def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U):
        M_32F = loadColorMap(colormap_file)

        L0 = normalizeVector(np.array([-0.2, 0.3, 0.6]))
        L0_img = lightSphere(L0)
        L0_txt = 0.01 * np.int32(100 * L0)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F)
        I_32F = luminance(C0_32F)

        L = lightEstimation(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)
        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size)
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$')
        plot_grid.showImage(L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %(L0_txt[0], L0_txt[1], L0_txt[2]))
        plot_grid.showImage(L_img, r'Estimated light: $L = (%s, %s, %s)$' %(L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
Ejemplo n.º 2
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        N0_32F, A_8U = loadNormal(
            self.characterResultFile("N0_d.png",
                                     data_name="BaseDetailSepration"))
        Nd_32F, A_8U = loadNormal(
            self.characterResultFile("N_d_smooth.png",
                                     data_name="BaseDetailSepration"))
        Nb_32F, A_8U = loadNormal(
            self.characterResultFile("N_b_smooth.png",
                                     data_name="BaseDetailSepration"))

        W_32F = np.array(Nb_32F[:, :, 2])
        W_32F = W_32F
        W_32F[W_32F < 0.95] = 0.0

        L = lightEstimation(I_32F, N0_32F, A_8U)
        # L = lightEstimationByVoting(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)

        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            top=0.9,
                            hspace=0.12,
                            wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$')
        plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$')
        plot_grid.showImage(
            L_img, r'$L: [%s, %s, %s]$' % (L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
Ejemplo n.º 3
0
    def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U):
        M_32F = loadColorMap(colormap_file)

        L0 = normalizeVector(np.array([-0.2, 0.3, 0.6]))
        L0_img = lightSphere(L0)
        L0_txt = 0.01 * np.int32(100 * L0)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F)
        I_32F = luminance(C0_32F)

        L = lightEstimation(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)
        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05,
                            right=0.95,
                            top=0.9,
                            hspace=0.12,
                            wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(setAlpha(C0_32F, A_8U),
                            r'Input image: $\mathbf{c}$',
                            font_size=font_size)
        plot_grid.showImage(normalToColor(N0_32F, A_8U),
                            r'Initial normal: $\mathbf{N}_0$')
        plot_grid.showImage(
            L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %
            (L0_txt[0], L0_txt[1], L0_txt[2]))
        plot_grid.showImage(
            L_img, r'Estimated light: $L = (%s, %s, %s)$' %
            (L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        N0_32F, A_8U = loadNormal(self.characterResultFile("N0_d.png", data_name="BaseDetailSepration"))
        Nd_32F, A_8U = loadNormal(self.characterResultFile("N_d_smooth.png", data_name="BaseDetailSepration"))
        Nb_32F, A_8U = loadNormal(self.characterResultFile("N_b_smooth.png", data_name="BaseDetailSepration"))

        W_32F = np.array(Nb_32F[:, :, 2])
        W_32F = W_32F
        W_32F[W_32F < 0.95] = 0.0

        L = lightEstimation(I_32F, N0_32F, A_8U)
        # L = lightEstimationByVoting(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)

        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$')
        plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$')
        plot_grid.showImage(L_img, r'$L: [%s, %s, %s]$' %(L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
def relightingVideo(shape_name="Ogre", cmap_id=3):
    num_methods = 3
    num_rows = 1
    num_cols = num_methods + 2

    num_lights = 120

    w = 10
    h = 5

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("Shading Analysis", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.5, 0.5, 0.6]))

    Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    images = []

    for i in xrange(48):
        images.append(figure2numpy(fig))

    for li, L in enumerate(Ls):
        print li
        fig.clear()
        fig.suptitle("Relighting", fontsize=font_size)
        plot_grid.setPlot(1, 1)

