Ejemplo n.º 1
0
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', required=True, dest='manifest', help='list of files to map')
    args = parser.parse_args()
    manifest = open(args.manifest)
    now = datetime.datetime.now()
    if not os.path.exists("logs"): os.mkdir("logs")
    errorlog = open("logs/bowtie_log" + "_" + str(now.year) + str(now.month) +
                    str(now.day), 'wa')
    
    for line in manifest:
        if not re.search("#", line):
            line = line.split()
            date = line[0]  ## date of sequencing
            lane = line[1]  ## lane of flow cell
            single_end = line[2] ## single or paired end
            indices_names = line[3:] ## list of indices to process
            indices = []
            
            for index_name in indices_names:
                index_name = index_name.split("-")
                indices.append((index_name[0], index_name[1]))
        
            for index in indices:
                print line
                if single_end == "PE": single_end = ""
                try:
                    bowtie.bowtie(date, lane, bool(single_end), index)
                except:
                    errorlog.write(str(sys.exc_info()[0]) + " ".join([str(index[0]), index[1]]) + "\n")
                    continue
    errorlog.close()   
Ejemplo n.º 2
0
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', required=True, dest='manifest', help='list of files to map')
    args = parser.parse_args()
    manifest = open(args.manifest)
    for line in manifest:
        line = line.split()
        date = line[0]
        sample = line[1]
        index = line[2]
        line_args = ['-d', date, '-s', sample, '-i', index]
        bowtie.bowtie(date, sample, index)
Ejemplo n.º 3
0
    def preprocess(self, preargs):
        self.base = preargs[0]
        self.fwd = preargs[1]
        self.rev = preargs[2]
        self.datadir = preargs[3]

        #Run quality control ananlysis and quality based trimming
        qcdir = os.path.abspath(self.datadir) + '/qc'
        if not os.path.exists(qcdir):
            os.mkdir(qcdir)
        self.fwd, self.rev = trimgalore.run_qc(self.fwd, self.rev, qcdir, 
            self.base)

        #Run alignment
        self.bamfile = bowtie.bowtie(self.fwd, self.rev, self.datadir, 
            self.base)
        
        #Run picard tools 
        self.bamfile = picard.addreadgroup(self.bamfile, self.base)
        self.bamfile, self.metrics = picard.markdup(self.bamfile)

        #Run GATK realignment and quality recalibration
        self.interval = gatk.target(self.bamfile)
        self.bamfile = gatk.realigner(self.bamfile, self.interval)
        self.table = gatk.baserecal(self.bamfile)
        self.bamfile = gatk.printreads(self.bamfile, self.table)
        self.gvcf = gatk.haplocaller(self.bamfile)
        return(self.gvcf)
    def align(self, alargs):
        # Run alignment
        self.base = alargs[0]
        self.fwd = alargs[1]
        self.rev = alargs[2]
        self.datadir = alargs[3]
        self.bamfile = bowtie.bowtie(self.fwd, self.rev, self.datadir, self.base)

        # Run picard tools
        self.bamfile = picard.addreadgroup(self.bamfile, self.base)
        self.bamfile, self.metrics = picard.markdup(self.bamfile)

        # Run GATK realignment and quality recalibration
        self.interval = gatk.target(self.bamfile)
        self.bamfile = gatk.realigner(self.bamfile, self.interval)
        self.table = gatk.baserecal(self.bamfile)
        self.bamfile = gatk.printreads(self.bamfile, self.table)
        self.vcf = gatk.haplocaller(self.bamfile)
        print(self.vcf)
Ejemplo n.º 5
0
    def align(self, alargs):
        #Run alignment
        self.base = alargs[0]
        self.fwd = alargs[1]
        self.rev = alargs[2]
        self.datadir = alargs[3]
        self.bamfile = bowtie.bowtie(self.fwd, self.rev, self.datadir,
                                     self.base)

        #Run picard tools
        self.bamfile = picard.addreadgroup(self.bamfile, self.base)
        #self.bamfile, self.metrics = picard.markdup(self.bamfile)

        #Run GATK realignment and quality recalibration
        #self.interval = gatk.target(self.bamfile)
        #self.bamfile = gatk.realigner(self.bamfile, self.interval)
        #self.table = gatk.baserecal(self.bamfile)
        #self.bamfile = gatk.printreads(self.bamfile, self.table)
        #self.vcf = gatk.haplocaller(self.bamfile)
        print(self.bamfile)
Ejemplo n.º 6
0
def modisread(folder, resolution='1km', bandlist=[0], calc_overlap='True'):
    """reads modis Level1B image(s), geolocations and removes the bow-tie effect.

