Ejemplo n.º 1
0
def get_spec(unum, separate=False, bandnames=None, bandlimits=None, bandnorms=None, retCoord=False, retST=False):
    '''
    This function finds and pulls spectrum from the BDNYC database. Specifically, it looks for low-res, NIR SpeX Prism spectra. It can split and normalize it by the NIR bands (J, H, and K).
    
    *unum*
      String with the U-number of the target (e.g. U20268).
    *separate*
      Boolean, whether to split and normalize the spectrum by NIR bands (J, H, and K)
    *bandnames*
      List with strings containing the band names used to separate the spectrum (when separate=True)
    *bandlimits*
      Dictionary with keys *bandnames*, each key containing a list with float numbers specifying the bands limits (e.g. {'J': [0.8,1.4], 'H': [1.4,1.9], 'K': [1.9,2.4]}
    *bandnorms*
      Same structure as *bandlimits*, this time the float numbers specify the wavelength ranges used to normalize the bands (when separate=True)
    *retCoord*
      Boolean, whether to pull from the database the target coordinates
    *retST*
      Boolean, whether to pull from the database the target spectral type
    '''
    
    import pickle
    import BDNYC
    import astrotools as at
    
    # 1. Initialize variables ---------------------------------------
    FOLDER_DB = '/Users/alejo/Dropbox/Python/Python_Database/'
    FILE_DB = 'BDNYCData.txt'
    
    # 2. Load database ----------------------------------------------
    f = open(FOLDER_DB + FILE_DB,'rb')
    bdnyc = pickle.load(f)
    f.close()
    
    # 3. Check data available for target ----------------------------
    availData = bdnyc.show_data(unum, dump=True)
    if availData is None:
        return
    
    # 4. Find Spex Prism data ---------------------------------------
    spexFound = False
    for row in availData:
        # Check that row is data row
        try:
            row[0] + 1
        except TypeError:
            continue
        # Check that row is nir row
        try:
            loc = row.index('nir')
        except ValueError:
            continue
        # Check that row is low res row
        try:
            loc = row.index('low')
        except ValueError:
            continue
        # Check that row is Spex Prism row
        instr = row[3].lower()
        loc = instr.find('spex')
        if loc != -1:
            spexFound = True
            specIdx = row[0]
            break
    if not spexFound:
        print 'Spectrum for target not found.'
        return
    
    # 5. Fetch target parameters if requested -----------------------
    params = []
    if retCoord:
        ra = availData[4][1][0:5]
        dec = availData[5][1][0:6]
        coord = ra + dec
        coord = coord.replace(' ','')
        params.append(coord)
    if retST:
        st = availData[3][1]
        params.append(st)
    
    # 6. Get spectrum -----------------------------------------------
    specRaw = bdnyc.get_data(unum, specIdx)
    
    # 7. Separate spectrum by bands ---------------------------------
    if separate:
        spec = [None] * 3
        for bIdx, band in enumerate(bandnames):
            bLim = bandlimits[band][0]
            bMax = bandlimits[band][1]
            
            idx1 = np.where(specRaw[0,:] >= bLim)
            idx2 = np.where(specRaw[0,:] <= bMax)
            idx = np.intersect1d(idx1[0], idx2[0])
            if len(idx) == 0:
                print 'Error in spectrum range.'
                return
            spec[bIdx] = specRaw[:,idx]
        
        # 8. Normalize spectrum -------------------------------------
        specNorm = [None] * 3
        for bIdx, band in enumerate(bandnames):
            specNorm[bIdx] = at.norm_spec(spec[bIdx], bandnorms[band])[0]
        
        if params != []:
            return specNorm, params
        else:
            return specNorm
    else:
        if params != []:
                return specRaw, params
        else:
            return specRaw
Ejemplo n.º 2
0
def main(spInput, grav=''):
    # 1. LOAD RELEVANT MODULES ---------------------------------------------------------
    import astrotools as at
    import asciidata
    import pyfits
    import matplotlib.pyplot as plt
    import numpy
    import sys
    import pdb
    
    
    # 2. SET UP VARIABLES --------------------------------------------------------------
    FOLDER_ROOT = '/Users/alejo/KCData/'  # Location of NIR and OPT folders
    FOLDER_OUT  = 'Output/NOCN/'
    OPTNIR_KEYS  = ['OPT', 'NIR']
    BAND_NAME  = ['NIR']
    data       = ''
    dataRaw    = ''
    specFiles  = ''
    spectraRaw = ''
    spectra    = ''
    
    # For TXT objects file (updatable here directly)
    FILE_IN     = 'nir_spex_prism_with_optical_12aug15.txt' # ASCII file w/ data
    HDR_FILE_IN = ('Ref','Designation','J','H','K','SpType','SpType_T','NIRFobs',\
                   'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\
                   'Young?','Dusty?','Blue?','Multiple?','Pec?')
    
    colNameRef   = HDR_FILE_IN[0]
    colNameDesig = HDR_FILE_IN[1]
    colNameJ     = HDR_FILE_IN[2]
    colNameK     = HDR_FILE_IN[4]
    colNameJK    = 'J-K'
    colNameType  = HDR_FILE_IN[6]
    colNameYng   = HDR_FILE_IN[14]
    colNameDust  = HDR_FILE_IN[15]
    colNameBlue  = HDR_FILE_IN[16]
    colNamePec   = HDR_FILE_IN[18]
    
    # For TXT exclude-objects file
    EXCL_FILE = 'Exclude_Objs.txt'   # ASCII file w/ U#s of objects to exclude
    
    
    # 3. READ DATA FROM INPUT FILES ----------------------------------------------------
    NULL_CHAR = ''   # Null character
    DELL_CHAR = '\t' # Delimiter character
    COMM_CHAR = '#'  # Comment character
    
    # File with objects (query in Access)
    dataRaw = asciidata.open(FOLDER_ROOT + FILE_IN, NULL_CHAR, DELL_CHAR, COMM_CHAR)
    
    # Store data in a dictionary-type object
    data = {}.fromkeys(HDR_FILE_IN)
    for colIdx,colData in enumerate(dataRaw):
        data[HDR_FILE_IN[colIdx]] = colData.tonumpy()
    
    
    # 4. FORMAT SOME ASCII COLUMNS -----------------------------------------------------
    # 4.1 Convert into unicode the Spectral Type-Text column
    uniSpType = [None] * len(data[colNameType])
    for sIdx,sType in enumerate(data[colNameType]):
        uniSpType[sIdx] = sType.decode('utf-8')
    
    data[colNameType] = numpy.array(uniSpType)
    
    # 4.2 Calculate J-K Color And Add J-K Column
    data[colNameJK] = data[colNameJ] - data[colNameK]
    
    # 4.3 Format Designation Number from Designation Column
    for desigIdx,desig in enumerate(data[colNameDesig]):
        desig = ''.join(desig.split())
        signType = '+'
        signPos = desig.find(signType)
        if signPos == -1:
            signType = '-'
            signPos  = desig.find(signType)
        
        desigProper = desig[:4] + signType + desig[signPos+1:signPos+5]
        data[colNameDesig][desigIdx] = desigProper
    
    
    # 5. FILTER DATA BY USER INPUT IN spInput ------------------------------------------
    # Find all spectra of same spectral type
    specIdx = []
    for spIdx,spType in enumerate(data[colNameType]):
        if spType.upper().startswith(spInput.upper()):
            specIdx.append(spIdx)
    
    if not specIdx:
        print 'No target found for given input.'
        return
    spTypeInput = spInput.upper()
    
    # Sort relevant objects by JKmag value
    specIdx     = numpy.array(specIdx)
    specSortIdx = data[colNameJK][specIdx].argsort()
    
    
    # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ----------------------------------------
    spectraRaw    = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files
    specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes
    
    for key in OPTNIR_KEYS:
        specFiles = [None] * len(specSortIdx)
        
        for sortIdx,specSort in enumerate(specSortIdx):
            tmpFullName = FOLDER_ROOT + key + '/' + data[key + 'file'][specIdx[specSort]]
            specFiles[sortIdx] = tmpFullName
            specFilesDict[key] = specFiles
        
        spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \
                                       errors=True, verbose=False)
    
    # Clear out spectral data for objects missing either OPT or NIR data
    allNone = True
    for spIdx in range(0,len(spectraRaw['OPT'])):
        if spectraRaw['OPT'][spIdx] is None:
            spectraRaw['NIR'][spIdx] = None
        elif spectraRaw['NIR'][spIdx] is None:
            spectraRaw['OPT'][spIdx] = None
        else:
            allNone = False
    
    if allNone:
        print 'No spectral data found for objects of the given spectral type.'
        return
    
    # Convert spectraRaw contents into lists if only one spectral data
    for key in spectraRaw.keys():
        if spectraRaw[key][0] is not None:
            if len(spectraRaw[key][0]) > 3:
                spectraRaw[key] = [spectraRaw[key],]
    
    
    # 7. GATHER OBJECTS' NAMES----------------------------------------------------------
    # Filtered objects
    refs = [None] * len(specSortIdx)
    for idx,spIdx in enumerate(specSortIdx):
        tmpRef    = data[colNameRef][specIdx[spIdx]]
        refs[idx] = str(int(tmpRef))
    
    
    #8. SMOOTH SPECTRA -----------------------------------------------------------------
    # Smooth the flux data to a reasonable resolution
    spectraS = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \
                              winWidth=0)
    
    
    # 9. SET LIMITS FOR BAND AND NORMALIZING SECTION------------------------------------
    # Initialize dictionary to store limits
    BAND_LIMS = {}.fromkeys(BAND_NAME)
    for bandKey in BAND_NAME:
        BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2)
    
    # Set wl limits for band
    # Limits are in microns
    BAND_LIMS['NIR']['lim'][0] = 0.8
    BAND_LIMS['NIR']['lim'][1] = 2.4
    
    # Set wl limits for normalizing sections; this is the peak of the J band
    # Limits are in microns
    BAND_LIMS['NIR']['limN'][0] = 1.28
    BAND_LIMS['NIR']['limN'][1] = 1.32
    
    
    # 10. SELECT SPECTRAL DATA FOR NIR BAND---------------------------------------------
    # Initialize variables
    spectraN = {}.fromkeys(BAND_NAME)
    
