, i_check_timer = \
                     get_and_set("check_timer", check_timer_choices, 4, int)
        add_input("Users", "How frequently should we check on each file?",
                  i_check_timer)
        file_check_interval = check_timer * 7 * 24 * 3600

        if filled:
            add_output("Users", T.div["Total users: %s" % number(num_users)])
            add_output("Users",
                       T.div["Files per user: %s" % number(files_per_user)])
            file_size = 1.0 * space_per_user / files_per_user
            add_output("Users", T.div["Average file size: ",
                                      number(file_size)])
            total_files = num_users * files_per_user / sharing_ratio

            add_output(
                "Grid", T.div["Total number of files in grid: ",
                              number(total_files)])
            total_space = num_users * space_per_user / sharing_ratio
            add_output(
                "Grid", T.div["Total volume of plaintext in grid: ",
                              number(total_space, "B")])

            total_shares = n * total_files
            add_output("Grid", T.div["Total shares in grid: ",
                                     number(total_shares)])
            expansion = float(n) / float(k)

            total_usage = expansion * total_space
            add_output("Grid", T.div["Share data in grid: ",
                                     number(total_usage, "B")])

            if n > num_servers:
                # silly configuration, causes Tahoe2 to wrap and put multiple
                # shares on some servers.
                add_output(
                    "Servers", T.div["non-ideal: more shares than servers"
                                     " (n=%d, servers=%d)" % (n, num_servers)])
                # every file has at least one share on every server
                buckets_per_server = total_files
                shares_per_server = total_files * ((1.0 * n) / num_servers)
            else:
                # if nobody is full, then no lease requests will be turned
                # down for lack of space, and no two shares for the same file
                # will share a server. Therefore the chance that any given
                # file has a share on any given server is n/num_servers.
                buckets_per_server = total_files * ((1.0 * n) / num_servers)
                # since each such represented file only puts one share on a
                # server, the total number of shares per server is the same.
                shares_per_server = buckets_per_server
            add_output(
                "Servers", T.div["Buckets per server: ",
                                 number(buckets_per_server)])
            add_output("Servers", T.div["Shares per server: ",
                                        number(shares_per_server)])

            # how much space is used on the storage servers for the shares?
            #  the share data itself
            share_data_per_server = total_usage / num_servers
            add_output(
                "Servers", T.div["Share data per server: ",
                                 number(share_data_per_server, "B")])
            # this is determined empirically. H=hashsize=32, for a one-segment
            # file and 3-of-10 encoding
            share_validation_per_server = 266 * shares_per_server
            # this could be 423*buckets_per_server, if we moved the URI
            # extension into a separate file, but that would actually consume
            # *more* space (minimum filesize is 4KiB), unless we moved all
            # shares for a given bucket into a single file.
            share_uri_extension_per_server = 423 * shares_per_server

            # ownership mode adds per-bucket data
            H = 32  # depends upon the desired security of delete/refresh caps
            # bucket_lease_size is the amount of data needed to keep track of
            # the delete/refresh caps for each bucket.
            bucket_lease_size = 0
            client_bucket_refresh_rate = 0
            owner_table_size = 0
            if ownership_mode in ("B", "C", "D", "E"):
                bucket_lease_size = sharing_ratio * 1.0 * H
            if ownership_mode in ("B", "C"):
                # refreshes per second per client
                client_bucket_refresh_rate = (1.0 * n * files_per_user /
                                              seconds_per_lease)
                add_output(
                    "Users", T.div["Client share refresh rate (outbound): ",
                                   number(client_bucket_refresh_rate, "Hz")])
                server_bucket_refresh_rate = (client_bucket_refresh_rate *
                                              num_users / num_servers)
                add_output(
                    "Servers", T.div["Server share refresh rate (inbound): ",
                                     number(server_bucket_refresh_rate, "Hz")])
            if ownership_mode in ("D", "E"):
                # each server must maintain a bidirectional mapping from
                # buckets to owners. One way to implement this would be to
                # put a list of four-byte owner numbers into each bucket, and
                # a list of four-byte share numbers into each owner (although
                # of course we'd really just throw it into a database and let
                # the experts take care of the details).
                owner_table_size = 2 * (buckets_per_server * sharing_ratio * 4)

            if ownership_mode in ("E", ):
                # in this mode, clients must refresh one timer per server
                client_account_refresh_rate = (1.0 * num_servers /
                                               seconds_per_lease)
                add_output(
                    "Users", T.div["Client account refresh rate (outbound): ",
                                   number(client_account_refresh_rate, "Hz")])
                server_account_refresh_rate = (client_account_refresh_rate *
                                               num_users / num_servers)
                add_output(
                    "Servers",
                    T.div["Server account refresh rate (inbound): ",
                          number(server_account_refresh_rate, "Hz")])

            # TODO: buckets vs shares here is a bit wonky, but in
            # non-wrapping grids it shouldn't matter
            share_lease_per_server = bucket_lease_size * buckets_per_server
            share_ownertable_per_server = owner_table_size

            share_space_per_server = (share_data_per_server +
                                      share_validation_per_server +
                                      share_uri_extension_per_server +
                                      share_lease_per_server +
                                      share_ownertable_per_server)
            add_output(
                "Servers",
                T.div["Share space per server: ",
                      number(share_space_per_server, "B"), " (data ",
                      number(share_data_per_server, "B"), ", validation ",
                      number(share_validation_per_server, "B"), ", UEB ",
                      number(share_uri_extension_per_server, "B"), ", lease ",
                      number(share_lease_per_server, "B"), ", ownertable ",
                      number(share_ownertable_per_server, "B"), ")", ])

