Ejemplo n.º 1
0
 def load_account_weights( self, k, BEST_LOSS=False ):
     '''
     Function to load account specific weights
     '''
     if BEST_LOSS:
         fpath = self.HOME+'trainedParams/'+self.fp_accW+'_'+str(k)+'_loss_prms.pkl'
         if not os.path.isfile( fpath ):
             fpath = self.HOME+'trainedParams/'+self.fp_accW+'_'+str(k)+'.pkl'
     else:
         fpath = self.HOME+'trainedParams/'+self.fp_accW+'_'+str(k)+'.pkl'
     
     for name in self.account_weight_layers:
         try:
             with open( fpath, 'r' ) as f:
                 paramDic = pickle.load( f )
                 Wval = paramDic[ str(k)+name ].astype( np.float32 )
                 if self.layers_[ name ].b is not None:
                     bval = paramDic[ str(k)+name+'_b' ].astype( np.float32 )
                     if len( np.shape( bval ) ) == 0:
                         bval = np.reshape( bval, (1,) )
         except:
             print 'init weights: ', k
             uniformInit = Uniform()
             Wval = uniformInit.sample( np.shape( self.layers_[ name ].W.get_value() ) )
             if self.layers_[ name ].b is not None:
                 bval = uniformInit.sample( np.shape( self.layers_[ name ].b.get_value() ) )
     
         self.layers_[ name ].W.set_value( Wval )
         if self.layers_[ name ].b is not None:
             self.layers_[ name ].b.set_value( bval )
Ejemplo n.º 2
0
def test_uniform_range_as_range():
    from lasagne.init import Uniform

    sample = Uniform((0.0, 1.0)).sample((300, 400))
    assert sample.shape == (300, 400)
    assert -0.1 < sample.min() < 0.1
    assert 0.9 < sample.max() < 1.1
Ejemplo n.º 3
0
def test_uniform_range_as_number():
    from lasagne.init import Uniform

    sample = Uniform(1.0).sample((300, 400))
    assert sample.shape == (300, 400)
    assert -1.1 < sample.min() < -0.9
    assert 0.9 < sample.max() < 1.1
Ejemplo n.º 4
0
def exp_b(name):
    # tanh and softplus output
    # sane inits for other layers
    # output one appliance
    # 0% skip prob for first appliance
    # 90% skip prob for other appliances
    # 200 units
    # standardise input
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy['standardise_input'] = True
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(
        experiment_name=name,
        source=source
    ))
    net_dict_copy['layers_config']= [
        {
            'type': DenseLayer,
            'num_units': 200,
            'nonlinearity': tanh,
            'W': Uniform(25),
            'b': Uniform(25)
        },
        {
            'type': DenseLayer,
            'num_units': 50,
            'nonlinearity': tanh,
            'W': Normal(std=1/sqrt(200)),
            'b': Normal(std=1/sqrt(200))
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 50,
            'W_in_to_hid': Normal(std=1/sqrt(50)),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': tanh,
            'learn_init': False, 
            'precompute_input': False
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': Conv1DLayer,
            'num_filters': 50,
            'filter_length': 4,
            'stride': 4,
            'nonlinearity': tanh,
            'W': Normal(std=1/sqrt(50))
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 80,
            'W_in_to_hid': Normal(std=1/sqrt(50)),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': tanh,
            'learn_init': False, 
            'precompute_input': False
        },
        {
            'type': DenseLayer,
            'num_units': source.n_outputs,
            'nonlinearity': T.nnet.softplus,
            'W': Normal(std=1/sqrt(80))
        }
    ]
    net = Net(**net_dict_copy)
    return net
Ejemplo n.º 5
0
def exp_a(name):
    # 151d but training for much longer and skip prob = 0.7
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television'
#            'dish washer'
#            ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=None,#[200, 100, 200, 2500, 2400],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1500,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0.0,
        n_seq_per_batch=25,
        include_diff=True
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=250,
        loss_function=mse,
        updates=partial(nesterov_momentum, learning_rate=.1, clip_range=(-1, 1)),
        layers_config=[
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(25),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(1),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None
            }
        ]
    )
    return net
Ejemplo n.º 6
0
    min_off_duration=60,
    subsample_target=5,
    train_buildings=[1],
    validation_buildings=[1])