    # Gather reference numbers of objects
    objRef = data[colNameRef][specIdx[specSortIdx]]
    
    # Select band
    spectra = at.sel_band(spectraS, BAND_LIMS['NIR']['lim'], objRef)
    
    # Normalize band
    spectraN['NIR'] = at.norm_spec(spectra, BAND_LIMS['NIR']['limN'])
    
    
    # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...)---------------
    # Determine which targets to exclude using the "Exclude_Objs" file
    toExclude = [False] * len(refs)
    dataExcl = asciidata.open(FOLDER_ROOT + EXCL_FILE, NULL_CHAR, DELL_CHAR, COMM_CHAR)
    if len(dataExcl[0]) > 0:
        # Extract data from "Exclude_Objs" file
        excludeObjs = [None] * len(dataExcl[0])
        for rowIdx, rowData in enumerate(dataExcl[0]):
            excludeObjs[rowIdx] = str(rowData)
        
        # Find intersection of exclude-obj list and filtered targets list
        setExclude = set(excludeObjs).intersection(set(refs))
        
        # Create list with intersection targets
        if len(setExclude) != 0:
            for exclIdx in setExclude:
                tmpExclIdx = numpy.where(numpy.array(refs) == exclIdx)
                toExclude[tmpExclIdx[0]] = True
    
    # Determine which targets are blue
    blueObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBlue][spIdx].upper() == 'YES':
            blueObjs[idx] = True
    
    # Determine which targets are dusty
    dustyObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameDust][spIdx].upper() == 'YES':
            dustyObjs[idx] = True
    
    # Determine which targets are peculiar
    pecObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNamePec][spIdx].upper() == 'YES':
            pecObjs[idx] = True
    
    # Determine which plots are young objects
    youngObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specSortIdx):
        if data[colNameYng][specIdx[spIdx]].upper() == 'YES':
            youngObjs[idx] = True
    
    # Determine which targets are GAMMA
    gammaObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen  = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb3"
        if utcA == '\xce' and utcB == '\xb3':
            gammaObjs[idx] = True
    
    # Determine which targets are BETA
    betaObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen  = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb2"
        if utcA == '\xce' and utcB == '\xb2':
            betaObjs[idx] = True
    
    # Determine which targets to include in plots (based on user input)
    # Consolidate plotting instructions
    grav = grav.upper()
    plotInstructions = ['exclude'] * len(refs)
    if grav == 'Y': # If plot request is Young, include gamma, beta & young targets
        for plotIdx in range(len(refs)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'G': # If plot request is Gamma, include only gamma targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'B': # If plot request is Beta, include only beta targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'F': # If plot request is Field, include Field & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                continue
            plotInstructions[plotIdx] = 'field'
    
    else:   # Otherwise, print Field, gamma, beta, young & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                continue
            if youngObjs[plotIdx]:
                plotInstructions[plotIdx] = 'young'
            else:
                plotInstructions[plotIdx] = 'field'
    
    # If all plot instructions are "exclude", then stop procedure
    allExcl = True
    for instr in plotInstructions:
        if instr != 'exclude':
            allExcl = False
    if allExcl:
        if not uniqueSpec:
            print 'No spectral data to plot based on your request.'
            return
    
    
    # 12. PLOT DATA --------------------------------------------------------------------
    # Gather info on each object (for legend purposes)
    objInfo = [None] * len(refs)
    for posIdx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpDesig  = data[colNameDesig][spIdx]
        tmpJK     = data[colNameJK][spIdx]
        tmpSPtype = data[colNameType][spIdx]
        tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype))  # For alignment purposes
    
        objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK)
    
    # Create Figure with Subplots
    figObj = plotspec(spectraN, BAND_NAME, BAND_LIMS, objInfo, spTypeInput, grav, \
                        plotInstructions)
    
    figObj.savefig(FOLDER_ROOT + FOLDER_OUT + spTypeInput + grav + '_fan.pdf', \
                   dpi=800)
Ejemplo n.º 3
0
# 3. GET SPECTRAL NIR STANDARDS & TEMPLATES -----------------------------------
spTypes = []
spectra = {}.fromkeys(BANDS)
for band in BANDS:
    spectra[band] = []

for idxTp, spTp in enumerate(SPTYPES):
    # Fetch standard
    tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False)
    # Normalize standard
    for bdIdx, band in enumerate(BANDS):
        if idxTp in [1,2,3] and band == 'H':
            norm_lims = SPECIAL_H_NORM_LIM
        else:
            norm_lims = NORM_LIMS[band]['lim']
        stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0]
        spectra[band].append(stdToPlot)
        #spectra[band].append(tmpStd[bdIdx])
    
    # Fetch template from ascii files generated by make_templ.py in templates/ folder.
    for bdIdx, band in enumerate(BANDS):
        fileNm = spTp + band + '_' + GRAV + '.txt'
        templRaw = ad.read(FOLDER_OUT_TMPL + fileNm, delimiter='\t', \
                           format='no_header')
        templRawToPlot = np.array([templRaw.columns[i] for i in range(5)])
        
        # Normalize when necessary
        if len(templRawToPlot) <= 3:
            if idxTp in [1,2,3] and band == 'H':
                norm_lims = SPECIAL_H_NORM_LIM
            else:
Ejemplo n.º 4
0
def main(spInput,
         grav='',
         plot=True,
         templ=False,
         std=False,
         lbl=False,
         normalize=True):

    # 1. LOAD RELEVANT MODULES ------------------------------------------------
    #import asciidata
    import astrotools as at
    import numpy as np
    import sys
    import pdb
    import matplotlib.pyplot as plt
    from astropy.io import ascii

    # 2. SET UP VARIABLES -----------------------------------------------------
    # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><>
    FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/'  # Location of NIR and OPT folders
    FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/'  # Location of input files
    FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/'  # Location to save output figures
    FILE_IN = 'nir_spex_prism_with_optical.txt'  # ASCII file w/ data
    # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

    # For TXT objects list file
    HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\
                   'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\
                   'Young?','Dusty?','Blue?','Binary?','Pec?')
    # For TXT standards file
    FILE_IN_STD = 'NIR_Standards.txt'  # ASCII file w/ standards
    HDR_FILE_IN_STD = ('Ref', 'Designation', 'NIR SpType', 'OPT SpType')
    colNameNIRS = HDR_FILE_IN_STD[2]
    colNameOPTS = HDR_FILE_IN_STD[3]

    # For TXT exclude-objects file
    EXCL_FILE = 'Exclude_Objs.txt'  # ASCII file w/ unums of objects to exclude

    OPTNIR_KEYS = ['OPT', 'NIR']
    BANDS_NAMES = ['K', 'H', 'J', 'OPT']
    data = ''
    dataRaw = ''
    specFiles = ''
    spectraRaw = ''
    spectra = ''

    colNameRef = HDR_FILE_IN[0]
    colNameDesig = HDR_FILE_IN[1]
    colNameJ = HDR_FILE_IN[2]
    colNameK = HDR_FILE_IN[4]
    colNameJK = 'J-K'
    colNameType = HDR_FILE_IN[6]
    colNameNIRfile = HDR_FILE_IN[9]
    colNameYng = HDR_FILE_IN[14]
    colNameDust = HDR_FILE_IN[15]
    colNameBlue = HDR_FILE_IN[16]
    colNameBin = HDR_FILE_IN[17]
    colNamePec = HDR_FILE_IN[18]

    # Initialize dictionary to store NIR bands limits and normalizing sections
    BAND_LIMS = {}.fromkeys(BANDS_NAMES)
    for bandKey in BANDS_NAMES:
        BAND_LIMS[bandKey] = dict(lim=[None] * 2, limN=[None] * 2)

    # Set wavelength limits for bands
    # Limits are in microns
    BAND_LIMS['OPT']['lim'][0] = 0.65
    BAND_LIMS['OPT']['lim'][1] = 0.90
    BAND_LIMS['J']['lim'][0] = 0.8
    BAND_LIMS['J']['lim'][1] = 1.4
    BAND_LIMS['H']['lim'][0] = 1.4
    BAND_LIMS['H']['lim'][1] = 1.9
    BAND_LIMS['K']['lim'][0] = 1.9
    BAND_LIMS['K']['lim'][1] = 2.4

    # Set wl limits for normalizing sections
    # Limits are in microns
    BAND_LIMS['OPT']['limN'][0] = 0.66
    BAND_LIMS['OPT']['limN'][1] = 0.89
    BAND_LIMS['J']['limN'][0] = 0.87
    BAND_LIMS['J']['limN'][1] = 1.39
    BAND_LIMS['H']['limN'][0] = 1.41
    BAND_LIMS['H']['limN'][1] = 1.89
    BAND_LIMS['K']['limN'][0] = 1.91
    BAND_LIMS['K']['limN'][1] = 2.39

    # 3. READ DATA FROM INPUT FILES -------------------------------------------
    DELL_CHAR = '\t'  # Delimiter character
    COMM_CHAR = '#'  # Comment character

    # File with objects (source: query in Access)
    dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \
                         delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1)

    # Store data in a dictionary-type object
    data = {}.fromkeys(HDR_FILE_IN)
    for colIdx, colname in enumerate(dataRaw.colnames):
        data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname])

    # File with standards (source: manually generated)
    dataRawS = ascii.read(FOLDER_IN + FILE_IN_STD, data_start=0)

    # Store standard data in a dictionary-type object
    dataS = {}.fromkeys(HDR_FILE_IN_STD)
    for colIdx, colname in enumerate(dataRawS.colnames):
        dataS[HDR_FILE_IN_STD[colIdx]] = np.array(dataRawS[colname])

    # 4. FORMAT SOME ASCII COLUMNS --------------------------------------------
    # 4.1 Convert into unicode the Spectral Type-Text column
    uniSpType = [None] * len(data[colNameType])
    for sIdx, sType in enumerate(data[colNameType]):
        uniSpType[sIdx] = sType  #.decode('utf-8')
    data[colNameType] = np.array(uniSpType)

    # 4.2 Calculate J-K Color
    data[colNameJK] = data[colNameJ] - data[colNameK]

    # 4.3 Format Designation Number in Designation Column
    #     (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX")
    for desigIdx, desig in enumerate(data[colNameDesig]):
        desig = ''.join(desig.split())
        signType = '+'
        signPos = desig.find(signType)
        if signPos == -1:
            signType = '-'
            signPos = desig.find(signType)

        desigProper = desig[:4] + signType + desig[signPos + 1:signPos + 5]
        data[colNameDesig][desigIdx] = desigProper

    # 5. FILTER DATA BY USER INPUT IN spInput ---------------------------------
    uniqueSpec = False
    specIdx = []
    if spInput.upper().startswith('L'):
        # If input is a spectral type, then find all spectra of same spectral type
        for spIdx, spType in enumerate(data[colNameType]):
            if spType.upper().startswith(spInput.upper()):
                specIdx.append(spIdx)
        if not specIdx:
            print('No targets found for given input.')
            if std is False:
                return
        spTypeInput = spInput.upper()
    else:
        # If input is one single spectrum, then find it
        for spIdx, spType in enumerate(data[colNameRef]):
            if str(spType) == spInput.upper():
                specIdx.append(spIdx)
        if not specIdx:
            print('Requested target not found.')
            if std is False:
                return
        else:
            spTypeInput = data[colNameType][specIdx[0]][0:2]
            uniqueSpec = True