    folder:       location of the image files
    resolution:   '1km', '500m' or '250m'
    bandlist:     list of the bands to read,
                  where the bands are the i_th band of the given resolution starting from 0
    calc_overlap: set this to 'True', if the bowtie-overlap pattern
                  shall be calculated for the specific image

    returns lon,lat,image_list
    lon:          array of Longitude coordinates
    lat:          array of Latitude coordinates
    image_list:   List of 2d Arrays which are the images corresponding to bandlist

    written by Johannes Roehrs and Lars Kaleschke, IfM, University of Hamburg

    """
    print ' '
    print '____________Read Modis Data_____________'
    print ' '
    #os.system('rm bowtie.so') # Comment out for rebuilding Fortran module

    if not (os.path.exists('bowtie.so')):
        os.system('f2py --fcompiler=gnu95  -m bowtie -c ./bowtie.f95 ')

    import bowtie  #reload(bowtie)

    d = {}
    cs_dict = {'1km': 1000, '500m': 500, '250m': 250}
    cs = cs_dict[resolution]
    dataset = {
        '1km': 'EV_1KM_RefSB',
        '500m': 'EV_500_RefSB',
        '250m': 'EV_250_RefSB'
    }
    #Find Modis Files and recognize available Data
    granules = modis_granules(folder)
    #Chose one File
    k = granules.keys()[0]
    #
    # Read SolarZenith, Latitude and Longitude
    #
    filename_1km = granules[k]['1km']
    print 'read ' + folder + filename_1km
    f_1km = SD(folder + filename_1km)
    print ' '
    for key in [
            'SensorAzimuth', 'SensorZenith', 'SolarAzimuth', 'SolarZenith',
            'Latitude', 'Longitude'
    ]:
        d[key] = (sp.array(f_1km.select(key).get(), sp.float32))
        if key == 'SolarZenith':
            #d[key]=d[key]/100.0
            d[key] = d[key] / 100.0 / 360 * 2 * sp.pi
        if key == 'SolarAzimuth':
            d[key] = d[key] / 100.0  #scalefactor 0.01
        if key == 'SensorZenith':
            d[key] = d[key] / 100.0  #scalefactor 0.01
        if key == 'SensorAzimuth':
            d[key] = d[key] / 100.0  #scalefactor 0.01
        print 'interpolating ' + key + ' onto a grid...'
        # remove bowtie effect:
        # this is quick and dirty but works quite well in the test region
        # Averaging should not be done with lon/lat values!
        #avfilter=sp.array([[0,1,0],[0,2,0],[0,1,0]])/4.
        #d[key]=nd.filters.convolve(d[key],avfilter) #weighted average between neighbored location
        # resample to image resolution:
        d[key] = nd.interpolation.zoom(d[key],
                                       5000 / cs,
                                       order=1,
                                       mode='constant')[:, :-1000 / cs]
        print ' done.'

    #Read Chanel
    filename = granules[k][resolution]
    print 'load ' + folder + filename + '... '
    f = SD(folder + filename)
    print ' done'
    d['img'] = []
    for band in bandlist:
        IMG = read_band(f, dataset[resolution], band, d)  #d.kd.
        # get the bowtie overlap pattern
        if calc_overlap == 'True':
            p = sp.array(bowtie_polynom(IMG, cs, folder),
                         dtype=float,
                         order='Fortran')
        else:
            p = sp.array(ovp[resolution], dtype=float, order='Fortran')
        # remove bowtie-effect from image
        modis_img = sp.array(IMG.transpose(), dtype=float, order='Fortran')
        bowtie.bowtie(modis_img, p, int(10000 / cs), modis_img.shape[0],
                      modis_img.shape[1])
        IMG = sp.array(modis_img.transpose(), order='C')
        d['img'].append(
            IMG[:, 1000 / cs:]
        )  #remove the left-hand-side edge pixel, so that geolocations fit
    #Make the image fit to the geolocations:
    d['Latitude'] = d['Latitude'][:, :-1000 /
                                  cs]  #remove the right-hand-side edge pixels
    d['Longitude'] = d['Longitude'][:, :-1000 / cs]
    d['SolarZenith'] = d['SolarZenith'][:, :-1000 / cs]
    d['SolarAzimuth'] = d['SolarAzimuth'][:, :-1000 / cs]
    d['SensorAzimuth'] = d['SensorAzimuth'][:, :-1000 / cs]
    d['SensorZenith'] = d['SensorZenith'][:, :-1000 / cs]
    print 'image shape: ' + str(d['img'][0].shape)
    print ' '
    return d['Longitude'], d['Latitude'], d['img'], d['SolarZenith'], d[
        'SolarAzimuth'], d['SensorAzimuth'], d['SensorZenith']