net = Net(
    experiment_name="e88",
    source=source,
    save_plot_interval=50,
    loss_function=crossentropy,
    updates=partial(adagrad, learning_rate=0.001),
    layers_config=[
        {
            'type': LSTMLayer,  # TODO change to BLSTM
            'num_units': 60,
            'W_in_to_cell': Uniform(5)
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': Conv1DLayer,
            'num_filters': 80,
            'filter_length': 5,
            'stride': 5,
            'nonlinearity': sigmoid
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
Ejemplo n.º 7
0
def exp_a(name):
    # global source
    # source = RealApplianceSource(
    #     filename='/data/dk3810/ukdale.h5',
    #     appliances=[
    #         ['fridge freezer', 'fridge', 'freezer'], 
    #         'hair straighteners', 
    #         'television',
    #         'dish washer',
    #         ['washer dryer', 'washing machine']
    #     ],
    #     max_appliance_powers=None,#[500] * 5,
    #     on_power_thresholds=[5] * 5,
    #     max_input_power=2500,
    #     min_on_durations=[60, 60, 60, 1800, 1800],
    #     min_off_durations=[12, 12, 12, 1800, 600],
    #     window=("2013-06-01", "2014-07-01"),
    #     seq_length=1500,
    #     output_one_appliance=False,
    #     boolean_targets=False,
    #     train_buildings=[1],
    #     validation_buildings=[1], 
    #     skip_probability=0.7,
    #     n_seq_per_batch=25,
    #     # subsample_target=4,
    #     # input_padding=0,
    #     include_diff=False,
    #     clip_appliance_power=False,
    #     lag=0
    # )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=1000,
        loss_function=scaled_cost,
        updates=partial(nesterov_momentum, learning_rate=0.0001),
        layers_config=[
            {
                'type': DenseLayer,
                'num_units': 200,
                'nonlinearity': sigmoid,
                'W': Uniform(0.1),
                'b': Uniform(0.1)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(0.1),
                'b': Uniform(0.1)
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None,
                'W': Uniform(25)
            }
        ]
    )
    return net
Ejemplo n.º 8
0
    net = {}    
    net['input'] = InputLayer((batch_size, seq_len, feature_size))
    net['rnn']=rnnmodel(net['input'],hidden_units,forgetgate=lasagne.layers.Gate(b=lasagne.init.Constant(1.)),peepholes=False, only_return_final=True,grad_clipping=args.gradclipvalue)
    net['out']=DenseLayer(net['rnn'],outputclass,nonlinearity=softmax)
    return net  
def build_rnn_network(rnnmodel):
    net = {}    
    net['input'] = InputLayer((batch_size, seq_len, feature_size))
    net['rnn']=rnnmodel(net['input'],hidden_units,nonlinearity=act,W_in_to_hid=Normal(args.ini),W_hid_to_hid=lambda shape:  np.identity(hidden_units,dtype=np.float32),only_return_final=True ,grad_clipping=args.gradclipvalue)
    net['out']=DenseLayer(net['rnn'],outputclass,nonlinearity=softmax)
    return net


ini_W=HeNormal(gain=np.sqrt(2)/2.0)
if args.use_bn_afterrnn:
  ini_W=Uniform(args.ini)


def build_res_rnn_network(rnnmodel):
    net = {}        
    net['input'] = InputLayer((batch_size, seq_len, feature_size))     
    net['rnn0']=DimshuffleLayer(net['input'],(1,0,2))
    for l in range(1, num_layers+1):
      hidini=0
      if l==num_layers:
        hidini=U_lowbound

      net['rnn%d'%(l-1)]=ReshapeLayer(net['rnn%d'%(l-1)], (batch_size* seq_len, -1))          
      net['rnn%d'%(l-1)]=DenseLayer(net['rnn%d'%(l-1)],hidden_units,W=ini_W,b=Uniform(range=(0,args.ini_b)),nonlinearity=None)  #W=Uniform(ini_rernn_in_to_hid),         #
      net['rnn%d'%(l-1)]=ReshapeLayer(net['rnn%d'%(l-1)], (seq_len, batch_size,  -1))  
      
Ejemplo n.º 9
0
def exp_a(name):
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=
        [['fridge freezer', 'fridge', 'freezer'], 'hair straighteners',
         'television'
         #            'dish washer',
         #            ['washer dryer', 'washing machine']
         ],
        max_appliance_powers=[300, 500, 200, 2500, 2400],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=1000,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1000,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1],
        skip_probability=0,
        n_seq_per_batch=50,
        subsample_target=5,
        X_processing_func=fdiff)

    net = Net(experiment_name=name,
              source=source,
              save_plot_interval=250,
              loss_function=crossentropy,
              updates=partial(nesterov_momentum, learning_rate=1.0),
              layers_config=[{
                  'type': LSTMLayer,
                  'num_units': 30,
                  'W_in_to_cell': Uniform(5),
                  'gradient_steps': GRADIENT_STEPS,
                  'peepholes': False
              }, {
                  'type': DimshuffleLayer,
                  'pattern': (0, 2, 1)
              }, {
                  'type': Conv1DLayer,
                  'num_filters': 60,
                  'filter_length': 5,
                  'stride': 5,
                  'nonlinearity': sigmoid,
                  'W': Uniform(1)
              }, {
                  'type': DimshuffleLayer,
                  'pattern': (0, 2, 1)
              }, {
                  'type': LSTMLayer,
                  'num_units': 60,
                  'W_in_to_cell': Uniform(1),
                  'gradient_steps': GRADIENT_STEPS,
                  'peepholes': False
              }, {
                  'type': DenseLayer,
                  'num_units': source.n_outputs,
                  'nonlinearity': sigmoid
              }])
    return net
Ejemplo n.º 10
0
def test_uniform_glorot():
    from lasagne.init import Uniform

