def RunAcoustic(q):
    Nxy = 100
    tf = 0.1  # Final time
    direction = 0
    u0_expr = Expression(\
    '100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)', i=direction)

    class LeftRight(SubDomain):
        def inside(self, x, on_boundary):
            return (x[direction] < 1e-16 or x[direction] > 1.0 - 1e-16) \
            and on_boundary

    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * 10.)

    Wave = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl})
    Wave.verbose = True
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight())
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    sol, tmp = Wave.solve()
def RunAcoustic(q):
    Nxy = 100
    tf = 0.1  # Final time
    direction = 0
    u0_expr = Expression("100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)", i=direction)

    class LeftRight(SubDomain):
        def inside(self, x, on_boundary):
            return (x[direction] < 1e-16 or x[direction] > 1.0 - 1e-16) and on_boundary

    h = 1.0 / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, "Lagrange", q)
    Vl = FunctionSpace(mesh, "Lagrange", 1)
    Dt = h / (q * 10.0)

    Wave = AcousticWave({"V": V, "Vl": Vl, "Vr": Vl})
    Wave.verbose = True
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight())
    Wave.update(
        {
            "lambda": 1.0,
            "rho": 1.0,
            "t0": 0.0,
            "tf": tf,
            "Dt": Dt,
            "u0init": interpolate(u0_expr, V),
            "utinit": Function(V),
        }
    )
    sol, tmp = Wave.solve()
Ejemplo n.º 3
0
def run_test():
    q = 3
    Nxy = 100
    tf = 0.1
    h = 1./Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h/(q*10.)
    u0_expr = Expression(\
    '100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)', i=0)


    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    Wave.lump = True
    Wave.timestepper = 'backward'
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    K = Wave.K
    u = Wave.u0
    u.vector()[:] = 1.0
    b = Wave.u1
    for ii in range(100):
        K*u.vector()
        (K*u.vector()).array()

        b.vector()[:] = (K*u.vector()).array()
        b.vector()[:] = 0.0
        b.vector().axpy(1.0, K*u.vector())

        b.vector()[:] = (K*u.vector()).array() + (K*u.vector()).array()
        b.vector()[:] = (K*u.vector() + K*u.vector()).array()

        b.vector()[:] = 2.*u.vector().array() + u.vector().array() + \
        Dt*u.vector().array()
        b.vector()[:] = 0.0
        b.vector().axpy(2.0, u.vector())
        b.vector().axpy(1.0, u.vector())
        b.vector().axpy(Dt, u.vector())
        b.assign(u)
        b.vector().zero()
Ejemplo n.º 4
0
def run_test():
    q = 3
    Nxy = 100
    tf = 0.1
    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * 10.)
    u0_expr = Expression(\
    '100*pow(x[i]-.25,2)*pow(x[i]-0.75,2)*(x[i]<=0.75)*(x[i]>=0.25)', i=0)

    Wave = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl})
    Wave.lump = True
    Wave.timestepper = 'backward'
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    K = Wave.K
    u = Wave.u0
    u.vector()[:] = 1.0
    b = Wave.u1
    for ii in range(100):
        K * u.vector()
        (K * u.vector()).array()

        b.vector()[:] = (K * u.vector()).array()
        b.vector()[:] = 0.0
        b.vector().axpy(1.0, K * u.vector())

        b.vector()[:] = (K * u.vector()).array() + (K * u.vector()).array()
        b.vector()[:] = (K * u.vector() + K * u.vector()).array()

        b.vector()[:] = 2.*u.vector().array() + u.vector().array() + \
        Dt*u.vector().array()
        b.vector()[:] = 0.0
        b.vector().axpy(2.0, u.vector())
        b.vector().axpy(1.0, u.vector())
        b.vector().axpy(Dt, u.vector())
        b.assign(u)
        b.vector().zero()
class AllFour(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary


for r in RR:
    V = FunctionSpace(mesh, 'Lagrange', r)
    Pt = PointSources(V, [[.5, .5]])
    mydelta = Pt[0].array()

    def mysrc(tt):
        return Ricker(tt) * mydelta

    # Computation:
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
    Wave = AcousticWave({'V': V, 'Vm': Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, AllFour(), True)
    Wave.exact = Function(V)
    Wave.update({'b':1.0, 'a':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    Wave.ftime = mysrc
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None: MPI.barrier(mycomm)

