Ejemplo n.º 1
0
def exhaustive_set(G, query_nodes, target_nodes, n_edges, start_dist):
    """Exaustively searches all the combinations of k links between 
    a set of query nodes Q and a set of absorbing
    target nodes C such that Q \cap C = \emptyset. 
    Parameters
    ----------
    G : Networkx graph
        The graph from which the team will be selected.
    query : list 
        The set of nodes from which random walker starts.
    target : list
        The set of nodes from where the random walker ends.
    n_edges : integer
        the number of links to be added
    start_dist: list
        The starting distribution over the query set
    Returns
    -------
    links : list
        The set of links that reduce the absorbing RW centrality
    ac_scores: list
        The set of scores of adding the links
    """
    query_set_size = len(query_nodes)
    map_query_to_org = dict(zip(query_nodes, range(query_set_size)))
    P = csc_matrix(nx.google_matrix(G, alpha=1))
    P_abs = P[list(query_nodes),:][:,list(query_nodes)]
    F = compute_fundamental(P_abs)
    row_sums = start_dist.dot(F.sum())[0,0]
    candidates = list(product(query_nodes, target_nodes))
    eligible = [candidates[i] for i in range(len(candidates)) 
                if G.has_edge(candidates[i][0], candidates[i][1]) == False]
    ac_scores = [row_sums]
    exhaustive_links = []
    for L in range(1, n_edges+1):
        print '\t Number of edges {}'.format(L)
        round_min = -1
        best_combination = [] 
        for subset in combinations(eligible, L):
            H = G.copy()
            F_modified = F.copy()
            for links_to_add in subset:
                F_updated = update_fundamental_mat(F_modified, H, map_query_to_org, links_to_add[0])
                H.add_edge(links_to_add[0], links_to_add[1])
                F_modified = F_updated            
            abs_cen = start_dist.dot( F_updated.sum(axis = 1))[0,0]
            if abs_cen < round_min or round_min == -1:
                best_combination = subset
                round_min = abs_cen
        exhaustive_links.append(best_combination)
        ac_scores.append(round_min)              
    return exhaustive_links, ac_scores
Ejemplo n.º 2
0
def random_links(G, query_nodes, target_nodes, n_edges, start_dist):
    """Selects a random set of links between a set of query nodes Q and a set of absorbing
    target nodes C such that Q \cap C = \emptyset. 
    Parameters
    ----------
    G : Networkx graph
        The graph from which the team will be selected.
    query : list 
        The set of nodes from which random walker starts.
    target : list
        The set of nodes from where the random walker ends.
    n_edges : integer
        the number of links to be added
    start_dist: list
        The starting distribution over the query set
    Returns
    -------
    links : list
        The set of links that reduce the absorbing RW centrality
    ac_scores: list
        The set of scores of adding the links
    """
    query_set_size = len(query_nodes)
    map_query_to_org = dict(zip(query_nodes, range(query_set_size)))
    P = csc_matrix(nx.google_matrix(G, alpha=1))
    P_abs = P[list(query_nodes),:][:,list(query_nodes)]
    F = compute_fundamental(P_abs)
    row_sums = start_dist.dot(F.sum())[0,0]
    candidates = list(product(query_nodes, target_nodes))
    eligible = [candidates[i] for i in range(len(candidates)) 
                if G.has_edge(candidates[i][0], candidates[i][1]) == False]
    links_to_add = sample(eligible, n_edges)
    
    ac_scores = []
    ac_scores.append(row_sums)
    i = 0
    while i < n_edges:
        F_updated = update_fundamental_mat(F, G, map_query_to_org, links_to_add[i][0])
        G.add_edge(links_to_add[i][0], links_to_add[i][1])
        abs_cen = start_dist.dot(F_updated.sum(axis = 1))[0,0]
        F = F_updated            
        ac_scores.append(abs_cen)
        i += 1
    return links_to_add, ac_scores
Ejemplo n.º 3
0
def get_approx_boundary(G, query_nodes, target_nodes, n_edges, start_dist):
    """
    Used to calculate an approximation guarantee for greedy algorithm
    """
    