    sample = Uniform().sample((150, 450))
    assert -0.11 < sample.min() < -0.09
    assert 0.09 < sample.max() < 0.11
def execute(dataset,
            learning_rate=0.00001,
            learning_rate_annealing=1.0,
            lmd=0.,
            noise=0.0,
            encoder_units=[1024, 512, 256],
            num_epochs=500,
            which_fold=1,
            save_path=None,
            save_copy=None,
            dataset_path=None,
            num_fully_connected=0,
            exp_name='',
            init_args=None):

    # Reading dataset
    print("Loading data")
    if dataset == "1000_genomes" and which_fold == 1 and False:
        x_unsup = mlh.load_data(dataset,
                                dataset_path,
                                None,
                                which_fold=which_fold,
                                keep_labels=1.0,
                                missing_labels_val=-1.0,
                                embedding_input='raw',
                                transpose=False)
        import pdb
        pdb.set_trace()

        x_train = np.zeros((x_unsup[0].shape[0], x_unsup[0].shape[1] * 2),
                           dtype="int8")
        x_train[:, ::2] = (x_unsup[0] == 2)
        x_train[:, 1::2] = (x_unsup[0] >= 1)

        x_valid = np.zeros((x_unsup[2].shape[0], x_unsup[2].shape[1] * 2),
                           dtype="int8")
        x_valid[:, ::2] = (x_unsup[2] == 2)
        x_valid[:, 1::2] = (x_unsup[2] >= 1)
    else:
        x_unsup = mlh.load_data(dataset,
                                dataset_path,
                                None,
                                which_fold=which_fold,
                                keep_labels=1.0,
                                missing_labels_val=-1.0,
                                embedding_input='bin',
                                transpose=True)
        x_train = x_unsup[0][0]
        x_valid = x_unsup[1][0]

    print(x_train.shape, x_valid.shape)

    n_features = x_train.shape[1]

    exp_name += "learn_snp2vec_dae_h"
    for e in encoder_units:
        exp_name += ('-' + str(e))
    # exp_name += '_g-' + str(gamma)
    exp_name += '_l-' + str(lmd)
    exp_name += '_lr-' + str(learning_rate)
    exp_name += '_fold-' + str(which_fold)

    save_path = os.path.join(save_path, exp_name)
    save_copy = os.path.join(save_copy, exp_name)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    if not os.path.exists(save_copy):
        os.makedirs(save_copy)

    # Prepare Theano variables for inputs and targets
    input_var = T.matrix('input')
    target_reconst = T.matrix('target')
    lr = theano.shared(np.float32(learning_rate), 'learning_rate')
    batch_size = 128

    # building network
    encoder = InputLayer((batch_size, n_features), input_var)

    # building the encoder and decoder
    #import pdb; pdb.set_trace()
    for i in range(len(encoder_units)):
        encoder = DenseLayer(encoder,
                             num_units=encoder_units[i],
                             W=Uniform(0.00001),
                             nonlinearity=leaky_rectify
                             )  # if i < len(encoder_units)-1 else linear)

    embedding = lasagne.layers.get_output(encoder)
    get_embedding_fn = theano.function([input_var], embedding)

    params = lasagne.layers.get_all_params(encoder, trainable=True)
    monitor_labels = ["embedding min", "embedding mean", "embedding max"]
    val_outputs = [embedding.min(), embedding.mean(), embedding.max()]
    nets = [encoder]

    decoder_units = encoder_units[::-1][1:]
    print(decoder_units)
    decoder = encoder
    for i in range(len(decoder_units)):
        decoder = DenseLayer(decoder,
                             num_units=decoder_units[i],
                             W=Uniform(0.0001),
                             nonlinearity=leaky_rectify)
    decoder = DenseLayer(decoder,
                         num_units=n_features,
                         W=convert_initialization(init_args["decoder_init"],
                                                  nonlinearity="sigmoid"),
                         nonlinearity=sigmoid)
    prediction_reconst = lasagne.layers.get_output(decoder)

    # Reconstruction error
    loss_reconst = lasagne.objectives.binary_crossentropy(
        prediction_reconst, target_reconst).mean()

    # loss_reconst = mh.define_sampled_mean_bincrossentropy(
    #    prediction_reconst, target_reconst, gamma=gamma)

    #loss_reconst = mh.dice_coef_loss(
    #    target_reconst, prediction_reconst).mean()

    accuracy = T.eq(T.gt(prediction_reconst, 0.5), target_reconst).mean()

    params += lasagne.layers.get_all_params(decoder, trainable=True)
    monitor_labels += ["reconst. loss", "reconst. accuracy"]
    val_outputs += [loss_reconst, accuracy]
    nets += [decoder]
    # sparsity_reconst = gamma * l1(prediction_reconst)
    # roh = input_var.mean(0)
    # sparsity_reconst = ((roh * T.log(roh / (prediction_reconst.mean(0)+1e-8))) +\
    #     ((1 - roh) * T.log((1 - roh) / (1 - prediction_reconst + 1e-8)))).sum()

    # Combine losses
    loss = loss_reconst  # + sparsity_reconst

    # applying weight decay
    l2_penalty = apply_penalty(params, l2)
    loss = loss + lmd * l2_penalty

    val_outputs += [loss]
    monitor_labels += ['loss']

    # Some variables
    max_patience = 100
    patience = 0

    train_monitored = []
    valid_monitored = []
    train_loss = []

    updates = lasagne.updates.adam(loss, params, learning_rate=lr)

    for k in updates.keys():
        if updates[k].ndim == 2:
            updates[k] = lasagne.updates.norm_constraint(updates[k], 1.0)

    inputs = [input_var, target_reconst]

    # Compile training function
    print "Compiling training function"
    train_fn = theano.function(inputs,
                               loss,
                               updates=updates,
                               on_unused_input='ignore')
    val_fn = theano.function(inputs, [val_outputs[0]] + val_outputs,
                             on_unused_input='ignore')

    start_training = time.time()

    print "Starting training"
    for epoch in range(num_epochs):
        start_time = time.time()
        print("Epoch {} of {}".format(epoch + 1, num_epochs))
        nb_minibatches = 0
        loss_epoch = 0

        for x, target_reconst_val in data_generator(x_train,
                                                    batch_size,
                                                    shuffle=True,
                                                    noise=noise):
            loss_epoch += train_fn(x, target_reconst_val)
            nb_minibatches += 1

        loss_epoch /= nb_minibatches
        train_loss += [loss_epoch]

        # Monitoring on the training set
        train_minibatches = data_generator(x_train, batch_size, noise=noise)
        train_err = mlh.monitoring(train_minibatches, "train", val_fn,
                                   monitor_labels, 0)
        train_monitored += [train_err]

        # Monitoring on the validation set
        valid_minibatches = data_generator(x_valid, batch_size, noise=noise)

        valid_err = mlh.monitoring(valid_minibatches, "valid", val_fn,
                                   monitor_labels, 0)
        valid_monitored += [valid_err]

        early_stop_criterion = 'loss'
        early_stop_val = valid_err[monitor_labels.index(early_stop_criterion)]

        # Early stopping
        if epoch == 0:
            best_valid = early_stop_val
        elif early_stop_val < best_valid and early_stop_criterion == 'loss':
            best_valid = early_stop_val
            patience = 0

            # Save stuff
            np.savez(save_path + '/model_snp2vec_best.npz',
                     *lasagne.layers.get_all_param_values(nets))
            np.savez(save_path + "/errors_snp2vec_best.npz",
                     zip(*train_monitored), zip(*valid_monitored))
        else:
            patience += 1
            np.savez(os.path.join(save_path, 'model_snp2vec_last.npz'),
                     *lasagne.layers.get_all_param_values(nets))
            np.savez(save_path + "/errors_snp2vec_last.npz",
                     zip(*train_monitored), zip(*valid_monitored))

        # End training
        if (patience == max_patience) or (epoch == num_epochs - 1):
            print("Ending training")
            # Load best model
            if not os.path.exists(save_path + '/model_snp2vec_best.npz'):
                print(
                    "No saved model to be tested and/or generate"
                    " the embedding !")
            else:
                with np.load(save_path + '/model_snp2vec_best.npz') as f:
                    param_values = [
                        f['arr_%d' % i] for i in range(len(f.files))
                    ]
                    lasagne.layers.set_all_param_values(nets, param_values)

            # Use the saved model to generate the feature embedding
            # Here the feature embedding is the different in the hidden
            # representation between having that feature on and having it off
            print("Generating embedding")
            embedding_size = encoder_units[-1]
            null_input = np.zeros((1, n_features), dtype="float32")
            null_embedding = get_embedding_fn(null_input)[0]

            all_embeddings = np.zeros((n_features, embedding_size),
                                      dtype="float32")
            """
            single_feat_input = null_input.copy()
            for i in range(n_features):
                if i % 10000 == 0:
                    print(i, n_features)

                single_feat_input[:,i] = 1
                all_embeddings[i] = (get_embedding_fn(single_feat_input)[0] -
                                     null_embedding)
                single_feat_input[:,i] = 0

            result1 = all_embeddings[:1000].copy()
            """

            block_size = 10
            single_feat_batch = np.zeros((block_size, n_features),
                                         dtype="float32")
            for i in range(0, n_features, block_size):
                if i % 10000 == 0:
                    print(i, n_features)

                for j in range(block_size):
                    single_feat_batch[j, i + j] = 1

                all_embeddings[i:i +
                               10] = (get_embedding_fn(single_feat_batch) -
                                      null_embedding)

                for j in range(block_size):
                    single_feat_batch[j, i + j] = 0

            np.save(
                "/Tmp/carriepl/DietNetworks/all_embeddings_noise%f_fold%i.npy"
                % (which_fold, noise), all_embeddings)

            # Training set results
            train_minibatches = data_generator(x_train,
                                               batch_size,
                                               noise=noise)
            train_err = mlh.monitoring(train_minibatches, "train", val_fn,
                                       monitor_labels, 0)

            # Validation set results
            valid_minibatches = data_generator(x_valid,
                                               batch_size,
                                               noise=noise)
            valid_err = mlh.monitoring(valid_minibatches, "valid", val_fn,
                                       monitor_labels, 0)

            # Stop
            print("  epoch time:\t\t\t{:.3f}s \n".format(time.time() -
                                                         start_time))
            break

        print("  epoch time:\t\t\t{:.3f}s \n".format(time.time() - start_time))
        # Anneal the learning rate
        lr.set_value(float(lr.get_value() * learning_rate_annealing))

    # Copy files to loadpath
    if save_path != save_copy:
        print('Copying model and other training files to {}'.format(save_copy))
        copy_tree(save_path, save_copy)
Ejemplo n.º 12
0
def exp_a(name):
    # global source
    # source = RealApplianceSource(
    #     filename='/data/dk3810/ukdale.h5',
    #     appliances=[
    #         ['fridge freezer', 'fridge', 'freezer'],
    #         'hair straighteners',
    #         'television',
    #         'dish washer',
    #         ['washer dryer', 'washing machine']
    #     ],
    #     max_appliance_powers=None,#[500] * 5,
    #     on_power_thresholds=[5] * 5,
    #     max_input_power=2500,
    #     min_on_durations=[60, 60, 60, 1800, 1800],
    #     min_off_durations=[12, 12, 12, 1800, 600],
    #     window=("2013-06-01", "2014-07-01"),
    #     seq_length=1500,
    #     output_one_appliance=False,
    #     boolean_targets=False,
    #     train_buildings=[1],
    #     validation_buildings=[1],
    #     skip_probability=0.7,
    #     n_seq_per_batch=25,
    #     subsample_target=4,
    #     input_padding=3,
    #     include_diff=False,
    #     clip_appliance_power=False,
    #     lag=32
    # )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=250,
        loss_function=scaled_cost,
        updates=partial(nesterov_momentum, learning_rate=0.0001),
        layers_config=[
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(25),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 50,
                'filter_length': 2,
                'stride': 1,
                'nonlinearity': sigmoid,
                'W': Uniform(1)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # back to (batch, time, features)
            },
            {
                'type': FeaturePoolLayer,
                'ds': 2,  # number of feature maps to be pooled together
                'axis': 1  # pool over the time axis
            },
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(5),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 50,
                'filter_length': 2,
                'stride': 1,
                'nonlinearity': sigmoid,
                'W': Uniform(1)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # back to (batch, time, features)
            },
            {
                'type': FeaturePoolLayer,
                'ds': 2,  # number of feature maps to be pooled together
                'axis': 1  # pool over the time axis
            },
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(1),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None,
                'W': Uniform(25)
            }
        ])
    return net
Ejemplo n.º 13
0
def exp_b(name):
    # like A but with inputs in the range [-1,1]
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television',
            'dish washer',
            ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=[300, 500, 200, 2500, 2400],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1500,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0.7,
        n_seq_per_batch=10,
        X_processing_func=lambda X: (X * 2) - 1
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=5000,
        loss_function=crossentropy,
        updates=partial(nesterov_momentum, learning_rate=1.0),
        layers_config=[
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(5),
                'b': Uniform(1)
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': sigmoid
            }
        ],
        layer_changes={
            50001: {
                'remove_from': -2,
                'new_layers': 
                [
                    {
                        'type': DenseLayer,
                        'num_units': 50,
                        'nonlinearity': sigmoid
                    },
                    {
                        'type': DenseLayer,
                        'num_units': source.n_outputs,
                        'nonlinearity': sigmoid
                    }
                ]
            },
            100001: {
                'remove_from': -2,
                'callback': set_save_plot_interval,
                'new_layers': 
                [
                    {
                        'type': BLSTMLayer,
                        'num_units': 40,
                        'gradient_steps': GRADIENT_STEPS,
                        'peepholes': False
                    },
                    {
                        'type': DenseLayer,
                        'num_units': source.n_outputs,
                        'nonlinearity': sigmoid
                    }
                ]
            },
            100501: {
                'remove_from': -3,
                'new_layers': 
                [
                    {
                        'type': BLSTMLayer,
                        'num_units': 80,
                        'gradient_steps': GRADIENT_STEPS,
                        'peepholes': False
                    },
                    {
                        'type': DenseLayer,
                        'num_units': source.n_outputs,
                        'nonlinearity': sigmoid
                    }
                ]
            }
        }
    )
    return net
Ejemplo n.º 14
0
def exp_d(name):
    # 'C' but with pre-training
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[['fridge freezer', 'fridge', 'freezer'],
                    'hair straighteners', 'television', 'dish washer',
                    ['washer dryer', 'washing machine']],
        max_appliance_powers=[300, 500, 200, 2500, 2400],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1500,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1],
        skip_probability=0,
        n_seq_per_batch=25,
        include_diff=True)

    net = Net(experiment_name=name,
              source=source,
              save_plot_interval=250,
              loss_function=crossentropy,
              updates=partial(nesterov_momentum,
                              learning_rate=.1,
                              clip_range=(-1, 1)),
              layers_config=[{
                  'type': LSTMLayer,
                  'num_units': 60,
                  'W_in_to_cell': Uniform(25),
                  'gradient_steps': GRADIENT_STEPS,
                  'peepholes': False
              }, {
                  'type': DenseLayer,
                  'num_units': source.n_outputs,
                  'nonlinearity': sigmoid
              }],
              layer_changes={
                  1000: {
                      'remove_from':
                      -3,
                      'callback':
                      set_subsample_target,
                      'new_layers': [{
                          'type': DimshuffleLayer,
                          'pattern': (0, 2, 1)
                      }, {
                          'type': Conv1DLayer,
                          'num_filters': 80,
                          'filter_length': 5,
                          'stride': 5,
                          'nonlinearity': sigmoid,
                          'W': Uniform(1)
                      }, {
                          'type': DimshuffleLayer,
                          'pattern': (0, 2, 1)
                      }, {
                          'type': DenseLayer,
                          'num_units': source.n_outputs,
                          'nonlinearity': sigmoid
                      }],
                      2000: {
                          'remove_from':
                          -3,
                          'new_layers': [{
                              'type': LSTMLayer,
                              'num_units': 80,
                              'W_in_to_cell': Uniform(1),
                              'gradient_steps': GRADIENT_STEPS,
                              'peepholes': False
                          }, {
                              'type': DenseLayer,
                              'num_units': source.n_outputs,
                              'nonlinearity': sigmoid
                          }]
                      }
                  }
              })
    return net
Ejemplo n.º 15
0
def exp_i(name):
    # like a but with max power = 1000W and 5 appliances
    # tanh and softplus output
    # sane inits for other layers
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(
        dict(standardise_targets=True,
             unit_variance_targets=True,
             max_input_power=1000,
             skip_probability=0.9))
    source_dict_copy['appliances'] = [['fridge freezer', 'fridge',
                                       'freezer'], 'hair straighteners',
                                      'television', 'dish washer',
                                      ['washer dryer', 'washing machine']]
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name,
             source=source,
             loss_function=lambda x, t: mse(x, t).mean(),
             learning_rate=1e-3,
             learning_rate_changes_by_iteration={
                 1000: 1e-4,
                 2000: 1e-5
             }))
    net_dict_copy['layers_config'] = [{
        'type': DenseLayer,
        'num_units': 50,
        'nonlinearity': tanh,
        'W': Uniform(25),
        'b': Uniform(25)
    }, {
        'type': DenseLayer,
        'num_units': 50,
        'nonlinearity': tanh,
        'W': Normal(std=1 / sqrt(50)),
        'b': Normal(std=1 / sqrt(50))
    }, {
        'type': BidirectionalRecurrentLayer,
        'num_units': 40,
        'W_in_to_hid': Normal(std=1 / sqrt(50)),
        'gradient_steps': GRADIENT_STEPS,
        'nonlinearity': tanh,
        'learn_init': False,
        'precompute_input': False
    }, {
        'type': DimshuffleLayer,
        'pattern': (0, 2, 1)
    }, {
        'type': Conv1DLayer,
        'num_filters': 20,
        'filter_length': 4,
        'stride': 4,
        'nonlinearity': tanh,
        'W': Normal(std=1 / sqrt(50))
    }, {
        'type': DimshuffleLayer,
        'pattern': (0, 2, 1)
    }, {
        'type': BidirectionalRecurrentLayer,
        'num_units': 80,
        'W_in_to_hid': Normal(std=1 / sqrt(50)),
        'gradient_steps': GRADIENT_STEPS,
        'nonlinearity': tanh,
        'learn_init': False,
        'precompute_input': False
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': T.nnet.softplus
    }]
    net = Net(**net_dict_copy)
    return net
Ejemplo n.º 16
0
def exp_d(name):
    # tanh and softplus output
    # sane inits for other layers
    # batch norm
    source_dict_copy = deepcopy(source_dict)
    source_dict_copy.update(
        dict(standardise_targets=True, unit_variance_targets=True))
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name,
             source=source,
             loss_function=lambda x, t: mse(x, t).mean(),
             learning_rate=1e-3,
             learning_rate_changes_by_iteration={
                 1000: 1e-4,
                 2000: 1e-5
             }))
    net_dict_copy['layers_config'] = [
        {
            'type': DenseLayer,
            'num_units': 50,
            'nonlinearity': identity,
            'W': Uniform(25),
            'b': Uniform(25)
        },
        {
            'type': BatchNormLayer,
            'axes': (0, 1),
            'nonlinearity': tanh
        },
        {
            'type': DenseLayer,
            'num_units': 50,
            'nonlinearity': identity,
            'W': Normal(std=1 / sqrt(50)),
            'b': Normal(std=1 / sqrt(50))
        },
        {
            'type': BatchNormLayer,
            'axes': (0, 1),
            'nonlinearity': tanh
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 40,
            'W_in_to_hid': Normal(std=1 / sqrt(50)),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': tanh,  # need nonlinearity for hid_to_hid
            'learn_init': False,
            'precompute_input': False
        },
        {
            'type': BatchNormLayer,
            'axes': (0, 1),
            'nonlinearity': identity
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': Conv1DLayer,
            'num_filters': 20,
            'filter_length': 4,
            'stride': 4,
            'nonlinearity': identity,
            'W': Normal(std=1 / sqrt(50))
        },
        {
            'type': BatchNormLayer,
            'nonlinearity': tanh
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 80,
            'W_in_to_hid': Normal(std=1 / sqrt(50)),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': tanh,
            'learn_init': False,
            'precompute_input': False
        },
        {
            'type': BatchNormLayer,
            'nonlinearity': tanh,
            'axes': (0, 1)
        },
        {
            'type': DenseLayer,
            'num_units': source.n_outputs,
            'nonlinearity': T.nnet.softplus
        }
    ]
    net = Net(**net_dict_copy)
    return net
Ejemplo n.º 17
0
 source=source,
 learning_rate=1e-1,
 save_plot_interval=50,
 loss_function=crossentropy,
 layers_config=[
     {
         'type': DimshuffleLayer,
         'pattern': (0, 2, 1)
     },
     {
         'type': Conv1DLayer,
         'num_filters': 50,
         'filter_length': 3,
         'stride': 1,
         'nonlinearity': sigmoid,
         'W': Uniform(25),
         'b': Uniform(25)
     },
     {
         'type': Conv1DLayer,
         'num_filters': 50,
         'filter_length': 3,
         'stride': 1,
         'nonlinearity': sigmoid
         # 'W': Uniform(10),
         # 'b': Uniform(10)
     },
     {
         'type': Conv1DLayer,
         'num_filters': 50,
         'filter_length': 5,
Ejemplo n.º 18
0
train = np.asarray(train, dtype=np.float64)
labels = np.asarray(labels, dtype=np.int32).reshape(-1, 1)

net = NeuralNet(
    layers=[
        ('input', InputLayer),
        ('dropout0', DropoutLayer),
        ('hidden1', DenseLayer),
        ('dropout1', DropoutLayer),
        ('hidden2', DenseLayer),
        ('output', DenseLayer),
    ],
    input_shape=(None, len(train[1])),
    dropout0_p=0.1,
    hidden1_num_units=50,
    hidden1_W=Uniform(),
    dropout1_p=0.2,
    hidden2_num_units=40,
    #hidden2_W=Uniform(),
    output_nonlinearity=sigmoid,
    output_num_units=1,
    update=nesterov_momentum,
    update_learning_rate=theano.shared(np.float32(0.0001)),
    update_momentum=theano.shared(np.float32(0.9)),
    # Decay the learning rate
    on_epoch_finished=[
        AdjustVariable('update_learning_rate', start=0.0001, stop=0.00001),
        AdjustVariable('update_momentum', start=0.9, stop=0.99),
    ],
    regression=True,
    y_tensor_type=T.imatrix,
Ejemplo n.º 19
0
def exp_e(name):
    # Same as A but without gradient steps
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television'
            # 'dish washer',
            # ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=[300, 500, 200], #, 2500, 2400],
        on_power_thresholds=[20, 20, 20], #, 20, 20],
        max_input_power=1000,
        min_on_durations=[60, 60, 60], #, 1800, 1800],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1000,
        output_one_appliance=False,
        boolean_targets=False,
        min_off_duration=60,
        subsample_target=5,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=SAVE_PLOT_INTERVAL,
        loss_function=crossentropy,
        updates=partial(nesterov_momentum, learning_rate=0.01),
        layers_config=[
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(25),
                'b': Uniform(25)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(10),
                'b': Uniform(10)
            },
            {
                'type': BLSTMLayer,
                'num_units': 40,
                'W_in_to_cell': Uniform(5)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            {
                'type': Conv1DLayer,
                'num_filters': 20,
                'filter_length': 5,
                'stride': 5,
                'nonlinearity': sigmoid
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            {
                'type': BLSTMLayer,
                'num_units': 80,
                'W_in_to_cell': Uniform(5)
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': sigmoid
            }
        ]
    )
    return net
Ejemplo n.º 20
0
def exp_a(name):
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television',
            'dish washer',
            ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=[1, 0.5, 2, 10, 10],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1520,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0.7,
        n_seq_per_batch=25,
        input_padding=1,
        include_diff=False,
        clip_appliance_power=False
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=1000,
        loss_function=mse,
        updates=partial(nesterov_momentum, learning_rate=.00001, clip_range=(-1, 1)),
        layers_config=[
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer, # convolve over the time axis
                'num_filters': 10,
                'filter_length': 2,
                'stride': 1,
                'nonlinearity': sigmoid
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1) # back to (batch, time, features)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None,
                'W': Uniform(25)
            }
        ]
    )
    return net
Ejemplo n.º 21
0
def test_uniform_glorot_receptive_field():
    from lasagne.init import Uniform