# Plots:
try:
Ejemplo n.º 6
0
        and on_boundary

q = 2
if myrank == 0: print '\npolynomial order = {}'.format(q)
#alpha = 3.
alpha = 5.

for Nxy in NN:
    h = 1./Nxy
    mesh = UnitSquareMesh(Nxy, Nxy)
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h/(q*alpha*c)
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)

    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight(), True)
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    Wave.ftime = lambda t: 0.0
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

if myrank == 0:
    # Order of convergence:
# target medium
medformula = "A*A*(x[1]>=0.5) + 2.0*2.0*(x[1]<0.5)"
TargetMedExpr = dl.Expression(medformula, A=1.5)
TargetMed = dl.interpolate(TargetMedExpr, Vl)
myplot.set_varname("target_medium")
myplot.plot_vtk(TargetMed)
# perturbation
# PerturbationMedExpr = dl.Expression(medformula, A=1.0)
# PerturbMed = dl.interpolate(PerturbationMedExpr, Vl)
# myplot.set_varname('perturb_medium')
# myplot.plot_vtk(PerturbMed)
# observation operator:
obspts = [[x / 10.0, 1.0] for x in range(1, 10)]
obsop = TimeObsPtwise({"V": V, "Points": obspts})
# define pde operator:
wavepde = AcousticWave({"V": V, "Vl": Vl, "Vr": Vl})
wavepde.timestepper = "backward"
wavepde.lump = True
wavepde.set_abc(mesh, ABC(), True)
wavepde.update(
    {"lambda": TargetMed, "rho": 1.0, "t0": t0, "tf": tf, "Dt": Dt, "u0init": dl.Function(V), "utinit": dl.Function(V)}
)
wavepde.ftime = mysrc
# define objective function:
waveobj = ObjectiveAcoustic(wavepde)
waveobj.obsop = obsop
# data
print "generate data"
waveobj.solvefwd()
myplot.plot_timeseries(waveobj.solfwd, "pd", 0, 40, fctV)
dd = waveobj.Bp.copy()
V = FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(V, [[.5, 1.]])
mydelta = Pt[0]
src = Function(V)
srcv = src.vector()


def mysrc(tt):
    srcv.zero()
    srcv.axpy(Ricker(tt), mydelta)
    return srcv


# Computation:
if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
Wave = AcousticWave({'V': V, 'Vm': Vl})
#Wave.verbose = True
Wave.timestepper = 'backward'
Wave.lump = True
#Wave.set_abc(mesh, AllFour(), True)
lambda_target = Expression('1.0 + 3.0*(' \
'(x[0]>=0.3)*(x[0]<=0.7)*(x[1]>=0.3)*(x[1]<=0.7))')
lambda_target_fn = interpolate(lambda_target, Vl)
Wave.update({'b':lambda_target_fn, 'a':1.0, \
't0':0.0, 'tf':tf, 'Dt':Dt, 'u0init':Function(V), 'utinit':Function(V)})
Wave.ftime = mysrc
sol, tmp = Wave.solve()
# Observations
myObs = TimeObsPtwise({
    'V': V,
    'Points': [[.5, .2], [.5, .8], [.2, .5], [.8, .5]]
Ejemplo n.º 9
0
def u0_boundary(x, on_boundary):
    return on_boundary
ubc = Constant("0.0")

q = 2
if myrank == 0: print '\npolynomial order = {}'.format(q)

for Nxy in NN:
    h = 1./Nxy
    if myrank == 0: print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h/(q*8.*np.sqrt(2))

    Wave = AcousticWave({'V':V, 'Vm':Vl})
    Wave.timestepper = 'backward'
    Wave.lump = True
    Wave.exact = Function(V)
    Wave.bc = DirichletBC(V, ubc, u0_boundary)
    Wave.update({'b':8.0, 'a':2.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    Wave.ftime = lambda t: 0.0
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

if myrank == 0:
    CONVORDER = []
    for ii in range(len(ERROR)-1):
    return (x[direction] < 1e-16 or x[direction] > 1.0-1e-16) and on_boundary
ubc = Constant("0.0")

q = 2
if myrank == 0: print '\npolynomial order = {}'.format(q)
alpha = 3.