            # rates
            client_download_share_rate = download_rate * k
            client_download_byte_rate = download_rate * file_size
            add_output(
                "Users", T.div["download rate: shares = ",
                               number(client_download_share_rate, "Hz"),
                               " , bytes = ",
                               number(client_download_byte_rate, "Bps"), ])
            total_file_check_rate = 1.0 * total_files / file_check_interval
            client_check_share_rate = total_file_check_rate / num_users
            add_output(
                "Users", T.div["file check rate: shares = ",
                               number(client_check_share_rate, "Hz"),
                               " (interval = %s)" %
                               number(1 / client_check_share_rate, "s"), ])

            client_upload_share_rate = upload_rate * n
            # TODO: doesn't include overhead
            client_upload_byte_rate = upload_rate * file_size * expansion
            add_output(
                "Users", T.div["upload rate: shares = ",
                               number(client_upload_share_rate, "Hz"),
                               " , bytes = ",
                               number(client_upload_byte_rate, "Bps"), ])
            client_delete_share_rate = delete_rate * n

            server_inbound_share_rate = (client_upload_share_rate * num_users /
                                         num_servers)
            server_inbound_byte_rate = (client_upload_byte_rate * num_users /
                                        num_servers)
            add_output(
                "Servers", T.div["upload rate (inbound): shares = ",
                                 number(server_inbound_share_rate, "Hz"),
                                 " , bytes = ",
                                 number(server_inbound_byte_rate, "Bps"), ])
            add_output(
                "Servers",
                T.div["share check rate (inbound): ",
                      number(total_file_check_rate * n / num_servers, "Hz"), ])

            server_share_modify_rate = (
                (client_upload_share_rate + client_delete_share_rate) *
                num_users / num_servers)
            add_output(
                "Servers", T.div["share modify rate: shares = ",
                                 number(server_share_modify_rate, "Hz"), ])

            server_outbound_share_rate = (client_download_share_rate *
                                          num_users / num_servers)
            server_outbound_byte_rate = (client_download_byte_rate *
                                         num_users / num_servers)
            add_output(
                "Servers", T.div["download rate (outbound): shares = ",
                                 number(server_outbound_share_rate, "Hz"),
                                 " , bytes = ",
                                 number(server_outbound_byte_rate, "Bps"), ])

            total_share_space = num_servers * share_space_per_server
            add_output(
                "Grid", T.div["Share space consumed: ",
                              number(total_share_space, "B")])
            add_output(
                "Grid", T.div[" %% validation: %.2f%%" %
                              (100.0 * share_validation_per_server /
                               share_space_per_server)])
            add_output(
                "Grid", T.div[" %% uri-extension: %.2f%%" %
                              (100.0 * share_uri_extension_per_server /
                               share_space_per_server)])
            add_output(
                "Grid", T.div[" %% lease data: %.2f%%" %
                              (100.0 * share_lease_per_server /
                               share_space_per_server)])
            add_output(
                "Grid", T.div[" %% owner data: %.2f%%" %
                              (100.0 * share_ownertable_per_server /
                               share_space_per_server)])
            add_output(
                "Grid", T.div[" %% share data: %.2f%%" %
                              (100.0 * share_data_per_server /
                               share_space_per_server)])
            add_output(
                "Grid", T.div["file check rate: ",
                              number(total_file_check_rate, "Hz")])

            total_drives = max(
                mathutil.div_ceil(int(total_share_space), int(drive_size)),
                num_servers)
            add_output(
                "Drives", T.div["Total drives: ",
                                number(total_drives), " drives"])
            drives_per_server = mathutil.div_ceil(total_drives, num_servers)
            add_output("Servers", T.div["Drives per server: ",
                                        drives_per_server])

            # costs
            if drive_size == 750 * 1e9:
                add_output("Servers", T.div["750GB drive: $250 each"])
                drive_cost = 250
            else:
                add_output("Servers",
                           T.div[T.b["unknown cost per drive, assuming $100"]])
                drive_cost = 100

            if drives_per_server <= 4:
                add_output("Servers", T.div["1U box with <= 4 drives: $1500"])
                server_cost = 1500  # typical 1U box
            elif drives_per_server <= 12:
                add_output("Servers", T.div["2U box with <= 12 drives: $2500"])
                server_cost = 2500  # 2U box
            else:
                add_output(
                    "Servers", T.div[T.b["Note: too many drives per server, "
                                         "assuming $3000"]])
                server_cost = 3000

            server_capital_cost = (server_cost +
                                   drives_per_server * drive_cost)
            total_server_cost = float(num_servers * server_capital_cost)
            add_output(
                "Servers", T.div["Capital cost per server: $",
                                 server_capital_cost])
            add_output(
                "Grid", T.div["Capital cost for all servers: $",
                              number(total_server_cost)])
            # $70/Mbps/mo
            # $44/server/mo power+space
            server_bandwidth = max(server_inbound_byte_rate,
                                   server_outbound_byte_rate)
            server_bandwidth_mbps = mathutil.div_ceil(
                int(server_bandwidth * 8), int(1e6))
            server_monthly_cost = 70 * server_bandwidth_mbps + 44
            add_output(
                "Servers", T.div["Monthly cost per server: $",
                                 server_monthly_cost])
            add_output(
                "Users", T.div["Capital cost per user: $",
                               number(total_server_cost / num_users)])

            # reliability
            any_drive_failure_rate = total_drives * drive_failure_rate
            any_drive_MTBF = 1 // any_drive_failure_rate  # in seconds
            any_drive_MTBF_days = any_drive_MTBF / 86400
            add_output(
                "Drives", T.div["MTBF (any drive): ",
                                number(any_drive_MTBF_days), " days"])
            drive_replacement_monthly_cost = (float(drive_cost) *
                                              any_drive_failure_rate * 30 *
                                              86400)
            add_output(
                "Grid", T.div["Monthly cost of replacing drives: $",
                              number(drive_replacement_monthly_cost)])

            total_server_monthly_cost = float(num_servers *
                                              server_monthly_cost +
                                              drive_replacement_monthly_cost)

            add_output(
                "Grid", T.div["Monthly cost for all servers: $",
                              number(total_server_monthly_cost)])
            add_output(
                "Users", T.div["Monthly cost per user: $",
                               number(total_server_monthly_cost / num_users)])

