Ejemplo n.º 1
0
def nP4Quad(a, b):
    '''
    Calculate number of primes for n**2 + an + b
    Where a, b are integers and n starts from 0
    '''
    n = 0  # Num of primes
    while True:
        if not eulerlib.isprime(n**2 + (a * n) + b):
            break
        n += 1
    return n
Ejemplo n.º 2
0
def spiral(n):
    if n % 2 == 0: return None

    if n not in lookup:
        start = (n - 2)**2 + 1
        corner = start + n - 2
        C = [corner]
        for i in range(3):
            corner += n - 1
            C.append(corner)

        r1 = (sum([1 for c in C if isprime(c)]), len(C))
        r2 = spiral(n - 2)
        lookup[n] = (r1[0] + r2[0], r1[1] + r2[1])

    return lookup[n]
Ejemplo n.º 3
0
def spiral(n):
	if n % 2 == 0: return None 

	if n not in lookup:
		start = (n-2)**2 + 1
		corner = start + n-2
		C = [corner]
		for i in range(3):
			corner += n-1 
			C.append(corner)

		r1 = (sum( [1 for c in C if isprime(c)] ) , len(C)) 
		r2 = spiral(n-2)
		lookup[n] = (r1[0] + r2[0], r1[1] + r2[1])

	return lookup[n]
Ejemplo n.º 4
0
from itertools import permutations
from eulerlib import isprime

for n in reversed(xrange(1,10)):
	D = [str(d) for d in reversed(xrange(1,n+1))]

	found = False
	for p in permutations(range(len(D))):
		n = int(''.join([D[i] for i in p]))
		if isprime(n):
			print n
			found = True
			break
	if found: 
		break
Ejemplo n.º 5
0
from itertools import permutations
from eulerlib import isprime

for n in reversed(xrange(1, 10)):
    D = [str(d) for d in reversed(xrange(1, n + 1))]

    found = False
    for p in permutations(range(len(D))):
        n = int(''.join([D[i] for i in p]))
        if isprime(n):
            print n
            found = True
            break
    if found:
        break
Ejemplo n.º 6
0
import eulerlib

primes = []
for p in eulerlib.PrimesPlus():
    primes.append(p)
    if p > 4000: # Only use first few primes
        break

def check(n):
    ''' Check to see if a comp num satisfies CG's properties '''
    for p in primes:
        for i in range(1, int(n)):
            if p + (2 * (i ** 2)) == n:
                return (p, i)
    return None

for i in range(9, 10**5 + 1, 2):
    if not eulerlib.isprime(i) and check(i) == None:
        print(i)
        break
Ejemplo n.º 7
0
    '''
    n = 0  # Num of primes
    while True:
        if not eulerlib.isprime(n**2 + (a * n) + b):
            break
        n += 1
    return n


ma, mb, mprimes = 0, 0, 0
factor = 100

# b must be prime becuase otherwise test fails when n == 0
brange = eulerlib.primes(1000)
nbrange = []
for prime in brange:
    nbrange.append(prime * -1)
brange += nbrange  # Add neg version of the primes
###

# Search the problem space...
for a in range(-9 * factor, 10 * factor):
    for b in brange:
        if eulerlib.isprime(a + b + 1):  # Cull at n == 1 (probably not needed)
            nprimes = nP4Quad(a, b)
            if nprimes > mprimes:
                ma, mb, mprimes = a, b, nprimes

print("Solution: a = %d, b = %d, nprimes = %d, a*b = %d" %
      (ma, mb, mprimes, ma * mb))
Ejemplo n.º 8
0
# Solution to Project Euler #49
#
# by Justin Ethier
#
import eulerlib
import itertools

# Find all 4 digit primes
primes = []
for p in eulerlib.PrimesPlus():
    if p > 10**3:
        if eulerlib.isprime(p):
            primes.append(p)
        if p > 10**4:
            break

# Collect primes that are permutations of same digits
seqs = {}
for p in primes:
    bucket = list(str(p))
    bucket.sort()
    key = int("".join(bucket))
    if key in seqs:
        # Existing bucket, add p
        seqs[key].append(p)
    else:
        # New bucket, add p
        seqs[key] = [p]


# Find solutions - that is, sequences of primes that increase by 3330