    H = G.copy() # GET A COPY OF THE GRAPH
    query_set_size = len(query_nodes) 
    target_set_size = len(target_nodes)
    map_query_to_org = dict(zip(query_nodes, range(query_set_size)))
    
    candidates = list(product(query_nodes, target_nodes))
    # ALL minus exitsting in G
    eligible = [candidates[i] for i in range(len(candidates)) 
                if H.has_edge(candidates[i][0], candidates[i][1]) == False]
    
    # CALCULATE MARGINAL GAIN TO EMPTY SET FOR ALL NODES IN STEEPNESS FUNCTION
    P = csc_matrix(nx.google_matrix(H, alpha=1))
    P_abs = P[list(query_nodes),:][:,list(query_nodes)]
    F = compute_fundamental(P_abs)
    row_sums_empty = start_dist.dot(F.sum(axis=1))[0,0] # F(\emptyset)
    # candidates = list(product(query_nodes, target_nodes))
    ac_marginal_empty   = []
    ac_marginal_full    = []
    source_idx_empty = []
    node_processed = -1
    for out_edge in eligible:
        abs_cen = -1
        source_node = out_edge[0]
        if(node_processed == source_node):
            # skip updating matrix because this updates the F matrix in the same way
            continue
        node_processed = source_node           
        F_updated = update_fundamental_mat(F, H, map_query_to_org, source_node)
        abs_cen = start_dist.dot(F_updated.sum(axis = 1))[0,0]
        ac_marginal_empty.append(abs_cen)
        source_idx_empty.append(source_node)
        
    sorted_indexes_empty = [i[0] for i in sorted(enumerate(source_idx_empty), key=lambda x:x[1])]
    ac_marginal_empty = [ac_marginal_empty[i] for i in sorted_indexes_empty]   
    # CALCULATE MARGINAL GAIN FOR FULL SET

    H.add_edges_from(eligible)
    P_all = csc_matrix(nx.google_matrix(H, alpha=1))
    P_abs_all = P_all[list(query_nodes),:][:,list(query_nodes)]
    F_all = compute_fundamental(P_abs_all)
    
    row_sums_all = start_dist.dot(F_all.sum(axis=1))[0,0]
    node_prcessed   = -1
    source_idx = []
    for out_edge in eligible:
        abs_cen = -1
        source_node = out_edge[0]
        if(node_prcessed == source_node):
            # skip updating matrix because this updates the F matrix in the same way
            continue
        node_prcessed = source_node
        F_all_updated = update_rev_fundamental_mat(F_all, H, map_query_to_org, source_node)
        abs_cen   = start_dist.dot(F_all_updated.sum(axis = 1))[0,0]
        ac_marginal_full.append(abs_cen)
        source_idx.append(source_node)   
    
    sorted_indexes = [i[0] for i in sorted(enumerate(source_idx), key=lambda x:x[1])]
    ac_marginal_full = [ac_marginal_full[i] for i in sorted_indexes]
    
    assert sorted_indexes == sorted_indexes_empty , "Something is wrong with the way scores are appended"
    
    all_steepness = (asarray(ac_marginal_full) - row_sums_all) / (row_sums_empty-asarray(ac_marginal_empty))
    s = min(all_steepness)
    node_max = argmin(all_steepness)
    return 1-s, sorted_indexes[node_max]
Ejemplo n.º 4
0
def greedy_navigation(G, query_nodes, target_nodes, n_edges, start_dist):
    """Selects a set of links with a greedy descent algorithm that reduce the 
    absorbing RW centrality between a set of query nodes Q and a set of absorbing
    target nodes C such that Q \cap C = \emptyset. The query and target set 
    must be a 'viable' partition of the graph.
    Parameters
    ----------
    G : Networkx graph
        The graph from which the team will be selected.
    query : list 
        The set of nodes from which random walker starts.
    target : list
        The set of nodes from where the random walker ends.
    n_edges : integer
        the number of links to be added
    start_dist: list
        The starting distribution over the query set
    P : Scipy matrix
        The transition matrix of the graph G
    F : Scipy matrix
        The fundamental matrix for the graph G with the given set of absorbing
        random walk nodes
    Returns
    -------
    links : list
        The set of links that reduce the absorbing RW centrality
    """
    H = G.copy()
    prng = RandomState()
    query_set_size = len(query_nodes)
    target_set_size = len(target_nodes)
    map_query_to_org = dict(zip(query_nodes, range(query_set_size)))

    P = csc_matrix(nx.google_matrix(H, alpha=1))
    P_abs = P[list(query_nodes),:][:,list(query_nodes)]
    F = compute_fundamental(P_abs)
    row_sums = start_dist.dot(F.sum(axis=1))[0,0]
    best_F = zeros(F.shape)
    optimal_set = []
    ac_scores = []
    ac_scores.append(row_sums)
    
    while n_edges > 0:
        round_min = -1
        best_node = -1
        
        for i in query_nodes:
            abs_neighbours = [l for l in H.neighbors(i) if l in target_nodes]
            if len(abs_neighbours) == target_set_size:
                continue
            
            F_updated = update_fundamental_mat(F, H, map_query_to_org, i)
            abs_cen = start_dist.dot( F_updated.sum(axis = 1))[0,0]
            if abs_cen < round_min or round_min == -1:
                best_node = i
                round_min = abs_cen
                best_F = F_updated
        F = best_F            
        ac_scores.append(round_min)
        optimal_candidate_edges = [(best_node, k, round_min) 
                                   for k in target_nodes 
                                   if H.has_edge(best_node, k) == False ]
        
        try:
            edge_idx = prng.randint(0, len(optimal_candidate_edges))
        except ValueError:
            print(H.neighbors(best_node))
            print([l for l in H.neighbors(best_node) if l in target_nodes])
            print(best_node)
            print(optimal_candidate_edges)
            print(target_nodes)
        H.add_edge(optimal_candidate_edges[edge_idx][0], 
                   optimal_candidate_edges[edge_idx][1])
        optimal_set.append(optimal_candidate_edges[edge_idx])
        n_edges -= 1

    return optimal_set, ac_scores
Ejemplo n.º 5
0
def link_prediction(G, query_nodes, target_nodes, n_edges, start_dist, alg = "ra"):
    """Selects a random set of links between based on the scores calculated by 
    a standard link-prediction algorithm from networkx library
    Parameters
    ----------
    G : Networkx graph
        The graph from which the team will be selected.
    query : list 
        The set of nodes from which random walker starts.
    target : list
        The set of nodes from where the random walker ends.
    n_edges : integer
        the number of links to be added
    start_dist: list
        The starting distribution over the query set
    alg: string
        A string describing the link-prediction algorithm to be used
    Returns
    -------
    links : list
        The set of links that reduce the absorbing RW centrality
    ac_scores: list
        The set of scores of adding the links
    """
    assert alg in ["ra", "pa", "jaccard", "aa"], "alg must be one of [\"ra\", \"pa\", \"jaccard\", \"aa\"]."
          
    H = G.copy()
    query_set_size = len(query_nodes)
    map_query_to_org = dict(zip(query_nodes, range(query_set_size)))
    P = csc_matrix(nx.google_matrix(H, alpha=1))
    P_abs = P[list(query_nodes),:][:,list(query_nodes)]
    F = compute_fundamental(P_abs)
    row_sums = start_dist.dot(F.sum())[0,0]
    candidates = list(product(query_nodes, target_nodes))
    eligible = [candidates[i] for i in range(len(candidates)) 
                if H.has_edge(candidates[i][0], candidates[i][1]) == False]
    links_to_add = []
    if alg == 'ra':
        preds = nx.resource_allocation_index(H, eligible)
    elif alg == 'jaccard':
        preds = nx.jaccard_coefficient(H, eligible)
    elif alg == 'aa':
        preds = nx.adamic_adar_index(H, eligible)
    elif alg == 'pa':
        preds = nx.preferential_attachment(H, eligible)
        
    for u,v,p in preds:
        links_to_add.append((u,v,p))
    links_to_add.sort(key=lambda x: x[2], reverse = True)
    
    ac_scores = []
    ac_scores.append(row_sums)
    i = 0
    while i < n_edges:
        F_updated = update_fundamental_mat(F, H, map_query_to_org, links_to_add[i][0])
        H.add_edge(links_to_add[i][0], links_to_add[i][1])
        abs_cen = start_dist.dot(F_updated.sum(axis = 1))[0,0]
        F = F_updated            
        ac_scores.append(abs_cen)
        i += 1
    return links_to_add, ac_scores