            # availability
            file_dBA = self.file_availability(k, n, server_dBA)
            user_files_dBA = self.many_files_availability(
                file_dBA, files_per_user)
            all_files_dBA = self.many_files_availability(file_dBA, total_files)
            add_output(
                "Users",
                T.div["availability of: ",
                      "arbitrary file = %d dBA, " % file_dBA,
                      "all files of user1 = %d dBA, " % user_files_dBA,
                      "all files in grid = %d dBA" % all_files_dBA, ],
            )

            time_until_files_lost = (n - k + 1) / any_drive_failure_rate
            add_output(
                "Grid",
                T.div["avg time until files are lost: ",
                      number(time_until_files_lost, "s"), ", ",
                      number(time_until_files_lost / 86400, " days"), ])

            share_data_loss_rate = any_drive_failure_rate * drive_size
            add_output(
                "Grid", T.div["share data loss rate: ",
                              number(share_data_loss_rate, "Bps")])

            # the worst-case survival numbers occur when we do a file check
            # and the file is just above the threshold for repair (so we
            # decide to not repair it). The question is then: what is the
            # chance that the file will decay so badly before the next check
            # that we can't recover it? The resulting probability is per
            # check interval.
            # Note that the chances of us getting into this situation are low.
            P_disk_failure_during_interval = (drive_failure_rate *
                                              file_check_interval)
            disk_failure_dBF = 10 * math.log10(P_disk_failure_during_interval)
            disk_failure_dBA = -disk_failure_dBF
            file_survives_dBA = self.file_availability(k, repair_threshold,
                                                       disk_failure_dBA)
            user_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, files_per_user)
            all_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, total_files)
            add_output(
                "Users",
                T.div["survival of: ",
                      "arbitrary file = %d dBA, " % file_survives_dBA,
                      "all files of user1 = %d dBA, " %
                      user_files_survives_dBA,
                      "all files in grid = %d dBA" % all_files_survives_dBA,
                      " (per worst-case check interval)", ])

        all_sections = []
        all_sections.append(build_section("Users"))
        all_sections.append(build_section("Servers"))
        all_sections.append(build_section("Drives"))
        if "Grid" in sections:
            all_sections.append(build_section("Grid"))

        f = T.form(action=".", method="post", enctype="multipart/form-data")

        if filled:
            action = "Recompute"
        else:
            action = "Compute"

        f = f[T.input(type="hidden", name="filled", value="true"),
              T.input(type="submit", value=action), all_sections, ]

        try:
            from allmydata import reliability
            # we import this just to test to see if the page is available
            _hush_pyflakes = reliability
            del _hush_pyflakes
            f = [T.div[T.a(href="../reliability")["Reliability Math"]], f]
        except ImportError:
            pass

        return f
Ejemplo n.º 29
0
    def do_forms(self, getarg):
        filled = getarg("filled", bool)

        def get_and_set(name, options, default=None, astype=int):
            current_value = getarg(name, astype)
            i_select = T.select(name=name)
            for (count, description) in options:
                count = astype(count)
                if ((current_value is not None and count == current_value) or
                    (current_value is None and count == default)):
                    o = T.option(value=str(count), selected="true")[description]
                else:
                    o = T.option(value=str(count))[description]
                i_select = i_select[o]
            if current_value is None:
                current_value = default
            return current_value, i_select

        sections = {}
        def add_input(section, text, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([T.div[text, ": ", entry], "\n"])

        def add_output(section, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([entry, "\n"])

        def build_section(section):
            return T.fieldset[T.legend[section], sections[section]]

        def number(value, suffix=""):
            scaling = 1
            if value < 1:
                fmt = "%1.2g%s"
            elif value < 100:
                fmt = "%.1f%s"
            elif value < 1000:
                fmt = "%d%s"
            elif value < 1e6:
                fmt = "%.2fk%s"; scaling = 1e3
            elif value < 1e9:
                fmt = "%.2fM%s"; scaling = 1e6
            elif value < 1e12:
                fmt = "%.2fG%s"; scaling = 1e9
            elif value < 1e15:
                fmt = "%.2fT%s"; scaling = 1e12
            elif value < 1e18:
                fmt = "%.2fP%s"; scaling = 1e15
            else:
                fmt = "huge! %g%s"
            return fmt % (value / scaling, suffix)

        user_counts = [(5, "5 users"),
                       (50, "50 users"),
                       (200, "200 users"),
                       (1000, "1k users"),
                       (10000, "10k users"),
                       (50000, "50k users"),
                       (100000, "100k users"),
                       (500000, "500k users"),
                       (1000000, "1M users"),
                       ]
        num_users, i_num_users = get_and_set("num_users", user_counts, 50000)
        add_input("Users",
                  "How many users are on this network?", i_num_users)

        files_per_user_counts = [(100, "100 files"),
                                 (1000, "1k files"),
                                 (10000, "10k files"),
                                 (100000, "100k files"),
                                 (1e6, "1M files"),
                                 ]
        files_per_user, i_files_per_user = get_and_set("files_per_user",
                                                       files_per_user_counts,
                                                       1000)
        add_input("Users",
                  "How many files for each user? (avg)",
                  i_files_per_user)