    # Find NIR standard target that matches user's spectral type
    stdIdx = []
    for spIdx, spType in enumerate(dataS[colNameNIRS]):
        if spType.upper().startswith(spTypeInput):
            stdIdx.append(spIdx)

    # Add NIR standard target to list of filtered objects if not there already
    # (It may not be included in first filter because OPT SpT != NIR SpT)
    if not uniqueSpec:
        if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]:
            for spIdx, spRef in enumerate(data[colNameRef]):
                if spRef == dataS[colNameRef][stdIdx][0]:
                    if spIdx not in specIdx:
                        specIdx.append(spIdx)

    # Sort relevant objects by JKmag value
    specIdx = np.array(specIdx)
    specSortIdx = data[colNameJK][specIdx].argsort()

    # 6. READ SPECTRAL DATA FROM SPECTRAL FILES -------------------------------
    spectraRaw = {}.fromkeys(
        OPTNIR_KEYS)  # Used to store the raw data from fits files
    specFilesDict = {}.fromkeys(OPTNIR_KEYS)  # Used for reference purposes

    for key in OPTNIR_KEYS:
        specFiles = [None] * len(specSortIdx)

        for sortIdx, specSort in enumerate(specSortIdx):
            if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue
            if data[key + 'file'][specIdx[specSort]] == 'include': continue
            tmpFullName = FOLDER_ROOT + key + '/' + data[key \
                          + 'file'][specIdx[specSort]]
            specFiles[sortIdx] = tmpFullName
            specFilesDict[key] = specFiles

        spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \
                                       errors=True, verbose=False)

    # Clear out spectral data for objects missing either OPT or NIR data
    allNone = True
    for spIdx in range(0, len(spectraRaw['OPT'])):
        if spectraRaw['OPT'][spIdx] is None:
            spectraRaw['NIR'][spIdx] = None
        elif spectraRaw['NIR'][spIdx] is None:
            spectraRaw['OPT'][spIdx] = None
        else:
            allNone = False

    if allNone:
        print('No spectral data found for objects of the given spectral type.')
        if std is False:
            return

    # Convert spectraRaw contents into lists if only one spectral data
    # (This reduces the dimensions of the object holding the data)
    for key in spectraRaw.keys():
        if spectraRaw[key][0] is not None:
            if len(spectraRaw[key][0]) > 3:
                spectraRaw[key] = [
                    spectraRaw[key],
                ]

    # 7. GATHER OBJECTS' NAMES ------------------------------------------------
    # Filtered objects
    refs = [None] * len(specSortIdx)
    for idx, spIdx in enumerate(specSortIdx):
        tmpRef = data[colNameRef][specIdx[spIdx]]
        refs[idx] = str(tmpRef)

    # Standard objects
    refsStd = [None] * len(dataS[colNameRef])
    for idx, spIdx in enumerate(dataS[colNameRef]):
        tmpRef = dataS[colNameRef][idx]
        refsStd[idx] = str(tmpRef)

    # Gather reference numbers of objects
    objRef = data[colNameRef][specIdx[specSortIdx]]

    #8. SMOOTH SPECTRA --------------------------------------------------------
    # Smooth the flux data to a reasonable resolution
    spectraS = {}.fromkeys(OPTNIR_KEYS)
    tmpSpOPT = at.smooth_spec(spectraRaw['OPT'], specFile=specFilesDict['OPT'], \
                              winWidth=10)
    tmpSpNIR = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \
                              winWidth=0)

    spectraS['OPT'] = tmpSpOPT
    spectraS['NIR'] = tmpSpNIR

    # 9. SELECT SPECTRAL DATA FOR THE DIFFERENT BANDS -------------------------
    # Initialize variables
    spectra = {}.fromkeys(BANDS_NAMES)
    spectraN = {}.fromkeys(BANDS_NAMES)

    for bandKey in BANDS_NAMES:
        if bandKey == 'OPT':
            optNIR = 'OPT'
        else:
            optNIR = 'NIR'

        # Select band
        spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]['lim'], \
                                       objRef)
        if spectra[bandKey] is None:
            break

        # Normalize band
        spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], \
                                               BAND_LIMS[bandKey]['limN'], flag=True)
        if flagN:
            print('LIMITS for normalization changed!')
        if spectraN[bandKey] is None:
            break

    # 10. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...) -----
    # Determine which targets to exclude
    # (source: file manually generated)
    toExclude = [False] * len(refs)  # FORCE TO INCLUDE ALL TARGETS
    # dataExcl = ascii.read(FOLDER_IN + EXCL_FILE, data_start=0, delimiter=DELL_CHAR, \
    #                       comment=COMM_CHAR, names=['ID'])
    # if len(dataExcl['ID']) > 0:
    #     # Extract data from "Exclude_Objs" file
    #     excludeObjs = np.array(dataExcl['ID'], dtype='string')
    #
    #     # Find intersection of exclude-obj list and filtered targets list
    #     setExclude = set(excludeObjs).intersection(set(refs))
    #
    #     # Create list with intersection targets
    #     if len(setExclude) != 0:
    #         for exclIdx in setExclude:
    #             tmpExclIdx = np.where(np.array(refs) == exclIdx)
    #             toExclude[tmpExclIdx[0]] = True

    # Determine which target is the NIR Standard object
    O_standard = [None] * 3  # Holds standard for output
    stdObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]:
            stdObjs[idx] = True

            if normalize:
                O_standard[0] = spectraN['J'][idx]
                O_standard[1] = spectraN['H'][idx]
                O_standard[2] = spectraN['K'][idx]
            else:
                O_standard[0] = spectra['J'][idx]
                O_standard[1] = spectra['H'][idx]
                O_standard[2] = spectra['K'][idx]

    # Determine which targets are blue
    blueObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBlue][spIdx].upper() == 'YES':
            blueObjs[idx] = True

    # Determine which targets are dusty
    dustyObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameDust][spIdx].upper() == 'YES':
            dustyObjs[idx] = True

    # Determine which targets are binary
    binObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBin][spIdx].upper() == 'YES':
            binObjs[idx] = True

    # Determine which targets are peculiar
    pecObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNamePec][spIdx].upper() == 'YES':
            pecObjs[idx] = True

    # Determine which targets are young
    youngObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameYng][spIdx].upper() == 'YES':
            youngObjs[idx] = True

    # Determine which targets are GAMMA
    gammaObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb3"
        if utcA == '\xce' and utcB == '\xb3':
            gammaObjs[idx] = True

    # Determine which targets are BETA
    betaObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb2"
        if utcA == '\xce' and utcB == '\xb2':
            betaObjs[idx] = True

    # Determine which targets to include in plots (based on user input)
    # Consolidate plotting & template-flux instructions
    grav = grav.upper()
    plotInstructions = ['exclude'] * len(refs)
    templInstructions = [False] * len(refs)
    if grav == 'Y':  # If plot request is Young, include gamma, beta & young targets
        for plotIdx in range(len(refs)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \
                                                           or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
                templInstructions[plotIdx] = True

    elif grav == 'G':  # If plot request is Gamma, include only gamma targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \
                                                           or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
                templInstructions[plotIdx] = True

    elif grav == 'B':  # If plot request is Beta, include only beta targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \
                                                           or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
                templInstructions[plotIdx] = True

    elif grav == 'F':  # If plot request is Field, include Field & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]:
                continue
            #if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \
            #                                           or binObjs[plotIdx]:
            #    continue
            if stdObjs[plotIdx]:
                plotInstructions[plotIdx] = 'standard'
            else:
                plotInstructions[plotIdx] = 'field'
            templInstructions[plotIdx] = True

    else:  # Otherwise, print Field, gamma, beta, young & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \
                                                       or binObjs[plotIdx]:
                continue
            if youngObjs[plotIdx]:
                plotInstructions[plotIdx] = 'young'
            elif stdObjs[plotIdx]:
                plotInstructions[plotIdx] = 'standard'
            else:
                plotInstructions[plotIdx] = 'field'
            templInstructions[plotIdx] = True

    # If all plot instructions are "exclude", then stop procedure (for spectral types)
    allExcl = True
    for instr in plotInstructions:
        if instr != 'exclude':
            allExcl = False
    if allExcl:
        if std:
            return O_standard
        if not uniqueSpec:
            print('No spectral data to plot based on your request.')
            return

    # 11. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA -----------------------
    # Gather spectra to use to calculate template spectrum
    # if not allExcl:
    #     O_template = [None] * 3 # Holds calculated template for output
    #     templCalculated = False
    #     for bandIdx, bandKey in enumerate(BANDS_NAMES):
    #         if bandKey == 'OPT':
    #             continue
    #
    #         templSpecs = []
    #         for spIdx, spex in enumerate(spectraN[bandKey]):
    #             if templInstructions[spIdx]:
    #                 # Check that spectrum exists
    #                 if spex is None:
    #                     templInstructions[spIdx] = False
    #                     continue
    #
    #                 if bandKey == 'OPT':
    #                     templSpecs.append(spex)
    #                 else:
    #                     # Check that spectrum comes with error values (NIR bands only)
    #                     notNansBool = np.isfinite(spex[2])
    #                     notNans     = np.any(notNansBool)
    #                     if notNans:
    #                         templSpecs.append(spex)
    #                     else:
    #                         print(str(objRef[spIdx]) + ' excluded from template')
    #
    #         # Calculate template spectrum
    #         if len(templSpecs) > 1:
    #             template = at.mean_comb(templSpecs)
    #             templCalculated = True
    #
    #             # Append template to list of spectra to plot in the next step
    #             spectraN[bandKey].append(template)
    #             # Append template to output object
    #             if bandIdx == 0:
    #                 tempIdx = 2
    #             elif bandIdx == 2:
    #                 tempIdx = 0
    #             else:
    #                 tempIdx = 1
    #             O_template[tempIdx] = template
    #
    #     if templCalculated:
    #         refs.append('template')
    #         plotInstructions.append('template')
    #     else:
    #         O_template = None