for Nxy in NN:
    h = 1./Nxy
    mesh = UnitSquareMesh(Nxy, Nxy)
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h/(q*alpha*c)
    if myrank == 0: print '\n\th = {} - Dt = {}'.format(h, Dt)

    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    Wave.timestepper = 'backward'
    Wave.lump = True
    Wave.exact = interpolate(uex_expr, V)
    Wave.bc = DirichletBC(V, ubc, u0_boundary)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

if myrank == 0:
    # Order of convergence:
    CONVORDER = []
    for ii in range(len(ERROR)-1):
Ejemplo n.º 11
0
#Pt = PointSources(V, [[0.1,y_src], [0.25,y_src], [0.4,y_src],\
#[0.6,y_src], [0.75,y_src], [0.9,y_src]])
Pt = PointSources(V, [[0.1, y_src], [0.4, y_src], [0.6, y_src], [0.9, y_src]])
srcv = dl.Function(V).vector()


# Boundary conditions:
class ABCdom(dl.SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary and (x[1] < Y)


Wave = AcousticWave({
    'V': V,
    'Vm': Vl
}, {
    'print': False,
    'lumpM': True,
    'timestepper': 'backward'
})
Wave.set_abc(mesh, ABCdom(), lumpD=False)

at, bt, ct, _, _ = targetmediumparameters(Vl, X)
a0, b0, _, _, _ = initmediumparameters(Vl, X)
Wave.update({'b':bt, 'a':at, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(V), 'utinit':dl.Function(V)})
if PRINT:
    print 'nb of src={}, nb of timesteps={}'.format(len(Pt.src_loc), Wave.Nt)

sources, timesteps = partition_work(mpicomm_local, mpicomm_global, \
len(Pt.src_loc), Wave.Nt)
    b_target_fn = dl.interpolate(b_target, Vm)
    a_target = dl.Expression(\
    '1.0 + 0.4*(x[0]<=0.7)*(x[0]>=0.3)*(x[1]<=0.7)*(x[1]>=0.3)')
    a_target_fn = dl.interpolate(a_target, Vm)

    checkdt(Dt, 1. / Nxy, r, np.sqrt(2.0), False)

    # observation operator:
    obspts = [[0.0, ii/10.] for ii in range(1,10)] + \
    [[1.0, ii/10.] for ii in range(1,10)] + \
    [[ii/10., 0.0] for ii in range(1,10)] + \
    [[ii/10., 1.0] for ii in range(1,10)]
    obsop = TimeObsPtwise({'V': V, 'Points': obspts}, [t0, t1, t2, tf])

    # define pde operator:
    wavepde = AcousticWave({'V': V, 'Vm': Vm})
    wavepde.timestepper = 'backward'
    wavepde.lump = True
    wavepde.update({'a':a_target_fn, 'b':b_target_fn, \
    't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})

    # parameters
    Vm = wavepde.Vm
    V = wavepde.V
    lenobspts = obsop.PtwiseObs.nbPts

    # set up plots:
    filename, ext = splitext(sys.argv[0])
    if isdir(filename + '/'): rmtree(filename + '/')
    myplot = PlotFenics(filename + str(Nxy))
    myplot.set_varname('a_target')
Ejemplo n.º 13
0

q = 2
if myrank == 0: print '\npolynomial order = {}'.format(q)
#alpha = 3.
alpha = 5.

for Nxy in NN:
    h = 1. / Nxy
    mesh = UnitSquareMesh(Nxy, Nxy)
    V = FunctionSpace(mesh, 'Lagrange', q)
    Vl = FunctionSpace(mesh, 'Lagrange', 1)
    Dt = h / (q * alpha * c)
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)

    Wave = AcousticWave({'V': V, 'Vm': Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, LeftRight(), True)
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'b':b, 'a':a, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':interpolate(u0_expr, V), 'utinit':Function(V)})
    Wave.ftime = lambda t: 0.0
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None: MPI.barrier(mycomm)

if myrank == 0:
    # Order of convergence:
# Source term:
Ricker = RickerWavelet(fpeak, 1e-10)