        space_per_user_sizes = [(1e6, "1MB"),
                                (10e6, "10MB"),
                                (100e6, "100MB"),
                                (200e6, "200MB"),
                                (1e9, "1GB"),
                                (2e9, "2GB"),
                                (5e9, "5GB"),
                                (10e9, "10GB"),
                                (100e9, "100GB"),
                                (1e12, "1TB"),
                                ]
        # current allmydata average utilization 127MB per user
        space_per_user, i_space_per_user = get_and_set("space_per_user",
                                                       space_per_user_sizes,
                                                       200e6)
        add_input("Users",
                  "How much data for each user? (avg)",
                  i_space_per_user)

        sharing_ratios = [(1.0, "1.0x"),
                          (1.1, "1.1x"),
                          (2.0, "2.0x"),
                          ]
        sharing_ratio, i_sharing_ratio = get_and_set("sharing_ratio",
                                                     sharing_ratios, 1.0,
                                                     float)
        add_input("Users",
                  "What is the sharing ratio? (1.0x is no-sharing and"
                  " no convergence)", i_sharing_ratio)

        # Encoding parameters
        encoding_choices = [("3-of-10-5", "3.3x (3-of-10, repair below 5)"),
                            ("3-of-10-8", "3.3x (3-of-10, repair below 8)"),
                            ("5-of-10-7", "2x (5-of-10, repair below 7)"),
                            ("8-of-10-9", "1.25x (8-of-10, repair below 9)"),
                            ("27-of-30-28", "1.1x (27-of-30, repair below 28"),
                            ("25-of-100-50", "4x (25-of-100, repair below 50)"),
                            ]
        encoding_parameters, i_encoding_parameters = \
                             get_and_set("encoding_parameters",
                                         encoding_choices, "3-of-10-5", str)
        encoding_pieces = encoding_parameters.split("-")
        k = int(encoding_pieces[0])
        assert encoding_pieces[1] == "of"
        n = int(encoding_pieces[2])
        # we repair the file when the number of available shares drops below
        # this value
        repair_threshold = int(encoding_pieces[3])

        add_input("Servers",
                  "What are the default encoding parameters?",
                  i_encoding_parameters)

        # Server info
        num_server_choices = [ (5, "5 servers"),
                               (10, "10 servers"),
                               (15, "15 servers"),
                               (30, "30 servers"),
                               (50, "50 servers"),
                               (100, "100 servers"),
                               (200, "200 servers"),
                               (300, "300 servers"),
                               (500, "500 servers"),
                               (1000, "1k servers"),
                               (2000, "2k servers"),
                               (5000, "5k servers"),
                               (10e3, "10k servers"),
                               (100e3, "100k servers"),
                               (1e6, "1M servers"),
                               ]
        num_servers, i_num_servers = \
                     get_and_set("num_servers", num_server_choices, 30, int)
        add_input("Servers",
                  "How many servers are there?", i_num_servers)

        # availability is measured in dBA = -dBF, where 0dBF is 100% failure,
        # 10dBF is 10% failure, 20dBF is 1% failure, etc
        server_dBA_choices = [ (10, "90% [10dBA] (2.4hr/day)"),
                               (13, "95% [13dBA] (1.2hr/day)"),
                               (20, "99% [20dBA] (14min/day or 3.5days/year)"),
                               (23, "99.5% [23dBA] (7min/day or 1.75days/year)"),
                               (30, "99.9% [30dBA] (87sec/day or 9hours/year)"),
                               (40, "99.99% [40dBA] (60sec/week or 53min/year)"),
                               (50, "99.999% [50dBA] (5min per year)"),
                               ]
        server_dBA, i_server_availability = \
                    get_and_set("server_availability",
                                server_dBA_choices,
                                20, int)
        add_input("Servers",
                  "What is the server availability?", i_server_availability)

        drive_MTBF_choices = [ (40, "40,000 Hours"),
                               ]
        drive_MTBF, i_drive_MTBF = \
                    get_and_set("drive_MTBF", drive_MTBF_choices, 40, int)
        add_input("Drives",
                  "What is the hard drive MTBF?", i_drive_MTBF)
        # http://www.tgdaily.com/content/view/30990/113/
        # http://labs.google.com/papers/disk_failures.pdf
        # google sees:
        #  1.7% of the drives they replaced were 0-1 years old
        #  8% of the drives they repalced were 1-2 years old
        #  8.6% were 2-3 years old
        #  6% were 3-4 years old, about 8% were 4-5 years old

        drive_size_choices = [ (100, "100 GB"),
                               (250, "250 GB"),
                               (500, "500 GB"),
                               (750, "750 GB"),
                               ]
        drive_size, i_drive_size = \
                    get_and_set("drive_size", drive_size_choices, 750, int)
        drive_size = drive_size * 1e9
        add_input("Drives",
                  "What is the capacity of each hard drive?", i_drive_size)
        drive_failure_model_choices = [ ("E", "Exponential"),
                                        ("U", "Uniform"),
                                        ]
        drive_failure_model, i_drive_failure_model = \
                             get_and_set("drive_failure_model",
                                         drive_failure_model_choices,
                                         "E", str)
        add_input("Drives",
                  "How should we model drive failures?", i_drive_failure_model)

        # drive_failure_rate is in failures per second
        if drive_failure_model == "E":
            drive_failure_rate = 1.0 / (drive_MTBF * 1000 * 3600)
        else:
            drive_failure_rate = 0.5 / (drive_MTBF * 1000 * 3600)

        # deletion/gc/ownership mode
        ownership_choices = [ ("A", "no deletion, no gc, no owners"),
                              ("B", "deletion, no gc, no owners"),
                              ("C", "deletion, share timers, no owners"),
                              ("D", "deletion, no gc, yes owners"),
                              ("E", "deletion, owner timers"),
                              ]
        ownership_mode, i_ownership_mode = \
                        get_and_set("ownership_mode", ownership_choices,
                                    "A", str)
        add_input("Servers",
                  "What is the ownership mode?", i_ownership_mode)