    # 12. PLOT DATA -----------------------------------------------------------
    if lbl or plot:
        # Gather info on each target
        objInfo = [None] * len(refs)
        for posIdx, spIdx in enumerate(specIdx[specSortIdx]):
            tmpDesig = data[colNameDesig][spIdx]
            tmpJK = data[colNameJK][spIdx]
            tmpSPtype = data[colNameType][spIdx]
            tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype)
                                           )  # For alignment purposes

            objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' +
                               '%.2f' % tmpJK)

        if objInfo[-1] is None:
            objInfo[-1] = 'template'
    if plot:
        # Create Figure with Subplots and Annotations
        tmpspectraN = {key: spectraN[key] for key in ['J', 'H', 'K']}
        tmpBANDS_NAMES = BANDS_NAMES[:-1]
        tmpBAND_LIMS = {key: BAND_LIMS[key] for key in ['J', 'H', 'K']}
        figObj = plotspec(tmpspectraN, tmpBANDS_NAMES, tmpBAND_LIMS, objInfo, \
                          spTypeInput, grav, plotInstructions)

        figObj.savefig(FOLDER_OUT + spTypeInput + grav + '.pdf', dpi=600)

    # 13. DETERMINE OUTPUT ----------------------------------------------------
    if templ:
        if std:
            return O_template, O_standard
        else:
            return O_template
    elif std:
        return O_standard
    else:
        if lbl:
            return spectraN, objInfo
        else:
            return spectraN
 if spTp in SPSTDNM:
     if spTp == 'L2':
         isp = 0
     elif spTp == 'L5':
         isp = 1
     else:
         isp = 2
     tmpspec = at.read_spec('../more data/NIR/' + SPSTD[isp], errors=False, \
                            atomicron=True, negtonan=True)
     for band in BANDS:
         tmpband = at.sel_band(tmpspec, BAND_LIMS[band]['lim'])
         if idxTp in [1,2,3] and band == 'H':
             norm_lims = SPECIAL_H_NORM_LIM
         else:
             norm_lims = NORM_LIMS[band]['lim']
         stdToPlot = at.norm_spec(tmpband, norm_lims)[0]
         spectra[band].append(stdToPlot)
     spTypes.append(spTp)
 
 # # Fetch standard
 # tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False)
 # # Normalize standard
 # for bdIdx, band in enumerate(BANDS):
 #     if idxTp in [1,2,3] and band == 'H':
 #         norm_lims = SPECIAL_H_NORM_LIM
 #     else:
 #         norm_lims = NORM_LIMS[band]['lim']
 #     stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0]
 #     spectra[band].append(stdToPlot)
 #     #spectra[band].append(tmpStd[bdIdx])
 
Ejemplo n.º 6
0
def main(spInput, grav=''):
    # 1. LOAD RELEVANT MODULES ---------------------------------------------------------
    import astrotools as at
    from astropy.io import ascii
    import matplotlib.pyplot as plt
    import numpy as np
    import sys
    import pdb
    
    
    # 2. SET UP VARIABLES --------------------------------------------------------------
    # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><>
    FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/'  # Location of NIR and OPT folders
    FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/' # Location of input files
    FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/' # Location to save output figures
    FILE_IN = 'nir_spex_prism_with_optical.txt' # ASCII file w/ data
    # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
    
    # For TXT objects file (updatable here directly)
    HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\
                   'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\
                   'Young?','Dusty?','Blue?','Binary?','Pec?')
    
    OPTNIR_KEYS  = ['OPT', 'NIR']
    BAND_NAME  = ['NIR']
    data       = ''
    dataRaw    = ''
    specFiles  = ''
    spectraRaw = ''
    spectra    = ''
    
    colNameRef   = HDR_FILE_IN[0]
    colNameDesig = HDR_FILE_IN[1]
    colNameJ     = HDR_FILE_IN[2]
    colNameK     = HDR_FILE_IN[4]
    colNameJK    = 'J-K'
    colNameType  = HDR_FILE_IN[6]
    colNameNIRfile = HDR_FILE_IN[9]
    colNameYng   = HDR_FILE_IN[14]
    colNameDust  = HDR_FILE_IN[15]
    colNameBlue  = HDR_FILE_IN[16]
    colNameBin   = HDR_FILE_IN[17]
    colNamePec   = HDR_FILE_IN[18]
    
    # Initialize dictionary to store NIR bands limits and normalizing sections
    BAND_LIMS = {}.fromkeys(BAND_NAME)
    for bandKey in BAND_NAME:
        BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2)
    
    # Set wl limits for band
    # Limits are in microns
    BAND_LIMS['NIR']['lim'][0] = 0.8
    BAND_LIMS['NIR']['lim'][1] = 2.4
    
    # Set wl limits for normalizing sections; this is the peak of the J band
    # Limits are in microns
    BAND_LIMS['NIR']['limN'][0] = 1.28
    BAND_LIMS['NIR']['limN'][1] = 1.32
    
    
    # 3. READ DATA FROM INPUT FILES ----------------------------------------------------
    DELL_CHAR = '\t' # Delimiter character
    COMM_CHAR = '#'  # Comment character
    
    # File with objects (source: query in Access)
    dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \
                         delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1)
    
    # Store data in a dictionary-type object
    data = {}.fromkeys(HDR_FILE_IN)
    for colIdx,colname in enumerate(dataRaw.colnames):
        data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname])
    
    
    # 4. FORMAT SOME ASCII COLUMNS -----------------------------------------------------
    # 4.1 Convert into unicode the Spectral Type-Text column
    uniSpType = [None] * len(data[colNameType])
    for sIdx,sType in enumerate(data[colNameType]):
        uniSpType[sIdx] = sType#.decode('utf-8')
    
    data[colNameType] = np.array(uniSpType)
    
    # 4.2 Calculate J-K Color
    data[colNameJK] = data[colNameJ] - data[colNameK]
    
    # 4.3 Format Designation Number from Designation Column
    for desigIdx,desig in enumerate(data[colNameDesig]):
        desig = ''.join(desig.split())
        signType = '+'
        signPos = desig.find(signType)
        if signPos == -1:
            signType = '-'
            signPos  = desig.find(signType)
        
        desigProper = desig[:4] + signType + desig[signPos+1:signPos+5]
        data[colNameDesig][desigIdx] = desigProper
    
    
    # 5. FILTER DATA BY USER INPUT IN spInput ------------------------------------------
    # Find all spectra of same spectral type
    specIdx = []
    for spIdx,spType in enumerate(data[colNameType]):
        if spType.upper().startswith(spInput.upper()):
            specIdx.append(spIdx)
    
    if not specIdx:
        print('No target found for given input.')
        return
    spTypeInput = spInput.upper()
    
    # Sort relevant objects by JKmag value
    specIdx     = np.array(specIdx)
    specSortIdx = data[colNameJK][specIdx].argsort()
    
    
    # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ----------------------------------------
    spectraRaw    = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files
    specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes
    
    for key in OPTNIR_KEYS:
        specFiles = [None] * len(specSortIdx)
        
        for sortIdx,specSort in enumerate(specSortIdx):
            if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue
            if data[key + 'file'][specIdx[specSort]] == 'include': continue
            tmpFullName = FOLDER_ROOT + key + '/' + data[key \
                          + 'file'][specIdx[specSort]]
            specFiles[sortIdx] = tmpFullName
            specFilesDict[key] = specFiles
        
        spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \
                                       errors=True, verbose=False)
    
    # Clear out spectral data for objects missing either OPT or NIR data
    allNone = True
    for spIdx in range(0,len(spectraRaw['OPT'])):
        if spectraRaw['OPT'][spIdx] is None:
            spectraRaw['NIR'][spIdx] = None
        elif spectraRaw['NIR'][spIdx] is None:
            spectraRaw['OPT'][spIdx] = None
        else:
            allNone = False
    
    if allNone:
        print('No spectral data found for objects of the given spectral type.')
        return
    
    # Convert spectraRaw contents into lists if only one spectral data
    for key in spectraRaw.keys():
        if spectraRaw[key][0] is not None:
            if len(spectraRaw[key][0]) > 3:
                spectraRaw[key] = [spectraRaw[key],]
    
    
    # 7. GATHER OBJECTS' NAMES ---------------------------------------------------------
    # Filtered objects
    refs = [None] * len(specSortIdx)
    for idx,spIdx in enumerate(specSortIdx):
        tmpRef    = data[colNameRef][specIdx[spIdx]]
        refs[idx] = str(int(tmpRef))
    
    
    #8. SMOOTH SPECTRA -----------------------------------------------------------------
    # Smooth the flux data to a reasonable resolution
    spectraS = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \
                              winWidth=0)
    
    
    # 9. SELECT SPECTRAL DATA FOR NIR BAND --------------------------------------------
    # Initialize variables
    spectraN = {}.fromkeys(BAND_NAME)
    
    # Gather reference numbers of objects
    objRef = data[colNameRef][specIdx[specSortIdx]]
    
    # Select band
    spectra = at.sel_band(spectraS, BAND_LIMS['NIR']['lim'], objRef)
    
    # Normalize band
    spectraN['NIR'] = at.norm_spec(spectra, BAND_LIMS['NIR']['limN'])
    
    
    # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...) --------------
    # Force to include all targerts
    toExclude = [False] * len(refs)
    
    # Determine which targets are blue
    blueObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBlue][spIdx].upper() == 'YES':
            blueObjs[idx] = True
    
    # Determine which targets are dusty
    dustyObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameDust][spIdx].upper() == 'YES':
            dustyObjs[idx] = True
    
    # Determine which targets are peculiar
    pecObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNamePec][spIdx].upper() == 'YES':
            pecObjs[idx] = True
    
    # Determine which plots are young objects
    youngObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specSortIdx):
        if data[colNameYng][specIdx[spIdx]].upper() == 'YES':
            youngObjs[idx] = True
    
    # Determine which targets are GAMMA
    gammaObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen  = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb3"
        if utcA == '\xce' and utcB == '\xb3':
            gammaObjs[idx] = True
    
    # Determine which targets are BETA
    betaObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode('utf-8')
        tmpLen  = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb2"
        if utcA == '\xce' and utcB == '\xb2':
            betaObjs[idx] = True
    
    # Determine which targets to include in plots (based on user input)
    # Consolidate plotting instructions
    grav = grav.upper()
    plotInstructions = ['exclude'] * len(refs)
    if grav == 'Y': # If plot request is Young, include gamma, beta & young targets
        for plotIdx in range(len(refs)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'G': # If plot request is Gamma, include only gamma targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'B': # If plot request is Beta, include only beta targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = 'young'
    
    elif grav == 'F': # If plot request is Field, include Field & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]:
                continue
            plotInstructions[plotIdx] = 'field'
    
    else:   # Otherwise, print Field, gamma, beta, young & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]:
                continue
            if youngObjs[plotIdx]:
                plotInstructions[plotIdx] = 'young'
            else:
                plotInstructions[plotIdx] = 'field'
    