# Boundary conditions:
#class AllFour(SubDomain):
#    def inside(self, x, on_boundary):
#        return on_boundary

V = FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(V, [[.5,1.]])
mydelta = Pt[0].array()
def mysrc(tt):
    return Ricker(tt)*mydelta
# Computation:
if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
#Wave.verbose = True
Wave.timestepper = 'backward'
Wave.lump = True
#Wave.set_abc(mesh, AllFour(), True)
lambda_target = Expression('1.0 + 3.0*(' \
'(x[0]>=0.3)*(x[0]<=0.7)*(x[1]>=0.3)*(x[1]<=0.7))') 
lambda_target_fn = interpolate(lambda_target, Vl)
Wave.update({'lambda':lambda_target_fn, 'rho':1.0, \
't0':0.0, 'tf':tf, 'Dt':Dt, 'u0init':Function(V), 'utinit':Function(V)})
Wave.ftime = mysrc
sol, tmp = Wave.solve()
if not mycomm == None:  MPI.barrier(mycomm)
# Observations
myObs = TimeObsPtwise({'V':V, 'Points':[[.5,.2], [.5,.8], [.2,.5], [.8,.5]]})
Bp = np.zeros((4, len(sol)))
Ejemplo n.º 15
0
if isdir(filename + '/'):   rmtree(filename + '/')
myplot = PlotFenics(filename)
boolplot = 100

print 'Compute most accurate solution as reference'
qq = 20
N = int(qq/cmin)
h = 1./N
mesh = dl.UnitSquareMesh(N,N)
Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
Vex = dl.FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(Vex, [[.5,.5]])
mydelta = Pt[0].array()
def mysrc(tt):
    return Ricker(tt)*mydelta
Waveex = AcousticWave({'V':Vex, 'Vl':Vl, 'Vr':Vl})
Waveex.timestepper = 'backward'
Waveex.lump = True
Waveex.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(Vex), 'utinit':dl.Function(Vex)})
Waveex.ftime = mysrc
sol,_ = Waveex.solve()
Waveex.exact = dl.Function(Vex)
normex = Waveex.computeabserror()
# plot
myplot.set_varname('u-q'+str(qq))
plotu = dl.Function(Vex)
for index, uu in enumerate(sol):
    if index%boolplot == 0:
        setfct(plotu, uu[0])
        myplot.plot_vtk(plotu, index)
Ejemplo n.º 16
0
t=tf)


def source(tt):
    return Expression('6*(sqrt(pow(x[0]-0.5,2)+pow(x[1]-0.5,2))<=t)', t=tt)


for Nxy in NN:
    h = 1. / Nxy
    print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    q = 1  # Polynomial order
    V = FunctionSpace(mesh, 'Lagrange', q)
    Dt = h / (q * 5. * c)

    Wave = AcousticWave({'V': V, 'Vl': V, 'Vr': V})
    Wave.timestepper = 'backward'
    Wave.lump = True
    #Wave.verbose = True
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    test = TestFunction(V)

    def srcterm(tt):
        src_expr = source(tt)
        src_vect = assemble(src_expr * test * dx)
        return src_vect.array()