        # client access behavior
        access_rates = [ (1, "one file per day"),
                         (10, "10 files per day"),
                         (100, "100 files per day"),
                         (1000, "1k files per day"),
                         (10e3, "10k files per day"),
                         (100e3, "100k files per day"),
                         ]
        download_files_per_day, i_download_rate = \
                                get_and_set("download_rate", access_rates,
                                            100, int)
        add_input("Users",
                  "How many files are downloaded per day?", i_download_rate)
        download_rate = 1.0 * download_files_per_day / (24*60*60)

        upload_files_per_day, i_upload_rate = \
                              get_and_set("upload_rate", access_rates,
                                          10, int)
        add_input("Users",
                  "How many files are uploaded per day?", i_upload_rate)
        upload_rate = 1.0 * upload_files_per_day / (24*60*60)

        delete_files_per_day, i_delete_rate = \
                              get_and_set("delete_rate", access_rates,
                                          10, int)
        add_input("Users",
                  "How many files are deleted per day?", i_delete_rate)
        delete_rate = 1.0 * delete_files_per_day / (24*60*60)


        # the value is in days
        lease_timers = [ (1, "one refresh per day"),
                         (7, "one refresh per week"),
                         ]
        lease_timer, i_lease = \
                     get_and_set("lease_timer", lease_timers,
                                 7, int)
        add_input("Users",
                  "How frequently do clients refresh files or accounts? "
                  "(if necessary)",
                  i_lease)
        seconds_per_lease = 24*60*60*lease_timer

        check_timer_choices = [ (1, "every week"),
                                (4, "every month"),
                                (8, "every two months"),
                                (16, "every four months"),
                                ]
        check_timer, i_check_timer = \
                     get_and_set("check_timer", check_timer_choices, 4, int)
        add_input("Users",
                  "How frequently should we check on each file?",
                  i_check_timer)
        file_check_interval = check_timer * 7 * 24 * 3600


        if filled:
            add_output("Users", T.div["Total users: %s" % number(num_users)])
            add_output("Users",
                       T.div["Files per user: %s" % number(files_per_user)])
            file_size = 1.0 * space_per_user / files_per_user
            add_output("Users",
                       T.div["Average file size: ", number(file_size)])
            total_files = num_users * files_per_user / sharing_ratio

            add_output("Grid",
                       T.div["Total number of files in grid: ",
                             number(total_files)])
            total_space = num_users * space_per_user / sharing_ratio
            add_output("Grid",
                       T.div["Total volume of plaintext in grid: ",
                             number(total_space, "B")])

            total_shares = n * total_files
            add_output("Grid",
                       T.div["Total shares in grid: ", number(total_shares)])
            expansion = float(n) / float(k)

            total_usage = expansion * total_space
            add_output("Grid",
                       T.div["Share data in grid: ", number(total_usage, "B")])

            if n > num_servers:
                # silly configuration, causes Tahoe2 to wrap and put multiple
                # shares on some servers.
                add_output("Servers",
                           T.div["non-ideal: more shares than servers"
                                 " (n=%d, servers=%d)" % (n, num_servers)])
                # every file has at least one share on every server
                buckets_per_server = total_files
                shares_per_server = total_files * ((1.0 * n) / num_servers)
            else:
                # if nobody is full, then no lease requests will be turned
                # down for lack of space, and no two shares for the same file
                # will share a server. Therefore the chance that any given
                # file has a share on any given server is n/num_servers.
                buckets_per_server = total_files * ((1.0 * n) / num_servers)
                # since each such represented file only puts one share on a
                # server, the total number of shares per server is the same.
                shares_per_server = buckets_per_server
            add_output("Servers",
                       T.div["Buckets per server: ",
                             number(buckets_per_server)])
            add_output("Servers",
                       T.div["Shares per server: ",
                             number(shares_per_server)])

            # how much space is used on the storage servers for the shares?
            #  the share data itself
            share_data_per_server = total_usage / num_servers
            add_output("Servers",
                       T.div["Share data per server: ",
                             number(share_data_per_server, "B")])
            # this is determined empirically. H=hashsize=32, for a one-segment
            # file and 3-of-10 encoding
            share_validation_per_server = 266 * shares_per_server
            # this could be 423*buckets_per_server, if we moved the URI
            # extension into a separate file, but that would actually consume
            # *more* space (minimum filesize is 4KiB), unless we moved all
            # shares for a given bucket into a single file.
            share_uri_extension_per_server = 423 * shares_per_server

            # ownership mode adds per-bucket data
            H = 32 # depends upon the desired security of delete/refresh caps
            # bucket_lease_size is the amount of data needed to keep track of
            # the delete/refresh caps for each bucket.
            bucket_lease_size = 0
            client_bucket_refresh_rate = 0
            owner_table_size = 0
            if ownership_mode in ("B", "C", "D", "E"):
                bucket_lease_size = sharing_ratio * 1.0 * H
            if ownership_mode in ("B", "C"):
                # refreshes per second per client
                client_bucket_refresh_rate = (1.0 * n * files_per_user /
                                              seconds_per_lease)
                add_output("Users",
                           T.div["Client share refresh rate (outbound): ",
                                 number(client_bucket_refresh_rate, "Hz")])
                server_bucket_refresh_rate = (client_bucket_refresh_rate *
                                              num_users / num_servers)
                add_output("Servers",
                           T.div["Server share refresh rate (inbound): ",
                                 number(server_bucket_refresh_rate, "Hz")])
            if ownership_mode in ("D", "E"):
                # each server must maintain a bidirectional mapping from
                # buckets to owners. One way to implement this would be to
                # put a list of four-byte owner numbers into each bucket, and
                # a list of four-byte share numbers into each owner (although
                # of course we'd really just throw it into a database and let
                # the experts take care of the details).
                owner_table_size = 2*(buckets_per_server * sharing_ratio * 4)

            if ownership_mode in ("E",):
                # in this mode, clients must refresh one timer per server
                client_account_refresh_rate = (1.0 * num_servers /
                                               seconds_per_lease)
                add_output("Users",
                           T.div["Client account refresh rate (outbound): ",
                                 number(client_account_refresh_rate, "Hz")])
                server_account_refresh_rate = (client_account_refresh_rate *
                                              num_users / num_servers)
                add_output("Servers",
                           T.div["Server account refresh rate (inbound): ",
                                 number(server_account_refresh_rate, "Hz")])

            # TODO: buckets vs shares here is a bit wonky, but in
            # non-wrapping grids it shouldn't matter
            share_lease_per_server = bucket_lease_size * buckets_per_server
            share_ownertable_per_server = owner_table_size

            share_space_per_server = (share_data_per_server +
                                      share_validation_per_server +
                                      share_uri_extension_per_server +
                                      share_lease_per_server +
                                      share_ownertable_per_server)
            add_output("Servers",
                       T.div["Share space per server: ",
                             number(share_space_per_server, "B"),
                             " (data ",
                             number(share_data_per_server, "B"),
                             ", validation ",
                             number(share_validation_per_server, "B"),
                             ", UEB ",
                             number(share_uri_extension_per_server, "B"),
                             ", lease ",
                             number(share_lease_per_server, "B"),
                             ", ownertable ",
                             number(share_ownertable_per_server, "B"),
                             ")",
                             ])


            # rates
            client_download_share_rate = download_rate * k
            client_download_byte_rate = download_rate * file_size
            add_output("Users",
                       T.div["download rate: shares = ",
                             number(client_download_share_rate, "Hz"),
                             " , bytes = ",
                             number(client_download_byte_rate, "Bps"),
                             ])
            total_file_check_rate = 1.0 * total_files / file_check_interval
            client_check_share_rate = total_file_check_rate / num_users
            add_output("Users",
                       T.div["file check rate: shares = ",
                             number(client_check_share_rate, "Hz"),
                             " (interval = %s)" %
                             number(1 / client_check_share_rate, "s"),
                             ])

            client_upload_share_rate = upload_rate * n
            # TODO: doesn't include overhead
            client_upload_byte_rate = upload_rate * file_size * expansion
            add_output("Users",
                       T.div["upload rate: shares = ",
                             number(client_upload_share_rate, "Hz"),
                             " , bytes = ",
                             number(client_upload_byte_rate, "Bps"),
                             ])
            client_delete_share_rate = delete_rate * n

            server_inbound_share_rate = (client_upload_share_rate *
                                         num_users / num_servers)
            server_inbound_byte_rate = (client_upload_byte_rate *
                                        num_users / num_servers)
            add_output("Servers",
                       T.div["upload rate (inbound): shares = ",
                             number(server_inbound_share_rate, "Hz"),
                             " , bytes = ",
                              number(server_inbound_byte_rate, "Bps"),
                             ])
            add_output("Servers",
                       T.div["share check rate (inbound): ",
                             number(total_file_check_rate * n / num_servers,
                                    "Hz"),
                             ])

            server_share_modify_rate = ((client_upload_share_rate +
                                         client_delete_share_rate) *
                                         num_users / num_servers)
            add_output("Servers",
                       T.div["share modify rate: shares = ",
                             number(server_share_modify_rate, "Hz"),
                             ])

            server_outbound_share_rate = (client_download_share_rate *
                                          num_users / num_servers)
            server_outbound_byte_rate = (client_download_byte_rate *
                                         num_users / num_servers)
            add_output("Servers",
                       T.div["download rate (outbound): shares = ",
                             number(server_outbound_share_rate, "Hz"),
                             " , bytes = ",
                              number(server_outbound_byte_rate, "Bps"),
                             ])


            total_share_space = num_servers * share_space_per_server
            add_output("Grid",
                       T.div["Share space consumed: ",
                             number(total_share_space, "B")])
            add_output("Grid",
                       T.div[" %% validation: %.2f%%" %
                             (100.0 * share_validation_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% uri-extension: %.2f%%" %
                             (100.0 * share_uri_extension_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% lease data: %.2f%%" %
                             (100.0 * share_lease_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% owner data: %.2f%%" %
                             (100.0 * share_ownertable_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% share data: %.2f%%" %
                             (100.0 * share_data_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div["file check rate: ",
                             number(total_file_check_rate,
                                    "Hz")])

            total_drives = max(mathutil.div_ceil(int(total_share_space),
                                                 int(drive_size)),
                               num_servers)
            add_output("Drives",
                       T.div["Total drives: ", number(total_drives), " drives"])
            drives_per_server = mathutil.div_ceil(total_drives, num_servers)
            add_output("Servers",
                       T.div["Drives per server: ", drives_per_server])