    # If all plot instructions are "exclude", then stop procedure
    allExcl = True
    for instr in plotInstructions:
        if instr != 'exclude':
            allExcl = False
    if allExcl:
        if not uniqueSpec:
            print('No spectral data to plot based on your request.')
            return
    
    
    # 11. PLOT DATA --------------------------------------------------------------------
    # Gather info on each object (for legend purposes)
    objInfo = [None] * len(refs)
    for posIdx,spIdx in enumerate(specIdx[specSortIdx]):
        tmpDesig  = data[colNameDesig][spIdx]
        tmpJK     = data[colNameJK][spIdx]
        tmpSPtype = data[colNameType][spIdx]
        tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype))  # For alignment purposes
        
        objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK)
        
    # Create Figure with Subplots
    figObj = plotspec(spectraN, BAND_NAME, BAND_LIMS, objInfo, spTypeInput, grav, \
                        plotInstructions)
    
    figObj.savefig(FOLDER_OUT + spTypeInput + grav + '_fan.pdf', \
                   dpi=800)
Ejemplo n.º 7
0
def main(spInput, grav='', plot=True, templ=False, std=False, excluded=False, normalize=True):
    # 1. LOAD RELEVANT MODULES ------------------------------------------------
    from astropy.io import ascii
    import astrotools as at
    import numpy as np
    import sys
    import os
    import pdb
    import matplotlib.pyplot as plt
    
    # 2. SET UP VARIABLES -----------------------------------------------------
    # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><>
    FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/'  # Location of NIR and OPT folders
    FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/' # Location of input files
    FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/' # Location to save output figures
    FILE_IN = 'nir_spex_prism_with_optical.txt' # ASCII file w/ data
    # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
    
    # For TXT objects file (updatable here directly)
    HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\
                   'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\
                   'Young?','Dusty?','Blue?','Binary?','Pec?')
    
    # For TXT standards file
    FILE_IN_STD = 'NIR_Standards_K10.txt'   # ASCII file w/ standards
    HDR_FILE_IN_STD = ('Ref','Designation','NIR SpType','OPT SpType')
    colNameNIRS = HDR_FILE_IN_STD[2]
    colNameOPTS = HDR_FILE_IN_STD[3]
    
    OPTNIR_KEYS = ['OPT','NIR']
    BANDS_NAMES = ['K','H','J','OPT']
    data       = ''
    dataRaw    = ''
    specFiles  = ''
    spectraRaw = ''
    spectra    = ''
    
    colNameRef   = HDR_FILE_IN[0]
    colNameDesig = HDR_FILE_IN[1]
    colNameJ     = HDR_FILE_IN[2]
    colNameK     = HDR_FILE_IN[4]
    colNameJK    = 'J-K'
    colNameType  = HDR_FILE_IN[6]
    colNameNIRfile = HDR_FILE_IN[9]
    colNameYng   = HDR_FILE_IN[14]
    colNameDust  = HDR_FILE_IN[15]
    colNameBlue  = HDR_FILE_IN[16]
    colNameBin   = HDR_FILE_IN[17]
    colNamePec   = HDR_FILE_IN[18]
    
    # Initialize dictionary to store NIR bands limits and normalizing sections
    BAND_LIMS = {}.fromkeys(BANDS_NAMES)
    for bandKey in BANDS_NAMES:
        BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2)
    
    # Set wavelength limits for bands
    # Limits are in microns
    BAND_LIMS['OPT']['lim'][0] = 0.65
    BAND_LIMS['OPT']['lim'][1] = 0.90
    BAND_LIMS['J'  ]['lim'][0] = 0.8
    BAND_LIMS['J'  ]['lim'][1] = 1.4 
    BAND_LIMS['H'  ]['lim'][0] = 1.4
    BAND_LIMS['H'  ]['lim'][1] = 1.9
    BAND_LIMS['K'  ]['lim'][0] = 1.9
    BAND_LIMS['K'  ]['lim'][1] = 2.4
    
    # Set wl limits for normalizing sections
    # Limits are in microns
    BAND_LIMS['OPT']['limN'][0] = 0.66
    BAND_LIMS['OPT']['limN'][1] = 0.89
    BAND_LIMS['J'  ]['limN'][0] = 0.87
    BAND_LIMS['J'  ]['limN'][1] = 1.39
    BAND_LIMS['H'  ]['limN'][0] = 1.41
    BAND_LIMS['H'  ]['limN'][1] = 1.89
    BAND_LIMS['K'  ]['limN'][0] = 1.91
    BAND_LIMS['K'  ]['limN'][1] = 2.39
    
    
    # 3. READ DATA FROM MAIN INPUT FILE ---------------------------------------
    DELL_CHAR = '\t' # Delimiter character
    COMM_CHAR = '#'  # Comment character
    
    # File with ALL objects (source: query in Access)
    dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \
                         delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1)
    
    # Store data in a dictionary-type object
    data = {}.fromkeys(HDR_FILE_IN)
    for colIdx,colname in enumerate(dataRaw.colnames):
        data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname])
    
    # File with standards (source: manually generated)
    dataRawS = ascii.read(FOLDER_IN + FILE_IN_STD, data_start=0)
    
    # Store standard data in a dictionary-type object
    dataS = {}.fromkeys(HDR_FILE_IN_STD)
    for colIdx,colname in enumerate(dataRawS.colnames):
        dataS[HDR_FILE_IN_STD[colIdx]] = np.array(dataRawS[colname])
    
    
    # 4. FORMAT SOME ASCII COLUMNS --------------------------------------------
    # 4.1 Convert into unicode the Spectral Type-Text column
    uniSpType = [None] * len(data[colNameType])
    for sIdx,sType in enumerate(data[colNameType]):
        uniSpType[sIdx] = sType #.decode('utf-8')
    data[colNameType] = np.array(uniSpType)
    
    # 4.2 Calculate J-K Color
    data[colNameJK] = data[colNameJ] - data[colNameK]
    
    # 4.3 Format Designation Number from Designation Column
    #     (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX")
    for desigIdx,desig in enumerate(data[colNameDesig]):
        desig    = ''.join(desig.split())
        signType = '+'
        signPos  = desig.find(signType)
        if signPos == -1:
            signType = '-'
            signPos  = desig.find(signType)
        
        desigProper = desig[:4] + signType + desig[signPos+1:signPos+5]
        data[colNameDesig][desigIdx] = desigProper
    
    
    # 5. FILTER DATA BY USER INPUT IN spInput ---------------------------------
    specIdx = []
    # Find all spectra of same spectral type
    for spIdx,spType in enumerate(data[colNameType]):
        if spType.upper().startswith(spInput.upper()):
            specIdx.append(spIdx)
    if not specIdx:
        print('No targets found for given input.')
        if std is False:
            return
    spTypeInput = spInput.upper()
    
    # Find NIR standard target that matches user's spectral type
    stdIdx = []
    for spIdx,spType in enumerate(dataS[colNameNIRS]):
        if spType.upper().startswith(spTypeInput):
            stdIdx.append(spIdx)
    
    # Add NIR standard target to list of filtered objects if not there already
    # (It may not be included in first filter because OPT SpT != NIR SpT)
    if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]:
        for spIdx,spRef in enumerate(data[colNameRef]):
            if spRef == int(dataS[colNameRef][stdIdx][0]):
                if spIdx not in specIdx:
                    specIdx.append(spIdx)
    
    # Sort relevant objects by JKmag value
    specIdx     = np.array(specIdx)
    specSortIdx = data[colNameJK][specIdx].argsort()
    
    
    # 6. READ SPECTRAL DATA FROM SPECTRAL FILES -------------------------------
    spectraRaw    = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files
    specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes
    
    for key in OPTNIR_KEYS:
        specFiles = [None] * len(specSortIdx)
        
        for sortIdx,specSort in enumerate(specSortIdx):
            if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue
            if data[key + 'file'][specIdx[specSort]] == 'include': continue
            tmpFullName = FOLDER_ROOT + key + '/' + data[key + 'file'][specIdx[specSort]]
            specFiles[sortIdx] = tmpFullName
        specFilesDict[key] = specFiles
        
        spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \
                                       errors=True, verbose=False)
    
    # Clear out spectral data for objects missing either OPT or NIR data
    allNone = True
    for spIdx in range(0,len(spectraRaw['OPT'])):
        if spectraRaw['OPT'][spIdx] is None:
            spectraRaw['NIR'][spIdx] = None
        elif spectraRaw['NIR'][spIdx] is None:
            spectraRaw['OPT'][spIdx] = None
        else:
            allNone = False
    
    if allNone:
        print('No spectral data found for objects of the given spectral type.')
        if std is False:
            return
    
    # Convert spectraRaw contents into lists if only one spectral data
    # (This reduces the dimensions of the object holding the data)
    for key in spectraRaw.keys():
        if spectraRaw[key][0] is not None:
            if len(spectraRaw[key][0]) > 3:
                spectraRaw[key] = [spectraRaw[key],]
    
    
    # 7. GATHER OBJECTS' NAMES ------------------------------------------------
    # Filtered objects
    refs = [None] * len(specSortIdx)
    NIRfilenames = [None] * len(specSortIdx)
    for idx,spIdx in enumerate(specSortIdx):
        tmpRef    = data[colNameRef][specIdx[spIdx]]
        refs[idx] = str(int(tmpRef))
        NIRfilenames[idx] = data[colNameNIRfile][specIdx[spIdx]]
    
    # Standard objects
    refsStd = [None] * len(dataS[colNameRef])
    for idx,spIdx in enumerate(dataS[colNameRef]):
        tmpRef       = dataS[colNameRef][idx]
        refsStd[idx] = str(int(tmpRef))
    
    # Gather reference numbers of objects
    objRef = data[colNameRef][specIdx[specSortIdx]]
    
    
    # 8. SMOOTH SPECTRA -------------------------------------------------------
    # Smooth the flux data to a reasonable resolution
    spectraS = {}.fromkeys(OPTNIR_KEYS)
    tmpSpOPT = at.smooth_spec(spectraRaw['OPT'], specFile=specFilesDict['OPT'], \
                              winWidth=10)
    tmpSpNIR = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \
                              winWidth=0)
    
    spectraS['OPT'] = tmpSpOPT
    spectraS['NIR'] = tmpSpNIR
    
    # 9. SELECT SPECTRAL DATA FOR THE DIFFERENT BANDS -------------------------
    # Initialize variables
    spectra  = {}.fromkeys(BANDS_NAMES)
    spectraN = {}.fromkeys(BANDS_NAMES)
    
    for bandKey in BANDS_NAMES:
        if bandKey == 'OPT':
            optNIR = 'OPT'
        else:
            optNIR = 'NIR'
        