        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "Light direction")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result")

        images.append(figure2numpy(fig))

    file_path = shapeResultFile("Relighting", "Relighting_%s_%s" %(shape_name, cmap_id), file_ext=".wmv")
    saveVideo(file_path, images)
def relightingFigure(shape_name="Vase", cmap_id=3):
    num_methods = 3
    num_lights = 2
    num_rows = num_lights + 1
    num_cols = num_methods + 2

    w = 15
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.0, 0.7, 0.6]))
    L2 = normalizeVector(np.array([0.3, 0.5, 0.6]))


    # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    Ls = [L1, L2]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=50)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    for L in Ls:
        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "")

    # showMaximize()
    file_path = shapeResultFile("Relighting", "RelightingComparison", file_ext=".png")
    fig.savefig(file_path, transparent=True)
Ejemplo n.º 7
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        A_32F = to32F(A_8U)

        C0_32F = to32F(rgb(C0_8U))
        I0_32F = luminance(C0_32F)

        initial_normals = ["N_lumo.png", "N0_d.png"]

        layer_name = os.path.splitext(os.path.basename(layer_file))[0]

        for initial_normal in initial_normals:
            N0_32F, AN_8U = loadNormal(self.characterResultFile(initial_normal, data_name="BaseDetailSepration"))
            N_32F, L, C_32F, M = self._runSFS(C0_32F, A_8U, N0_32F, AN_8U)

            L_img = lightSphere(L)

            M_img = M.mapImage()

            fig, axes = plt.subplots(figsize=(11, 5))
            font_size = 15
            fig.subplots_adjust(left=0.02, right=0.98, top=0.9, hspace=0.12, wspace=0.02)
            fig.suptitle(self.name(), fontsize=font_size)

            num_rows = 1
            num_cols = 4
            plot_grid = SubplotGrid(num_rows, num_cols)

            plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial Normal: $N_0$')
            plot_grid.showImage(normalToColor(N_32F, A_8U), r'Estimated Normal: $N$')
            plot_grid.showImage(C0_8U, r'Shading: $C_0$')
            plot_grid.showImage(setAlpha(C_32F, A_32F), r'Recovered Shading: $C$')

            out_file_path = self.characterResultFile("ToonSFS" + initial_normal, layer_name=layer_name)
            plt.savefig(out_file_path)

            N_trim = trim(N_32F, A_8U)
            N0_trim = trim(N0_32F, A_8U)
            C0_trim = trim(C0_32F, A_8U)
            A_trim = trim(A_8U, A_8U)


            out_file_path = self.characterResultFile(initial_normal, layer_name=layer_name)
            saveNormal(out_file_path, N_trim, A_trim)

            images = self._relightingImages(N_trim, A_trim, M)

            initial_normal_name = os.path.splitext(initial_normal)[0]
            video_name = "Relighting" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name, layer_name=layer_name)
            saveVideo(out_file_path, images)

            images = self._relightingOffsetImages(L, C0_trim, N0_trim, A_trim, M)
            video_name = "RelightingOffset" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name, layer_name=layer_name)
            saveVideo(out_file_path, images)
Ejemplo n.º 8
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        A_32F = to32F(A_8U)

        C0_32F = to32F(rgb(C0_8U))
        I0_32F = luminance(C0_32F)

        initial_normals = ["N_lumo.png", "N0_d.png"]

        layer_name = os.path.splitext(os.path.basename(layer_file))[0]

        for initial_normal in initial_normals:
            N0_32F, AN_8U = loadNormal(
                self.characterResultFile(initial_normal,
                                         data_name="BaseDetailSepration"))
            N_32F, L, C_32F, M = self._runSFS(C0_32F, A_8U, N0_32F, AN_8U)

            L_img = lightSphere(L)