            # costs
            if drive_size == 750 * 1e9:
                add_output("Servers", T.div["750GB drive: $250 each"])
                drive_cost = 250
            else:
                add_output("Servers",
                           T.div[T.b["unknown cost per drive, assuming $100"]])
                drive_cost = 100

            if drives_per_server <= 4:
                add_output("Servers", T.div["1U box with <= 4 drives: $1500"])
                server_cost = 1500 # typical 1U box
            elif drives_per_server <= 12:
                add_output("Servers", T.div["2U box with <= 12 drives: $2500"])
                server_cost = 2500 # 2U box
            else:
                add_output("Servers",
                           T.div[T.b["Note: too many drives per server, "
                                     "assuming $3000"]])
                server_cost = 3000

            server_capital_cost = (server_cost + drives_per_server * drive_cost)
            total_server_cost = float(num_servers * server_capital_cost)
            add_output("Servers", T.div["Capital cost per server: $",
                                        server_capital_cost])
            add_output("Grid", T.div["Capital cost for all servers: $",
                                     number(total_server_cost)])
            # $70/Mbps/mo
            # $44/server/mo power+space
            server_bandwidth = max(server_inbound_byte_rate,
                                   server_outbound_byte_rate)
            server_bandwidth_mbps = mathutil.div_ceil(int(server_bandwidth*8),
                                                      int(1e6))
            server_monthly_cost = 70*server_bandwidth_mbps + 44
            add_output("Servers", T.div["Monthly cost per server: $",
                                        server_monthly_cost])
            add_output("Users", T.div["Capital cost per user: $",
                                      number(total_server_cost / num_users)])

            # reliability
            any_drive_failure_rate = total_drives * drive_failure_rate
            any_drive_MTBF = 1 // any_drive_failure_rate  # in seconds
            any_drive_MTBF_days = any_drive_MTBF / 86400
            add_output("Drives",
                       T.div["MTBF (any drive): ",
                             number(any_drive_MTBF_days), " days"])
            drive_replacement_monthly_cost = (float(drive_cost)
                                              * any_drive_failure_rate
                                              *30*86400)
            add_output("Grid",
                       T.div["Monthly cost of replacing drives: $",
                             number(drive_replacement_monthly_cost)])

            total_server_monthly_cost = float(num_servers * server_monthly_cost
                                              + drive_replacement_monthly_cost)

            add_output("Grid", T.div["Monthly cost for all servers: $",
                                     number(total_server_monthly_cost)])
            add_output("Users",
                       T.div["Monthly cost per user: $",
                             number(total_server_monthly_cost / num_users)])

            # availability
            file_dBA = self.file_availability(k, n, server_dBA)
            user_files_dBA = self.many_files_availability(file_dBA,
                                                          files_per_user)
            all_files_dBA = self.many_files_availability(file_dBA, total_files)
            add_output("Users",
                       T.div["availability of: ",
                             "arbitrary file = %d dBA, " % file_dBA,
                             "all files of user1 = %d dBA, " % user_files_dBA,
                             "all files in grid = %d dBA" % all_files_dBA,
                             ],
                       )

            time_until_files_lost = (n-k+1) / any_drive_failure_rate
            add_output("Grid",
                       T.div["avg time until files are lost: ",
                             number(time_until_files_lost, "s"), ", ",
                             number(time_until_files_lost/86400, " days"),
                             ])

            share_data_loss_rate = any_drive_failure_rate * drive_size
            add_output("Grid",
                       T.div["share data loss rate: ",
                             number(share_data_loss_rate,"Bps")])

            # the worst-case survival numbers occur when we do a file check
            # and the file is just above the threshold for repair (so we
            # decide to not repair it). The question is then: what is the
            # chance that the file will decay so badly before the next check
            # that we can't recover it? The resulting probability is per
            # check interval.
            # Note that the chances of us getting into this situation are low.
            P_disk_failure_during_interval = (drive_failure_rate *
                                              file_check_interval)
            disk_failure_dBF = 10*math.log10(P_disk_failure_during_interval)
            disk_failure_dBA = -disk_failure_dBF
            file_survives_dBA = self.file_availability(k, repair_threshold,
                                                       disk_failure_dBA)
            user_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, files_per_user)
            all_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, total_files)
            add_output("Users",
                       T.div["survival of: ",
                             "arbitrary file = %d dBA, " % file_survives_dBA,
                             "all files of user1 = %d dBA, " %
                             user_files_survives_dBA,
                             "all files in grid = %d dBA" %
                             all_files_survives_dBA,
                             " (per worst-case check interval)",
                             ])



        all_sections = []
        all_sections.append(build_section("Users"))
        all_sections.append(build_section("Servers"))
        all_sections.append(build_section("Drives"))
        if "Grid" in sections:
            all_sections.append(build_section("Grid"))

        f = T.form(action=".", method="post", enctype="multipart/form-data")

        if filled:
            action = "Recompute"
        else:
            action = "Compute"

        f = f[T.input(type="hidden", name="filled", value="true"),
              T.input(type="submit", value=action),
              all_sections,
              ]

        try:
            from allmydata import reliability
            # we import this just to test to see if the page is available
            _hush_pyflakes = reliability
            del _hush_pyflakes
            f = [T.div[T.a(href="../reliability")["Reliability Math"]], f]
        except ImportError:
            pass

        return f
Ejemplo n.º 30
0
    def _setup_encoding_parameters(self):
        """
        I set up the encoding parameters, including k, n, the number
        of segments associated with this file, and the segment decoders.
        """
        (seqnum, root_hash, IV, segsize, datalength, k, n, known_prefix,
         offsets_tuple) = self.verinfo
        self._required_shares = k
        self._total_shares = n
        self._segment_size = segsize
        self._data_length = datalength

        if not IV:
            self._version = MDMF_VERSION
        else:
            self._version = SDMF_VERSION

        if datalength and segsize:
            self._num_segments = mathutil.div_ceil(datalength, segsize)
            self._tail_data_size = datalength % segsize
        else:
            self._num_segments = 0
            self._tail_data_size = 0

        self._segment_decoder = codec.CRSDecoder()
        self._segment_decoder.set_params(segsize, k, n)

        if not self._tail_data_size:
            self._tail_data_size = segsize

        self._tail_segment_size = mathutil.next_multiple(
            self._tail_data_size, self._required_shares)
        if self._tail_segment_size == self._segment_size:
            self._tail_decoder = self._segment_decoder
        else:
            self._tail_decoder = codec.CRSDecoder()
            self._tail_decoder.set_params(self._tail_segment_size,
                                          self._required_shares,
                                          self._total_shares)

        self.log("got encoding parameters: "
                 "k: %d "
                 "n: %d "
                 "%d segments of %d bytes each (%d byte tail segment)" % \
                 (k, n, self._num_segments, self._segment_size,
                  self._tail_segment_size))