        # Select band
        spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]['lim'], \
                                       objRef)
        if spectra[bandKey] is None:
            break
        
        # Normalize band
        spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], \
                                               BAND_LIMS[bandKey]['limN'], flag=True)
        if flagN:
            print(bandKey + ' LIMITS for normalization changed!')
        if spectraN[bandKey] is None:
            break
    
    
    # 10. CHARACTERIZE TARGETS (i.e. identify young, field, and excluded) -----
    grav = grav.lower()
    toInclude = [False] * len(refs)
    # toInclude_LG = [False] * len(refs)
    toExclude = [False] * len(refs)
    dataIncl = []
    # dataIncl_LG = []
    dataExcl = []
    
    # 10.1 Extract NIR file names from "keepers" file
    fileslist = os.listdir(FOLDER_IN)
    inclFile = ''
    for fl in fileslist:
        if fl.find('keepers') == -1 or fl.find(spInput) == -1: continue
        
        tmpfl = fl.split('_')
        if len(tmpfl[1]) == 2 and grav == 'f':
            inclFile = fl
            break
        elif len(tmpfl[1]) == 3:
            if tmpfl[1][-1] == grav:
                inclFile = fl
                break
    
    if inclFile != '':
        dataIncl = ascii.read(FOLDER_IN + inclFile, format='no_header', \
                              delimiter=DELL_CHAR, comment=COMM_CHAR)
    if len(dataIncl) > 0:
        includeObjs = np.array(dataIncl['col1']).astype(object)
        includeObjs = includeObjs + np.repeat('.fits', len(dataIncl))
        # Find intersection of include-obj list and filtered targets list
        setInclude = set(includeObjs).intersection(set(NIRfilenames))
        # Create list with intersection targets
        if len(setInclude) != 0:
            for inclIdx in setInclude:
                tmpInclIdx = np.where(np.array(NIRfilenames) == inclIdx)[0]
                toInclude[tmpInclIdx] = True
    
    # 10.2 Extract NIR file names from "rejects" file
    exclFile = ''
    for fl in fileslist:
        if fl.find('rejects') == -1 or fl.find(spInput) == -1: continue
        
        tmpfl = fl.split('_')
        if len(tmpfl[1]) == 2 and grav == 'f':
            exclFile = fl
            break
        elif len(tmpfl[1]) == 3:
            if tmpfl[1][-1] == grav:
                exclFile = fl
                break
    
    if exclFile != '':
        try:
            dataExcl = ascii.read(FOLDER_IN + exclFile, format='no_header', \
                                  delimiter=DELL_CHAR, comment=COMM_CHAR)
        except:
            dataExcl = []
    if len(dataExcl) == 0 and excluded:
        print('No objects found in REJECTS file. Nothing to plot.')
        return
    elif len(dataExcl) > 0:
        excludeObjs = np.array(dataExcl['col1']).astype(object)
        excludeObjs = excludeObjs + np.repeat('.fits', len(dataExcl))
        # Find intersection of exclude-obj list and filtered targets list
        setExclude = set(excludeObjs).intersection(set(NIRfilenames))
        # Create list with intersection targets
        if len(setExclude) != 0:
            for exclIdx in setExclude:
                tmpExclIdx = np.where(np.array(NIRfilenames) == exclIdx)[0]
                toExclude[tmpExclIdx] = True
    
    # 10.3 Determine which target is the NIR Standard object
    O_standard = [None] * 3 # Holds standard for output
    stdObjs = [False] * len(refs)
    for idx,spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]:
            stdObjs[idx] = True
            
            if normalize:
                O_standard[0] = spectraN['J'][idx]
                O_standard[1] = spectraN['H'][idx]
                O_standard[2] = spectraN['K'][idx]
            else:
                O_standard[0] = spectra['J'][idx]
                O_standard[1] = spectra['H'][idx]
                O_standard[2] = spectra['K'][idx]
    
    # 10.4 Determine which targets to include in plots (based on user input)
    # Consolidate plotting & template-flux instructions
    plotInstructions  = ['no'] * len(refs)
    templInstructions = [False] * len(refs)
    if grav == 'f':
        plotinstlbl = 'field'
    elif grav == 'lg':
        plotinstlbl = 'low'
    elif grav == 'g':
        plotinstlbl = 'gamma'
    elif grav == 'b':
        plotinstlbl = 'beta'
    else:
        print('Wrong gravity input.')
        return
    for plotIdx in range(len(refs)):
        if toInclude[plotIdx]:
            plotInstructions[plotIdx] = plotinstlbl
            templInstructions[plotIdx] = True
        if toExclude[plotIdx] and excluded:
            plotInstructions[plotIdx] = 'excluded'
    
    # If all plot instructions are "no", then stop procedure (for spectral types)
    allExcl = True
    for instr in plotInstructions:
        if instr != 'no':
            allExcl = False
    if allExcl:
        print('No spectral data to plot based on your request.')
        return
    
    
    # 11. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA ---------------------
    # Gather spectra to use to calculate template spectrum
    if not allExcl:
        O_template = [None] * 3 # Holds calculated template for output
        templCalculated = False
        for bandIdx, bandKey in enumerate(BANDS_NAMES):
            template = None
            templSpecs = []
            for spIdx, spex in enumerate(spectraN[bandKey]):
                if templInstructions[spIdx]:
                    # Check that spectrum exists
                    if spex is None:
                        templInstructions[spIdx] = False
                        continue
                    
                    if bandKey == 'OPT':
                        # Manually skip including OPT spectrum of some specific targets
                        # which use the same NIR fits file as both OPT and NIR spectrum
                        # so OPT spectrum is very bad
                        if refs[spIdx] == '50246':
                            continue
                        if refs[spIdx] == '50061':
                            continue
                        elif refs[spIdx] == '50188':
                            continue
                        templSpecs.append(spex)
                    
                    else:
                        # Check that spectrum comes with error values (NIR bands only)
                        notNansBool = np.isfinite(spex[2])
                        notNans = np.any(notNansBool)
                        if notNans:
                            templSpecs.append(spex)
                        else:
                            print(str(objRef[spIdx]) + ' excluded from template')
                            templInstructions[spIdx] = False
            
            # Calculate template spectrum using spec uncertainties as weights
            if len(templSpecs) > 1:
                if bandKey == 'OPT':
                    template = at.mean_comb(templSpecs, extremes=True)
                else:
                    template_first, renormSpecs = at.mean_comb(templSpecs, renormalize=True)
                    # Re-calculate template using re-normalized spectra
                    template = at.mean_comb(renormSpecs, extremes=True)
                
                # To calculate simple standard deviation, recalculate template without
                # any weights, and just use the simple variance that comes out of that.
                tmptempl = at.mean_comb(renormSpecs, forcesimple=True)
                template[2] = tmptempl[2].copy()
                templCalculated = True
            
            # Append template to list of spectra to plot in the next step
            if templCalculated:
                spectraN[bandKey].append(template)
                
                # Append template to output object
                if bandIdx == 0:
                    tempIdx = 2
                elif bandIdx == 2:
                    tempIdx = 0
                elif bandIdx == 1:
                    tempIdx = 1
                else:
                    tempIdx = None
                if tempIdx is not None:
                    O_template[tempIdx] = template
        
        if templCalculated:
            refs.append('template')
            plotInstructions.append('template')
        else:
            O_template = None
    
    
    # 12. PLOT DATA -----------------------------------------------------------
    if plot:
        # Gather info on each target
        objInfo = [None] * len(refs)
        for posIdx,spIdx in enumerate(specIdx[specSortIdx]):
            tmpDesig  = data[colNameDesig][spIdx]
            tmpJK     = data[colNameJK][spIdx]
            
            # Append description of special object to its spectral type when missing
            spDesc = ''
            try:
                loc = data[colNameType][spIdx].index(spDesc)
            except ValueError:
                loc = None
            if loc is None:
                tmpSPtype = data[colNameType][spIdx] + spDesc
            else:
                tmpSPtype = data[colNameType][spIdx]
            tmpSPtype = tmpSPtype + ' ' * (7 - len(tmpSPtype)) # For alignment purposes
            
            if tmpDesig == '1126-5003':
                objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + '%.2f' %tmpJK)
            else:
                objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK)
        
        if objInfo[-1] is None:
            objInfo[-1] = 'template' 
        
        # Create Figure with Subplots and Annotations
        figObj = plotspec(spectraN, BANDS_NAMES, BAND_LIMS, objInfo, spTypeInput, \
                          grav, plotInstructions, excluded)
    
    if plot:
        if excluded:
            sptxt = '_excluded'
        else:
            sptxt = ''
        figObj.savefig(FOLDER_OUT + spTypeInput + 'strip_' + \
                       grav + sptxt + '.pdf', dpi=300)
    
    
    # 13. DETERMINE OUTPUT ----------------------------------------------------
    if templ:
        if std:
            return O_template, O_standard
        else:
            return O_template
    elif std:
        return O_standard
    else:
        return spectraN
Ejemplo n.º 8
0
    tgtNames.append(tgt[0])
    fitsNames.append(FOLDER_NIR + tgt[1])

# Break into several plots if too many objects
numData = len(dataOrg)
if numData > 6:
    numPlots = int(np.ceil(numData / 6.))
else:
    numPlots = 1

# 3. GET SPECTRA --------------------------------------------------------------
spectra = at.read_spec(fitsNames, aToMicron=True, negToZero=True, errors=False, plot=False)

# 4. CLEAN AND NORMALIZE SPECTRA ----------------------------------------------
spectraC = at.sel_band(spectra, BAND_LIMS)
spectraN = at.norm_spec(spectraC, BAND_LIMS)

# 6. PLOT ALL SPECTRA ---------------------------------------------------------
# Parameter to space spectra more
if FILE_LBL == 'emln_galaxies':
    broad = True
else:
    broad = False
start = 0
stop = 6
for plIdx in range(numPlots):
    if stop > numData:
        plSpecs = spectraN[start:]
        plNames = tgtNames[start:]
    else:
        plSpecs = spectraN[start:stop]
Ejemplo n.º 9
0
def main(spInput, grav="", plot=True, templ=False, std=False, lbl=False):
    # 1. LOAD RELEVANT MODULES ---------------------------------------------------------
    import asciidata
    import astrotools as at
    import pyfits
    import numpy
    import sys
    import pdb
    import matplotlib.pyplot as plt

