Ejemplo n.º 1
0
    def check_kmeans_lost_cluster(self, level=1):
        """This will cause kmean to have a cluster with no points."""
        data = N.fromfile(open(DATAFILE1), sep = ", ")
        data = data.reshape((200, 2))
        initk = N.array([[-1.8127404, -0.67128041],
                         [ 2.04621601, 0.07401111],
                         [-2.31149087,-0.05160469]])

        res = kmeans(data, initk)
        res = kmeans2(data, initk, missing = 'warn')
        try :
            res = kmeans2(data, initk, missing = 'raise')
            raise AssertionError("Exception not raised ! Should not happen")
        except ClusterError, e:
            print "exception raised as expected: " + str(e)
Ejemplo n.º 2
0
    def check_kmeans_simple(self, level=1):
        initc = N.concatenate(([[X[0]], [X[1]], [X[2]]]))
        code = initc.copy()
        code1 = kmeans(X, code, iter = 1)[0]

        assert_array_almost_equal(code1, CODET2)