        # Our last task is to tell the downloader where to start and
        # where to stop. We use three parameters for that:
        #   - self._start_segment: the segment that we need to start
        #     downloading from.
        #   - self._current_segment: the next segment that we need to
        #     download.
        #   - self._last_segment: The last segment that we were asked to
        #     download.
        #
        #  We say that the download is complete when
        #  self._current_segment > self._last_segment. We use
        #  self._start_segment and self._last_segment to know when to
        #  strip things off of segments, and how much to strip.
        if self._offset:
            self.log("got offset: %d" % self._offset)
            # our start segment is the first segment containing the
            # offset we were given.
            start = self._offset // self._segment_size

            assert start < self._num_segments
            self._start_segment = start
            self.log("got start segment: %d" % self._start_segment)
        else:
            self._start_segment = 0

        # If self._read_length is None, then we want to read the whole
        # file. Otherwise, we want to read only part of the file, and
        # need to figure out where to stop reading.
        if self._read_length is not None:
            # our end segment is the last segment containing part of the
            # segment that we were asked to read.
            self.log("got read length %d" % self._read_length)
            if self._read_length != 0:
                end_data = self._offset + self._read_length

                # We don't actually need to read the byte at end_data,
                # but the one before it.
                end = (end_data - 1) // self._segment_size

                assert end < self._num_segments
                self._last_segment = end
            else:
                self._last_segment = self._start_segment
            self.log("got end segment: %d" % self._last_segment)
        else:
            self._last_segment = self._num_segments - 1

        self._current_segment = self._start_segment
Ejemplo n.º 31
0
    def do_test(self, size, required_shares, max_shares, fewer_shares=None):
        data0s = [os.urandom(mathutil.div_ceil(size, required_shares)) for i in range(required_shares)]
        enc = CRSEncoder()
        enc.set_params(size, required_shares, max_shares)
        params = enc.get_params()
        assert params == (size, required_shares, max_shares)
        serialized_params = enc.get_serialized_params()
        self.assertEqual(parse_params(serialized_params), params)
        log.msg("params: %s" % (params,))
        d = enc.encode(data0s)
        def _done_encoding_all(shares_and_shareids):
            (shares, shareids) = shares_and_shareids
            self.failUnlessEqual(len(shares), max_shares)
            self.shares = shares
            self.shareids = shareids
        d.addCallback(_done_encoding_all)
        if fewer_shares is not None:
            # also validate that the desired_shareids= parameter works
            desired_shareids = random.sample(list(range(max_shares)), fewer_shares)
            d.addCallback(lambda res: enc.encode(data0s, desired_shareids))
            def _check_fewer_shares(some_shares_and_their_shareids):
                (some_shares, their_shareids) = some_shares_and_their_shareids
                self.failUnlessEqual(tuple(their_shareids), tuple(desired_shareids))
            d.addCallback(_check_fewer_shares)

        def _decode(shares_and_shareids):
            (shares, shareids) = shares_and_shareids
            dec = CRSDecoder()
            dec.set_params(*params)
            d1 = dec.decode(shares, shareids)
            return d1

        def _check_data(decoded_shares):
            self.failUnlessEqual(len(b''.join(decoded_shares)), len(b''.join(data0s)))
            self.failUnlessEqual(len(decoded_shares), len(data0s))
            for (i, (x, y)) in enumerate(zip(data0s, decoded_shares)):
                self.failUnlessEqual(x, y, "%s: %r != %r....  first share was %r" % (str(i), x, y, data0s[0],))
            self.failUnless(b''.join(decoded_shares) == b''.join(data0s), "%s" % ("???",))
            # 0data0sclipped = tuple(data0s)
            # data0sclipped[-1] =
            # self.failUnless(tuple(decoded_shares) == tuple(data0s))

        def _decode_some(res):
            log.msg("_decode_some")
            # decode with a minimal subset of the shares
            some_shares = self.shares[:required_shares]
            some_shareids = self.shareids[:required_shares]
            return _decode((some_shares, some_shareids))
        d.addCallback(_decode_some)
        d.addCallback(_check_data)

        def _decode_some_random(res):
            log.msg("_decode_some_random")
            # use a randomly-selected minimal subset
            l = random.sample(list(zip(self.shares, self.shareids)), required_shares)
            some_shares = [ x[0] for x in l ]
            some_shareids = [ x[1] for x in l ]
            return _decode((some_shares, some_shareids))
        d.addCallback(_decode_some_random)
        d.addCallback(_check_data)

        def _decode_multiple(res):
            log.msg("_decode_multiple")
            # make sure we can re-use the decoder object
            shares1 = random.sample(self.shares, required_shares)
            sharesl1 = random.sample(list(zip(self.shares, self.shareids)), required_shares)
            shares1 = [ x[0] for x in sharesl1 ]
            shareids1 = [ x[1] for x in sharesl1 ]
            sharesl2 = random.sample(list(zip(self.shares, self.shareids)), required_shares)
            shares2 = [ x[0] for x in sharesl2 ]
            shareids2 = [ x[1] for x in sharesl2 ]
            dec = CRSDecoder()
            dec.set_params(*params)
            d1 = dec.decode(shares1, shareids1)
            d1.addCallback(_check_data)
            d1.addCallback(lambda res: dec.decode(shares2, shareids2))
            d1.addCallback(_check_data)
            return d1
        d.addCallback(_decode_multiple)

        return d