    # 2. SET UP VARIABLES --------------------------------------------------------------
    # General variables
    FOLDER_ROOT = "/Users/alejo/KCData/"  # Location of NIR and OPT folders
    FOLDER_OUT = "Output/NOC/"
    OPTNIR_KEYS = ["OPT", "NIR"]
    BANDS_NAMES = ["K", "H", "J", "OPT"]
    data = ""
    dataRaw = ""
    specFiles = ""
    spectraRaw = ""
    spectra = ""

    # For TXT objects file (updatable here directly)
    FILE_IN = "nir_spex_prism_with_optical_12aug15.txt"  # ASCII file w/ data
    HDR_FILE_IN = (
        "Ref",
        "Designation",
        "J",
        "H",
        "K",
        "SpType",
        "SpType_T",
        "NIRFobs",
        "NIRFtel",
        "NIRfile",
        "OPTobs",
        "OPTtel",
        "OPTinst",
        "OPTfile",
        "Young?",
        "Dusty?",
        "Blue?",
        "Multiple?",
        "Pec?",
    )

    colNameRef = HDR_FILE_IN[0]
    colNameDesig = HDR_FILE_IN[1]
    colNameJ = HDR_FILE_IN[2]
    colNameK = HDR_FILE_IN[4]
    colNameJK = "J-K"
    colNameType = HDR_FILE_IN[6]
    colNameYng = HDR_FILE_IN[14]
    colNameDust = HDR_FILE_IN[15]
    colNameBlue = HDR_FILE_IN[16]
    colNameBin = HDR_FILE_IN[17]
    colNamePec = HDR_FILE_IN[18]

    # For TXT standards file
    FILE_IN_STD = "NIR_Standards.txt"  # ASCII file w/ standards
    HDR_FILE_IN_STD = ("Ref", "Designation", "NIR SpType", "OPT SpType")
    colNameNIRS = HDR_FILE_IN_STD[2]
    colNameOPTS = HDR_FILE_IN_STD[3]

    # For TXT exclude-objects file
    EXCL_FILE = "Exclude_Objs.txt"  # ASCII file w/ unums of objects to exclude

    # 3. READ DATA FROM INPUT FILES-----------------------------------------------------
    NULL_CHAR = ""  # Null character
    DELL_CHAR = "\t"  # Delimiter character
    COMM_CHAR = "#"  # Comment character

    # File with objects (query in Access)
    dataRaw = asciidata.open(FOLDER_ROOT + FILE_IN, NULL_CHAR, DELL_CHAR, COMM_CHAR)

    # Store data in a dictionary-type object
    data = {}.fromkeys(HDR_FILE_IN)
    for colIdx, colData in enumerate(dataRaw):
        data[HDR_FILE_IN[colIdx]] = colData.tonumpy()

    # File with standards
    dataRawS = asciidata.open(FOLDER_ROOT + FILE_IN_STD, NULL_CHAR, DELL_CHAR, COMM_CHAR)

    # Store standard data in a dictionary-type object
    dataS = {}.fromkeys(HDR_FILE_IN_STD)
    for colIdx, colData in enumerate(dataRawS):
        dataS[HDR_FILE_IN_STD[colIdx]] = colData.tonumpy()

    # 4. FORMAT SOME ASCII COLUMNS -----------------------------------------------------
    # 4.1 Convert into unicode the Spectral Type-Text column
    uniSpType = [None] * len(data[colNameType])
    for sIdx, sType in enumerate(data[colNameType]):
        uniSpType[sIdx] = sType.decode("utf-8")

    data[colNameType] = numpy.array(uniSpType)

    # 4.2 Calculate J-K Color And Add J-K Column
    data[colNameJK] = data[colNameJ] - data[colNameK]

    # 4.3 Format Designation Number from Designation Column
    #     (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX")
    for desigIdx, desig in enumerate(data[colNameDesig]):
        desig = "".join(desig.split())
        signType = "+"
        signPos = desig.find(signType)
        if signPos == -1:
            signType = "-"
            signPos = desig.find(signType)

        desigProper = desig[:4] + signType + desig[signPos + 1 : signPos + 5]
        data[colNameDesig][desigIdx] = desigProper

    # 5. FILTER DATA BY USER INPUT IN spInput -------------------------------------------
    uniqueSpec = False
    specIdx = []
    if spInput.upper().startswith("L"):
        # If input is a spectral type, then find all spectra of same spectral type
        for spIdx, spType in enumerate(data[colNameType]):
            if spType.upper().startswith(spInput.upper()):
                specIdx.append(spIdx)
        if not specIdx:
            print "No targets found for given input."
            if std is False:
                return
        spTypeInput = spInput.upper()
    else:
        # If input is one single spectrum, then find it
        for spIdx, spType in enumerate(data[colNameRef]):
            if str(spType) == spInput.upper():
                specIdx.append(spIdx)
        if not specIdx:
            print "Requested target not found."
            if std is False:
                return
        else:
            spTypeInput = data[colNameType][specIdx[0]][0:2]
            uniqueSpec = True

    # Find NIR standard target that matches user's spectral type
    stdIdx = []
    for spIdx, spType in enumerate(dataS[colNameNIRS]):
        if spType.upper().startswith(spTypeInput):
            stdIdx.append(spIdx)

    # Add NIR standard target to list of filtered objects if not there already
    # (It may not be included in first filter because OPT SpT != NIR SpT)
    if not uniqueSpec:
        if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]:
            for spIdx, spRef in enumerate(data[colNameRef]):
                if spRef == int(dataS[colNameRef][stdIdx][0]):
                    if spIdx not in specIdx:
                        specIdx.append(spIdx)

    # Sort relevant objects by JKmag value
    specIdx = numpy.array(specIdx)
    specSortIdx = data[colNameJK][specIdx].argsort()

    # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ----------------------------------------
    spectraRaw = {}.fromkeys(OPTNIR_KEYS)  # Used to store the raw data from fits files
    specFilesDict = {}.fromkeys(OPTNIR_KEYS)  # Used for reference purposes

    for key in OPTNIR_KEYS:
        specFiles = [None] * len(specSortIdx)

        for sortIdx, specSort in enumerate(specSortIdx):
            tmpFullName = FOLDER_ROOT + key + "/" + data[key + "file"][specIdx[specSort]]
            specFiles[sortIdx] = tmpFullName
            specFilesDict[key] = specFiles

        spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, errors=True, verbose=False)

    # Clear out spectral data for objects missing either OPT or NIR data
    allNone = True
    for spIdx in range(0, len(spectraRaw["OPT"])):
        if spectraRaw["OPT"][spIdx] is None:
            spectraRaw["NIR"][spIdx] = None
        elif spectraRaw["NIR"][spIdx] is None:
            spectraRaw["OPT"][spIdx] = None
        else:
            allNone = False

    if allNone:
        print "No spectral data found for objects of the given spectral type."
        if std is False:
            return

    # Convert spectraRaw contents into lists if only one spectral data
    # (This reduces the dimensions of the object holding the data)
    for key in spectraRaw.keys():
        if spectraRaw[key][0] is not None:
            if len(spectraRaw[key][0]) > 3:
                spectraRaw[key] = [spectraRaw[key]]

    # 7. GATHER OBJECTS' NAMES----------------------------------------------------------
    # Filtered objects
    refs = [None] * len(specSortIdx)
    for idx, spIdx in enumerate(specSortIdx):
        tmpRef = data[colNameRef][specIdx[spIdx]]
        refs[idx] = str(int(tmpRef))

    # Standard objects
    refsStd = [None] * len(dataS[colNameRef])
    for idx, spIdx in enumerate(dataS[colNameRef]):
        tmpRef = dataS[colNameRef][idx]
        refsStd[idx] = str(int(tmpRef))

    # Gather reference numbers of objects
    objRef = data[colNameRef][specIdx[specSortIdx]]

    # 8. SMOOTH SPECTRA -----------------------------------------------------------------
    # Smooth the flux data to a reasonable resolution
    spectraS = {}.fromkeys(OPTNIR_KEYS)

    tmpSpOPT = at.smooth_spec(spectraRaw["OPT"], specFile=specFilesDict["OPT"], winWidth=10)
    tmpSpNIR = at.smooth_spec(spectraRaw["NIR"], specFile=specFilesDict["NIR"], winWidth=0)

    spectraS["OPT"] = tmpSpOPT
    spectraS["NIR"] = tmpSpNIR

    # 9. SET LIMITS FOR BANDS AND NORMALIZING SECTIONS----------------------------------
    # Initialize dictionary to store limits
    BAND_LIMS = {}.fromkeys(BANDS_NAMES)
    for bandKey in BANDS_NAMES:
        BAND_LIMS[bandKey] = dict(lim=[None] * 2, limN=[None] * 2)

    # Set wavelength limits for bands
    # Limits are in microns
    BAND_LIMS["OPT"]["lim"][0] = 0.65
    BAND_LIMS["OPT"]["lim"][1] = 0.90
    BAND_LIMS["J"]["lim"][0] = 0.8
    BAND_LIMS["J"]["lim"][1] = 1.4
    BAND_LIMS["H"]["lim"][0] = 1.4
    BAND_LIMS["H"]["lim"][1] = 1.9
    BAND_LIMS["K"]["lim"][0] = 1.9
    BAND_LIMS["K"]["lim"][1] = 2.4

    # Set wl limits for normalizing sections
    # Limits are in microns
    BAND_LIMS["OPT"]["limN"][0] = 0.66
    BAND_LIMS["OPT"]["limN"][1] = 0.89
    BAND_LIMS["J"]["limN"][0] = 0.87
    BAND_LIMS["J"]["limN"][1] = 1.39
    BAND_LIMS["H"]["limN"][0] = 1.41
    BAND_LIMS["H"]["limN"][1] = 1.89
    BAND_LIMS["K"]["limN"][0] = 1.91
    BAND_LIMS["K"]["limN"][1] = 2.39

    # 10. SELECT SPECTRAL DATA FOR OPTICAL, J-BAND, H-BAND, & K-BAND--------------------
    # Initialize variables
    spectra = {}.fromkeys(BANDS_NAMES)
    spectraN = {}.fromkeys(BANDS_NAMES)

    for bandKey in BANDS_NAMES:
        if bandKey == "OPT":
            optNIR = "OPT"
        else:
            optNIR = "NIR"

        # Select band
        spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]["lim"], objRef)
        if spectra[bandKey] is None:
            break

        # Normalize band
        spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], BAND_LIMS[bandKey]["limN"], flag=True)
        if flagN:
            print "LIMITS for normalization changed!"
        if spectraN[bandKey] is None:
            break

    # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...)---------------
    # Determine which targets to exclude using the "Exclude_Objs" file
    toExclude = [False] * len(refs)
    dataExcl = asciidata.open(FOLDER_ROOT + EXCL_FILE, NULL_CHAR, DELL_CHAR, COMM_CHAR)
    if len(dataExcl[0]) > 0:
        # Extract data from "Exclude_Objs" file
        excludeObjs = [None] * len(dataExcl[0])
        for rowIdx, rowData in enumerate(dataExcl[0]):
            excludeObjs[rowIdx] = str(rowData)

        # Find intersection of exclude-obj list and filtered targets list
        setExclude = set(excludeObjs).intersection(set(refs))

        # Create list with intersection targets
        if len(setExclude) != 0:
            for exclIdx in setExclude:
                tmpExclIdx = numpy.where(numpy.array(refs) == exclIdx)
                toExclude[tmpExclIdx[0]] = True

    # Determine which target is the NIR Standard object
    O_standard = [None] * 3  # Holds standard for output
    stdObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]:
            stdObjs[idx] = True

            O_standard[0] = spectraN["J"][idx]
            O_standard[1] = spectraN["H"][idx]
            O_standard[2] = spectraN["K"][idx]

    # Determine which targets are blue
    blueObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBlue][spIdx].upper() == "YES":
            blueObjs[idx] = True

    # Determine which targets are dusty
    dustyObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameDust][spIdx].upper() == "YES":
            dustyObjs[idx] = True

    # Determine which targets are binary
    binObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameBin][spIdx].upper() == "YES":
            binObjs[idx] = True

    # Determine which targets are peculiar
    pecObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNamePec][spIdx].upper() == "YES":
            pecObjs[idx] = True

    # Determine which targets are young
    youngObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        if data[colNameYng][spIdx].upper() == "YES":
            youngObjs[idx] = True

    # Determine which targets are GAMMA
    gammaObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode("utf-8")
        tmpLen = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb3"
        if utcA == "\xce" and utcB == "\xb3":
            gammaObjs[idx] = True

    # Determine which targets are BETA
    betaObjs = [False] * len(refs)
    for idx, spIdx in enumerate(specIdx[specSortIdx]):
        tmpType = data[colNameType][spIdx].encode("utf-8")
        tmpLen = len(tmpType)
        utcA = tmpType[tmpLen - 2]
        utcB = tmpType[tmpLen - 1]
        # GAMMA in utf-8 code is "\xce\xb2"
        if utcA == "\xce" and utcB == "\xb2":
            betaObjs[idx] = True

    # Determine which targets to include in plots (based on user input)
    # Consolidate plotting & template-flux instructions
    grav = grav.upper()
    plotInstructions = ["exclude"] * len(refs)
    templInstructions = [False] * len(refs)
    if grav == "Y":  # If plot request is Young, include gamma, beta & young targets
        for plotIdx in range(len(refs)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = "young"
                templInstructions[plotIdx] = True

    elif grav == "G":  # If plot request is Gamma, include only gamma targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if gammaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = "young"
                templInstructions[plotIdx] = True

    elif grav == "B":  # If plot request is Beta, include only beta targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx]:
                if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]:
                    continue
                plotInstructions[plotIdx] = "young"
                templInstructions[plotIdx] = True

    elif grav == "F":  # If plot request is Field, include Field & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]:
                continue
            if stdObjs[plotIdx]:
                plotInstructions[plotIdx] = "standard"
            else:
                plotInstructions[plotIdx] = "field"
            templInstructions[plotIdx] = True

    else:  # Otherwise, print Field, gamma, beta, young & Standard targets
        for plotIdx in range(len(plotInstructions)):
            if toExclude[plotIdx]:
                continue
            if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]:
                continue
            if youngObjs[plotIdx]:
                plotInstructions[plotIdx] = "young"
            elif stdObjs[plotIdx]:
                plotInstructions[plotIdx] = "standard"
            else:
                plotInstructions[plotIdx] = "field"
            templInstructions[plotIdx] = True

    # If all plot instructions are "exclude", then stop procedure (for spectral types)
    allExcl = True
    for instr in plotInstructions:
        if instr != "exclude":
            allExcl = False
    if allExcl:
        if std:
            return O_standard
        if not uniqueSpec:
            print "No spectral data to plot based on your request."
            return

    # 12. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA -----------------------
    # Gather spectra to use to calculate template spectrum
    if not allExcl:
        O_template = [None] * 3  # Holds calculated template for output
        templCalculated = False
        for bandIdx, bandKey in enumerate(BANDS_NAMES):
            if bandKey == "OPT":
                continue

            templSpecs = []
            for spIdx, spex in enumerate(spectraN[bandKey]):
                if templInstructions[spIdx]:
                    # Check that spectrum exists
                    if spex is None:
                        templInstructions[spIdx] = False
                        continue

                    if bandKey == "OPT":
                        templSpecs.append(spex)
                    else:
                        # Check that spectrum comes with error values (NIR bands only)
                        notNansBool = numpy.isfinite(spex[2])
                        notNans = numpy.any(notNansBool)
                        if notNans:
                            templSpecs.append(spex)
                        else:
                            print str(objRef[spIdx]) + " excluded from template"

            # Calculate template spectrum
            if len(templSpecs) > 1:
                template = at.mean_comb(templSpecs)
                templCalculated = True

                # Append template to list of spectra to plot in the next step
                spectraN[bandKey].append(template)
                # Append template to output object
                if bandIdx == 0:
                    tempIdx = 2
                elif bandIdx == 2:
                    tempIdx = 0
                else:
                    tempIdx = 1
                O_template[tempIdx] = template

        if templCalculated:
            refs.append("template")
            plotInstructions.append("template")
        else:
            O_template = None

    # 13. PLOT DATA --------------------------------------------------------------------
    if lbl or plot:
        # Gather info on each target
        objInfo = [None] * len(refs)
        for posIdx, spIdx in enumerate(specIdx[specSortIdx]):
            tmpDesig = data[colNameDesig][spIdx]
            tmpJK = data[colNameJK][spIdx]
            tmpSPtype = data[colNameType][spIdx]
            tmpSPtype = tmpSPtype + " " * (5 - len(tmpSPtype))  # For alignment purposes

            objInfo[posIdx] = tmpDesig + " " + tmpSPtype + " " + "%.2f" % tmpJK

        if objInfo[-1] is None:
            objInfo[-1] = "template"
    if plot:
        # Create Figure with Subplots and Annotations
        figObj = plotspec(spectraN, BANDS_NAMES, BAND_LIMS, objInfo, spTypeInput, grav, plotInstructions)

        figObj.savefig(FOLDER_ROOT + FOLDER_OUT + spTypeInput + grav + ".pdf", dpi=600)

    # 14. DETERMINE OUTPUT -------------------------------------------------------------
    if templ:
        if std:
            return O_template, O_standard
        else:
            return O_template
    elif std:
        return O_standard
    else:
        if lbl:
            return spectraN, objInfo
        else:
            return spectraN
Ejemplo n.º 10
0
# 3. GET SPECTRAL NIR STANDARDS & TEMPLATES -----------------------------------
spTypes = []
spectra = {}.fromkeys(BANDS)
for band in BANDS:
    spectra[band] = []

for idxTp, spTp in enumerate(SPTYPES):
    # Fetch standard
    tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False)
    # Normalize standard
    for bdIdx, band in enumerate(BANDS):
        if idxTp in [1, 2, 3] and band == "H":
            norm_lims = SPECIAL_H_NORM_LIM
        else:
            norm_lims = NORM_LIMS[band]["lim"]
        stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0]
        spectra[band].append(stdToPlot)
        # spectra[band].append(tmpStd[bdIdx])

    # Fetch template from ascii files generated by make_templ.py in templates/ folder.
    for bdIdx, band in enumerate(BANDS):
        fileNm = spTp + band + "_" + GRAV + ".txt"
        templRaw = ad.read(FOLDER_OUT_TMPL + fileNm, delimiter="\t", format="no_header")
        templRawToPlot = np.array([templRaw.columns[i] for i in range(5)])

        # Normalize when necessary
        if len(templRawToPlot) <= 3:
            if idxTp in [1, 2, 3] and band == "H":
                norm_lims = SPECIAL_H_NORM_LIM
            else:
                norm_lims = NORM_LIMS[band]["lim"]
Ejemplo n.º 11
0
 if spTp in SPSTDNM:
     if spTp == 'L2':
         isp = 0
     elif spTp == 'L5':
         isp = 1
     else:
         isp = 2
     tmpspec = at.read_spec(FOLDER_DATASPEC + 'NIR/' + SPSTD[isp], errors=False, \
                            atomicron=True, negtonan=True)
     for band in BANDS:
         tmpband = at.sel_band(tmpspec, BAND_LIMS[band]['lim'])
         if idxTp in [1,2,3] and band == 'H':
             norm_lims = SPECIAL_H_NORM_LIM
         else:
             norm_lims = NORM_LIMS[band]['lim']
         stdToPlot = at.norm_spec(tmpband, norm_lims)[0]
         spectra[band].append(stdToPlot)
     spTypes.append(spTp)
 
 # # Fetch standard
 # tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False)
 # # Normalize standard
 # for bdIdx, band in enumerate(BANDS):
 #     if idxTp in [1,2,3] and band == 'H':
 #         norm_lims = SPECIAL_H_NORM_LIM
 #     else:
 #         norm_lims = NORM_LIMS[band]['lim']
 #     stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0]
 #     spectra[band].append(stdToPlot)
 #     #spectra[band].append(tmpStd[bdIdx])
 
Ejemplo n.º 12
0
BAND_NORMS['K'][1] = 2.39

# 3. GET SPECTRUM OF TARGET ---------------------------------------------------
specRaw = at.read_spec(interestObject)[0]
specRaw = np.array(specRaw)
if specRaw is None:
    print 'Could not get spectrum from file.'
    sys.exit(0)

# Separate spectrum by bands
specSep = separate_bands(specRaw, BANDS, BAND_LIMS)

# Normalize spectrum
specN = [None] * 3
for bIdx, band in enumerate(BANDS):
    specN[bIdx] = at.norm_spec(specSep[bIdx], BAND_NORMS[band])[0]

if specN[0] is None:
    'Error normalizing spectra.'
    sys.exit(0)

# 4. GET NIR TEMPLATES --------------------------------------------------------
# 4.1 Initialize holder of template spectra and strips
templ = [None] * len(SP_TYPES)
for tp in range(len(SP_TYPES)):
    templ[tp] = [[] for i in range(3)]

# 4.2 Fetch templates
for spIdx, sp in enumerate(SP_TYPES):
    for bdIdx, band in enumerate(BANDS):
        if AdamTemplates: