Ejemplo n.º 1
0
    def estimate_current_pose(self, previous_pose, current_rgb, current_depth, debug=False):
        render_rgb, render_depth = self.renderer.render(previous_pose.transpose())
        # todo implement this part on gpu...
        rgbA, depthA = normalize_scale(render_rgb, render_depth, previous_pose.inverse(), self.camera, self.image_size,
                                       self.object_width)
        rgbB, depthB = normalize_scale(current_rgb, current_depth, previous_pose.inverse(), self.camera, self.image_size,
                                       self.object_width)

        depthA = normalize_depth(depthA, previous_pose)
        depthB = normalize_depth(depthB, previous_pose)

        if debug:
            show_frames(rgbA, depthA, rgbB, depthB)
        rgbA, depthA = normalize_channels(rgbA, depthA, self.mean[:4], self.std[:4])
        rgbB, depthB = normalize_channels(rgbB, depthB, self.mean[4:], self.std[4:])
        self.input_buffer[0, 0:3, :, :] = rgbA
        self.input_buffer[0, 3, :, :] = depthA
        self.input_buffer[0, 4:7, :, :] = rgbB
        self.input_buffer[0, 7, :, :] = depthB
        self.prior_buffer[0] = np.array(previous_pose.to_parameters(isQuaternion=True))
        prediction = self.tracker_model.test([self.input_buffer, self.prior_buffer]).asNumpyTensor()
        prediction = unnormalize_label(prediction, self.translation_range, self.rotation_range)
        if debug:
            print("Prediction : {}".format(prediction))
        prediction = Transform.from_parameters(*prediction[0], is_degree=True)
        current_pose = combine_view_transform(previous_pose, prediction)
        self.debug_rgb = render_rgb
        return current_pose
Ejemplo n.º 2
0
                                       OBJECT_WIDTH,
                                       scale=(1000, -1000, -1000))
            rgbA, depthA = normalize_scale(rgbA, depthA, bb,
                                           real_dataset.camera, IMAGE_SIZE)
            rgbB, depthB = normalize_scale(rotated_rgb, rotated_depth, bb,
                                           real_dataset.camera, IMAGE_SIZE)

            index = output_dataset.add_pose(rgbA, depthA, previous_pose)
            output_dataset.add_pair(rgbB, depthB, random_transform, index)
            iteration = i * SAMPLE_QUANTITY + j
            sys.stdout.write(
                "Progress: %d%%   \r" %
                (int(iteration /
                     (SAMPLE_QUANTITY * real_dataset.size()) * 100)))
            sys.stdout.flush()

            if iteration % 500 == 0:
                output_dataset.dump_images_on_disk()
            if iteration % 5000 == 0:
                output_dataset.save_json_files(metadata)

            if args.verbose:
                show_frames(rgbA, depthA, rgbB, depthB)
            cv2.imshow("testB", rgbB[:, :, ::-1])
            k = cv2.waitKey(1)
            if k == ESCAPE_KEY:
                break

    output_dataset.dump_images_on_disk()
    output_dataset.save_json_files(metadata)
Ejemplo n.º 3
0
    def estimate_current_pose(self,
                              previous_pose,
                              current_rgb,
                              current_depth,
                              debug=False,
                              debug_time=False):
        if debug_time:
            start_time = time.time()
        bb = compute_2Dboundingbox(previous_pose,
                                   self.camera,
                                   self.object_width,
                                   scale=(1000, 1000, -1000))
        bb2 = compute_2Dboundingbox(previous_pose,
                                    self.camera,
                                    self.object_width,
                                    scale=(1000, -1000, -1000))
        if debug_time:
            print("Compute BB : {}".format(time.time() - start_time))
            start_time = time.time()
        rgbA, depthA = self.compute_render(previous_pose, bb)
        if debug_time:
            print("Render : {}".format(time.time() - start_time))
            start_time = time.time()
        rgbB, depthB = normalize_scale(current_rgb, current_depth, bb2,
                                       self.camera, self.image_size)
        debug_info = (rgbA, bb2, np.hstack((rgbA, rgbB)))

        rgbA = rgbA.astype(np.float)
        rgbB = rgbB.astype(np.float)
        depthA = depthA.astype(np.float)
        depthB = depthB.astype(np.float)

        depthA = normalize_depth(depthA, previous_pose)
        depthB = normalize_depth(depthB, previous_pose)

        if debug:
            show_frames(rgbA, depthA, rgbB, depthB)
        rgbA, depthA = normalize_channels(rgbA, depthA, self.mean[:4],
                                          self.std[:4])
        rgbB, depthB = normalize_channels(rgbB, depthB, self.mean[4:],
                                          self.std[4:])

        self.input_buffer[0, 0:3, :, :] = rgbA
        self.input_buffer[0, 3, :, :] = depthA
        self.input_buffer[0, 4:7, :, :] = rgbB
        self.input_buffer[0, 7, :, :] = depthB
        self.prior_buffer[0] = np.array(
            previous_pose.to_parameters(isQuaternion=True))
        if debug_time:
            print("Normalize : {}".format(time.time() - start_time))
            start_time = time.time()
        prediction = self.tracker_model.test(
            [self.input_buffer, self.prior_buffer]).asNumpyTensor()
        if debug_time:
            print("Network time : {}".format(time.time() - start_time))
        prediction = unnormalize_label(prediction, self.translation_range,
                                       self.rotation_range)
        if debug:
            print("Prediction : {}".format(prediction))
        prediction = Transform.from_parameters(*prediction[0], is_degree=True)
        current_pose = combine_view_transform(previous_pose, prediction)
        return current_pose, debug_info