    Wave.ftime = srcterm
    sol, error = Wave.solve()
def run_test(fpeak, lambdamin, lambdamax, Nxy, tfilterpts, r, Dt, skip):
    h = 1./Nxy
    checkdt(Dt, h, r, np.sqrt(lambdamax), True)
    mesh = dl.UnitSquareMesh(Nxy, Nxy)
    Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
    V = dl.FunctionSpace(mesh, 'Lagrange', r)
    fctV = dl.Function(V)
    # set up plots:
    filename, ext = splitext(sys.argv[0])
    if isdir(filename + '/'):   rmtree(filename + '/')
    myplot = PlotFenics(filename)
    # source:
    Ricker = RickerWavelet(fpeak, 1e-10)
    Pt = PointSources(V, [[0.5,0.5]])
    mydelta = Pt[0].array()
    def mysrc(tt):
        return Ricker(tt)*mydelta
    # target medium:
    lambda_target = dl.Expression('lmin + x[0]*(lmax-lmin)', \
    lmin=lambdamin, lmax=lambdamax)
    lambda_target_fn = dl.interpolate(lambda_target, Vl)
    myplot.set_varname('lambda_target')
    myplot.plot_vtk(lambda_target_fn)
    # initial medium:
    lambda_init = dl.Constant(lambdamin)
    lambda_init_fn = dl.interpolate(lambda_init, Vl)
    myplot.set_varname('lambda_init')
    myplot.plot_vtk(lambda_init_fn)
    # observation operator:
    #obspts = [[0.2, 0.5], [0.5, 0.2], [0.5, 0.8], [0.8, 0.5]]
    obspts = [[0.2, ii/10.] for ii in range(2,9)] + \
    [[0.8, ii/10.] for ii in range(2,9)] + \
    [[ii/10., 0.2] for ii in range(3,8)] + \
    [[ii/10., 0.8] for ii in range(3,8)]
    obsop = TimeObsPtwise({'V':V, 'Points':obspts}, tfilterpts)
    # define pde operator:
    wavepde = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    wavepde.timestepper = 'centered'
    wavepde.lump = True
    wavepde.set_abc(mesh, LeftRight(), True)
    wavepde.update({'lambda':lambda_target_fn, 'rho':1.0, \
    't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})
    wavepde.ftime = mysrc
    # define objective function:
    waveobj = ObjectiveAcoustic(wavepde)
    waveobj.obsop = obsop
    # data
    print 'generate noisy data'
    waveobj.solvefwd()
    myplot.plot_timeseries(waveobj.solfwd, 'pd', 0, skip, fctV)
    dd = waveobj.Bp.copy()
    nbobspt, dimsol = dd.shape
    noiselevel = 0.1   # = 10%
    sigmas = np.sqrt((dd**2).sum(axis=1)/dimsol)*noiselevel
    rndnoise = np.random.randn(nbobspt*dimsol).reshape((nbobspt, dimsol))
    waveobj.dd = dd + sigmas.reshape((len(sigmas),1))*rndnoise
    # gradient
    print 'generate observations'
    waveobj.update_m(lambda_init_fn)
    waveobj.solvefwd_cost()
    cost1 = waveobj.misfit
    print 'misfit = {}'.format(waveobj.misfit)
    myplot.plot_timeseries(waveobj.solfwd, 'p', 0, skip, fctV)
    # Plot data and observations
    fig = plt.figure()
    if len(obspts) > 9: fig.set_size_inches(20., 15.)
    for ii in range(len(obspts)):
        if len(obspts) == 4:    ax = fig.add_subplot(2,2,ii+1)
        else:   ax = fig.add_subplot(4,6,ii+1)
        ax.plot(waveobj.PDE.times, waveobj.dd[ii,:], 'k--')
        ax.plot(waveobj.PDE.times, waveobj.Bp[ii,:], 'b')
        ax.set_title('Plot'+str(ii))
    fig.savefig(filename + '/observations.eps')
    print 'compute gradient'
    waveobj.solveadj_constructgrad()
    myplot.plot_timeseries(waveobj.soladj, 'v', 0, skip, fctV)
    MG = waveobj.MGv.array().copy()
    myplot.set_varname('grad')
    myplot.plot_vtk(waveobj.Grad)
    print 'check gradient with FD'
    Medium = np.zeros((5, Vl.dim()))
    for ii in range(5):
        smoothperturb = dl.Expression('sin(n*pi*x[0])*sin(n*pi*x[1])', n=ii+1)
        smoothperturb_fn = dl.interpolate(smoothperturb, Vl)
        Medium[ii,:] = smoothperturb_fn.vector().array()
    checkgradfd_med(waveobj, Medium, 1e-6, [1e-5, 1e-4])
    print 'check Hessian with FD'
    checkhessfd_med(waveobj, Medium, 1e-6, [1e-1, 1e-2, 1e-3, 1e-4, 1e-5], False)
Ejemplo n.º 18
0
print 'Compute most accurate solution as reference'
qq = 20
N = int(qq / cmin)
h = 1. / N
mesh = dl.UnitSquareMesh(N, N)
Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
Vex = dl.FunctionSpace(mesh, 'Lagrange', r)
Pt = PointSources(Vex, [[.5, .5]])
mydelta = Pt[0].array()


def mysrc(tt):
    return Ricker(tt) * mydelta


Waveex = AcousticWave({'V': Vex, 'Vm': Vl})
Waveex.timestepper = 'backward'
Waveex.lump = True
Waveex.update({'a':1.0, 'b':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(Vex), 'utinit':dl.Function(Vex)})
Waveex.ftime = mysrc
sol, _ = Waveex.solve()
Waveex.exact = dl.Function(Vex)
normex = Waveex.computeabserror()
# plot
myplot.set_varname('u-q' + str(qq))
plotu = dl.Function(Vex)
for index, uu in enumerate(sol):
    if index % boolplot == 0:
        setfct(plotu, uu[0])
        myplot.plot_vtk(plotu, index)
Ejemplo n.º 19
0
V = dl.FunctionSpace(mesh, 'Lagrange', r)
y_src = 1.0  # 0.1->transmission, 1.0->reflection
Pt = PointSources(V, [[0.5 * X, y_src]])
mydelta = Pt[0]


def mysrc(tt):
    return mydelta * Ricker(tt)


# Computation:
if mpirank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
Wave = AcousticWave({
    'V': V,
    'Vm': Vl
}, {
    'print': (not mpirank),
    'lumpM': True,
    'timestepper': 'backward'
})
Wave.set_abc(mesh, ABCdom(), lumpD=False)
#Wave.exact = dl.Function(V)
Wave.ftime = mysrc
#
af, bf, _, _, _ = targetmediumparameters(Vl, X, myplot)
#
Wave.update({'b':bf, 'a':af, 't0':0.0, 'tf':tf, 'Dt':Dt,\
'u0init':dl.Function(V), 'utinit':dl.Function(V)})

sol, _, _, error = Wave.solve()
if mpirank == 0: print 'relative error = {:.5e}'.format(error)
MPI.barrier(mesh.mpi_comm())
Ricker = RickerWavelet(fpeak, 1e-10)

# Boundary conditions:
class AllFour(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary

for r in RR:
    V = FunctionSpace(mesh, 'Lagrange', r)
    Pt = PointSources(V, [[.5,.5]])
    mydelta = Pt[0].array()
    def mysrc(tt):
        return Ricker(tt)*mydelta
    # Computation:
    if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
    Wave = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl})
    #Wave.verbose = True
    Wave.timestepper = 'centered'
    Wave.lump = True
    Wave.set_abc(mesh, AllFour(), True)
    Wave.exact = Function(V)
    Wave.update({'lambda':1.0, 'rho':1.0, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    Wave.ftime = mysrc
    sol, error = Wave.solve()
    ERROR.append(error)
    if myrank == 0: print 'relative error = {:.5e}'.format(error)
    if not mycomm == None:  MPI.barrier(mycomm)

# Plots:
try:
def run_test(fpeak, lambdamin, lambdamax, Nxy, tfilterpts, r, Dt, skip):
    h = 1. / Nxy
    checkdt(Dt, h, r, np.sqrt(lambdamax), True)
    mesh = dl.UnitSquareMesh(Nxy, Nxy)
    Vl = dl.FunctionSpace(mesh, 'Lagrange', 1)
    V = dl.FunctionSpace(mesh, 'Lagrange', r)
    fctV = dl.Function(V)
    # set up plots:
    filename, ext = splitext(sys.argv[0])
    if isdir(filename + '/'): rmtree(filename + '/')
    myplot = PlotFenics(filename)
    # source:
    Ricker = RickerWavelet(fpeak, 1e-10)
    Pt = PointSources(V, [[0.5, 0.5]])
    mydelta = Pt[0].array()