            M_img = M.mapImage()

            fig, axes = plt.subplots(figsize=(11, 5))
            font_size = 15
            fig.subplots_adjust(left=0.02,
                                right=0.98,
                                top=0.9,
                                hspace=0.12,
                                wspace=0.02)
            fig.suptitle(self.name(), fontsize=font_size)

            num_rows = 1
            num_cols = 4
            plot_grid = SubplotGrid(num_rows, num_cols)

            plot_grid.showImage(normalToColor(N0_32F, A_8U),
                                r'Initial Normal: $N_0$')
            plot_grid.showImage(normalToColor(N_32F, A_8U),
                                r'Estimated Normal: $N$')
            plot_grid.showImage(C0_8U, r'Shading: $C_0$')
            plot_grid.showImage(setAlpha(C_32F, A_32F),
                                r'Recovered Shading: $C$')

            out_file_path = self.characterResultFile("ToonSFS" +
                                                     initial_normal,
                                                     layer_name=layer_name)
            plt.savefig(out_file_path)

            N_trim = trim(N_32F, A_8U)
            N0_trim = trim(N0_32F, A_8U)
            C0_trim = trim(C0_32F, A_8U)
            A_trim = trim(A_8U, A_8U)

            out_file_path = self.characterResultFile(initial_normal,
                                                     layer_name=layer_name)
            saveNormal(out_file_path, N_trim, A_trim)

            images = self._relightingImages(N_trim, A_trim, M)

            initial_normal_name = os.path.splitext(initial_normal)[0]
            video_name = "Relighting" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)

            images = self._relightingOffsetImages(L, C0_trim, N0_trim, A_trim,
                                                  M)
            video_name = "RelightingOffset" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)
def overviewFigure():
    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)

    num_rows = 1
    num_cols = 5

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.6, 0.6]))
    L_img = lightSphere(L)

    shape_name = "ThreeBox"

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data

    M_32F = loadColorMap(colormap_file)
    Cg_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

    borders=[0.6, 0.8, 0.92]
    colors = [np.array([0.2, 0.2, 0.4]),
              np.array([0.3, 0.3, 0.6]),
              np.array([0.4, 0.4, 0.8]),
              np.array([0.5, 0.5, 1.0])]
    #Cg_32F = ToonShader(borders, colors).diffuseShading(L, Ng_32F)
    #Cg_32F = cv2.GaussianBlur(Cg_32F, (0,0), 2.0)

    sfs_method = ToonSFS(L, Cg_32F, A_8U)
    sfs_method.setInitialNormal(N0_32F)
    sfs_method.setNumIterations(iterations=40)
    sfs_method.setWeights(w_lap=10.0)
    sfs_method.run()

    N_32F = sfs_method.normal()
    I_32F = np.float32(np.clip(LdotN(L, N_32F), 0.0, 1.0))
    I0_32F = np.float32(np.clip(LdotN(L, N0_32F), 0.0, 1.0))
    C_32F = sfs_method.shading()
    C0_32F = sfs_method.initialShading()

    M_32F = sfs_method.colorMap().mapImage()

    L1 = normalizeVector(np.array([0.0, 0.6, 0.6]))
    L1_img = lightSphere(L1)
    C1_32F = sfs_method.relighting(L1)

    L2 = normalizeVector(np.array([0.5, 0.8, 0.6]))
    L2_img = lightSphere(L2)
    C2_32F = sfs_method.relighting(L2)

    N_sil = silhouetteNormal(A_8U, sigma=7.0)
    N_sil[:, :, 2]  = N_sil[:, :, 2] ** 10.0
    N_sil = normalizeImage(N_sil)
    A_sil = 1.0 - N_sil[:, :, 2]
    A_sil = to8U(A_sil)
    N_xy = N_sil[:, :, 0] ** 2 + N_sil[:, :, 1] ** 2
    A_sil[N_xy < 0.1] = 0

    title = ""
    plot_grid.showImage(setAlpha(Cg_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N0_32F, A_8U), title)
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N_32F, A_8U), title)

    plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)
    # plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

    #showMaximize()
    file_path = shapeResultFile("Overview", "Overview")
    fig.savefig(file_path, transparent=True)

    file_path = shapeResultFile("Overview", "Cg")
    saveRGBA(file_path, setAlpha(Cg_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "L")
    saveRGB(file_path, gray2rgb(to8U(L_img)))

    file_path = shapeResultFile("Overview", "L1")
    saveRGB(file_path, gray2rgb(to8U(L1_img)))

    file_path = shapeResultFile("Overview", "L2")
    saveRGB(file_path, gray2rgb(to8U(L2_img)))

    file_path = shapeResultFile("Overview", "N0")
    saveNormal(file_path, N0_32F, A_8U)

    file_path = shapeResultFile("Overview", "N_sil")
    saveNormal(file_path, N_sil, A_sil)

    file_path = shapeResultFile("Overview", "N")
    saveNormal(file_path, N_32F, A_8U)

    file_path = shapeResultFile("Overview", "C0")
    saveRGBA(file_path, setAlpha(C0_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C")
    saveRGBA(file_path, setAlpha(C_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C1")
    saveRGBA(file_path, setAlpha(C1_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C2")
    saveRGBA(file_path, setAlpha(C2_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I")
    saveRGBA(file_path, setAlpha(gray2rgb(I_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I0")
    saveRGBA(file_path, setAlpha(gray2rgb(I0_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "M")
    saveRGB(file_path, M_32F)
def relightingVideo(shape_name="Ogre", cmap_id=3):
    num_methods = 3
    num_rows = 1
    num_cols = num_methods + 2

    num_lights = 120

    w = 10
    h = 5

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("Shading Analysis", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.5, 0.5, 0.6]))

    Ls = [
        normalizeVector(Lg * (1.0 - t) + t * L1)
        for t in np.linspace(0.0, 1.0, num_lights)
    ]
    # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    images = []

    for i in xrange(48):
        images.append(figure2numpy(fig))

    for li, L in enumerate(Ls):
        print li
        fig.clear()
        fig.suptitle("Relighting", fontsize=font_size)
        plot_grid.setPlot(1, 1)

        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "Light direction")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result")

        images.append(figure2numpy(fig))

    file_path = shapeResultFile("Relighting",
                                "Relighting_%s_%s" % (shape_name, cmap_id),
                                file_ext=".wmv")
    saveVideo(file_path, images)
def relightingFigure(shape_name="Vase", cmap_id=3):
    num_methods = 3
    num_lights = 2
    num_rows = num_lights + 1
    num_cols = num_methods + 2

    w = 15
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.0, 0.7, 0.6]))
    L2 = normalizeVector(np.array([0.3, 0.5, 0.6]))

    # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    Ls = [L1, L2]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=50)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    for L in Ls:
        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "")

    # showMaximize()
    file_path = shapeResultFile("Relighting",
                                "RelightingComparison",
                                file_ext=".png")
    fig.savefig(file_path, transparent=True)
def lightEstimationFigure():
    target_colormaps = [23, 0, 6, 22, 4, 12]
    target_shapes = ["Raptor", "Man", "Blob1", "OctaFlower", "Pulley", "Cone"]
    colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps]
    shape_names = target_shapes

    num_rows = len(shape_names) + 1
    num_cols = len(colormap_files) + 1

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.6]))
    Lg_img = lightSphere(Lg)

    plot_grid.showImage(Lg_img, "")

    Ms = []

    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Cs_32F = colorMapSphere(Lg, M_32F)

        plot_grid.showImage(Cs_32F, "")

        Ms.append(M_32F)

    L_errors = np.zeros((num_rows, num_cols))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        plot_grid.showImage(normalToColor(Ng_32F, A_8U), "")

        for mi, M_32F in enumerate(Ms):
            C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)
            I_32F = luminance(C0_32F)

            L = lightEstimation(I_32F, N0_32F, A_8U)
            L_errors[si, mi] = angleError(Lg, L)

            L_img = lightSphereColorMap(L, v=L_errors[si, mi], v_min=0, v_max=40)

            plot_grid.showImage(L_img, "")

    L_error_min, L_error_max = np.min(L_errors), np.max(L_errors)

    file_path = shapeResultFile("LightEstimation", "LightEstimationError")
    fig.savefig(file_path, transparent=True)