    def mysrc(tt):
        return Ricker(tt) * mydelta

    # target medium:
    lambda_target = dl.Expression('lmin + x[0]*(lmax-lmin)', \
    lmin=lambdamin, lmax=lambdamax)
    lambda_target_fn = dl.interpolate(lambda_target, Vl)
    myplot.set_varname('lambda_target')
    myplot.plot_vtk(lambda_target_fn)
    # initial medium:
    lambda_init = dl.Constant(lambdamin)
    lambda_init_fn = dl.interpolate(lambda_init, Vl)
    myplot.set_varname('lambda_init')
    myplot.plot_vtk(lambda_init_fn)
    # observation operator:
    #obspts = [[0.2, 0.5], [0.5, 0.2], [0.5, 0.8], [0.8, 0.5]]
    obspts = [[0.2, ii/10.] for ii in range(2,9)] + \
    [[0.8, ii/10.] for ii in range(2,9)] + \
    [[ii/10., 0.2] for ii in range(3,8)] + \
    [[ii/10., 0.8] for ii in range(3,8)]
    obsop = TimeObsPtwise({'V': V, 'Points': obspts}, tfilterpts)
    # define pde operator:
    wavepde = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl})
    wavepde.timestepper = 'backward'
    wavepde.lump = True
    wavepde.set_abc(mesh, LeftRight(), True)
    wavepde.update({'lambda':lambda_target_fn, 'rho':1.0, \
    't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})
    wavepde.ftime = mysrc
    # define objective function:
    waveobj = ObjectiveAcoustic(wavepde)
    waveobj.obsop = obsop
    # data
    print 'generate data'
    waveobj.solvefwd()
    myplot.plot_timeseries(waveobj.solfwd, 'pd', 0, skip, fctV)
    dd = waveobj.Bp.copy()
    # gradient
    print 'generate observations'
    waveobj.dd = dd
    waveobj.update_m(lambda_init_fn)
    waveobj.solvefwd_cost()
    cost1 = waveobj.misfit
    print 'misfit = {}'.format(waveobj.misfit)
    myplot.plot_timeseries(waveobj.solfwd, 'p', 0, skip, fctV)
    # Plot data and observations
    fig = plt.figure()
    if len(obspts) > 9: fig.set_size_inches(20., 15.)
    for ii in range(len(obspts)):
        if len(obspts) == 4: ax = fig.add_subplot(2, 2, ii + 1)
        else: ax = fig.add_subplot(4, 6, ii + 1)
        ax.plot(waveobj.PDE.times, waveobj.dd[ii, :], 'k--')
        ax.plot(waveobj.PDE.times, waveobj.Bp[ii, :], 'b')
        ax.set_title('Plot' + str(ii))
    fig.savefig(filename + '/observations.eps')
    print 'compute gradient'
    waveobj.solveadj_constructgrad()
    myplot.plot_timeseries(waveobj.soladj, 'v', 0, skip, fctV)
    MG = waveobj.MGv.array().copy()
    myplot.set_varname('grad')
    myplot.plot_vtk(waveobj.Grad)
    """
Ejemplo n.º 22
0
tf = 0.2/c  # Final time
exact_expr = Expression(\
'(pow(t,2)-(pow(x[0]-0.5,2)+pow(x[1]-0.5,2)))*(sqrt(pow(x[0]-0.5,2)+pow(x[1]-0.5,2))<=t)', \
t=tf)
def source(tt):
    return Expression('6*(sqrt(pow(x[0]-0.5,2)+pow(x[1]-0.5,2))<=t)', t=tt)

for Nxy in NN:
    h = 1./Nxy
    print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    q = 1   # Polynomial order
    V = FunctionSpace(mesh, 'Lagrange', q)
    Dt = h/(q*5.*c)

    Wave = AcousticWave({'V':V, 'Vl':V, 'Vr':V})
    Wave.timestepper = 'backward'
    Wave.lump = True
    #Wave.verbose = True
    Wave.exact = interpolate(exact_expr, V)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':Function(V)})
    test = TestFunction(V)
    def srcterm(tt):
        src_expr = source(tt)
        src_vect = assemble(src_expr*test*dx)
        return src_vect.array()
    Wave.ftime = srcterm
    sol, error = Wave.solve()
    ERROR.append(error)
    print 'relative error = {:.5e}'.format(error)
# Boundary conditions:
def u0_boundary(x, on_boundary):
    return (x[direction] < 1e-16 or x[direction] > 1.0 - 1e-16) and on_boundary


ubc = Constant("0.0")

for Nxy in NN:
    h = 1. / Nxy
    print '\n\th = {}'.format(h)
    mesh = UnitSquareMesh(Nxy, Nxy, "crossed")
    q = 1  # This example is solved 'exactly' for q>=2
    V = FunctionSpace(mesh, 'Lagrange', q)
    Dt = h / (q * 5. * np.sqrt(c2))

    Wave = AcousticWave({'V': V, 'Vl': V, 'Vr': V})
    Wave.timestepper = 'backward'
    Wave.lump = True
    Wave.exact = interpolate(exact_expr, V)
    Wave.bc = DirichletBC(V, ubc, u0_boundary)
    Wave.update({'lambda':lam, 'rho':rho, 't0':0.0, 'tf':tf, 'Dt':Dt,\
    'u0init':Function(V), 'utinit':interpolate(utinit_expr, V)})
    test = TestFunction(V)
    source = assemble(Constant('2') * test * dx)
    Wave.ftime = lambda tt: tt * source.array()
    sol, error = Wave.solve()
    ERROR.append(error)
    print 'relative error = {:.5e}'.format(error)

# Convergence order:
CONVORDER = []