    sample = Uniform().sample((150, 150, 2))
    assert -0.11 < sample.min() < -0.09
    assert 0.09 < sample.max() < 0.11
Ejemplo n.º 22
0
    #subsample_target=5,
    #input_padding=4,
    train_buildings=[1],
    validation_buildings=[1])

net = Net(
    experiment_name="e84",
    source=source,
    save_plot_interval=50,
    loss_function=crossentropy,
    #updates=nesterov_momentum,
    layers_config=[
        {
            'type': LSTMLayer,
            'num_units': 20,
            'W_in_to_cell': Uniform(1)
        },
        # {
        #     'type': DimshuffleLayer,
        #     'pattern': (0, 2, 1)
        # },
        # {
        #     'type': Conv1DLayer,
        #     'num_filters': 40,
        #     'filter_length': 5,
        #     'stride': 5,
        #     'nonlinearity': sigmoid
        # },
        # {
        #     'type': DimshuffleLayer,
        #     'pattern': (0, 2, 1)
def build_rnn_network(rnnmodel, X_sym, hid_init_sym):
    net = {}

    net['input0'] = InputLayer((batch_size, seq_len), X_sym)
    net['input'] = lasagne.layers.EmbeddingLayer(
        net['input0'], outputclass,
        units[0])  #,W=lasagne.init.Uniform(inial_scale)
    net['rnn0'] = DimshuffleLayer(
        net['input'], (1, 0, 2))  #change to (time, batch_size,hidden_units)

    for l in range(1, num_layers + 1):
        net['hiddeninput%d' % l] = InputLayer(
            (batch_size, units[l - 1]),
            hid_init_sym[:, acc_units[l - 1]:acc_units[l]])
        net['rnn%d' % (l - 1)] = ReshapeLayer(net['rnn%d' % (l - 1)],
                                              (batch_size * seq_len, -1))
        net['rnn%d' % (l - 1)] = DenseLayer(
            net['rnn%d' % (l - 1)],
            units[l - 1],
            W=ini_W,
            b=lasagne.init.Constant(args.ini_b),
            nonlinearity=None)  #W=Uniform(ini_rernn_in_to_hid),         #
        net['rnn%d' % (l - 1)] = ReshapeLayer(net['rnn%d' % (l - 1)],
                                              (seq_len, batch_size, -1))

        if args.use_residual and l > args.residual_layers and (
                l - 1) % args.residual_layers == 0:  # and l!=num_layers
            if units[l - 1] != units[l - 1 - args.residual_layers]:
                net['leftbranch%d' % (l - 1)] = ReshapeLayer(
                    net['sum%d' % (l - args.residual_layers)],
                    (batch_size * seq_len, -1))
                net['leftbranch%d' % (l - 1)] = DenseLayer(net['leftbranch%d' %
                                                               (l - 1)],
                                                           units[l - 1],
                                                           W=ini_W,
                                                           nonlinearity=None)
                net['leftbranch%d' % (l - 1)] = ReshapeLayer(
                    net['leftbranch%d' % (l - 1)], (seq_len, batch_size, -1))
                net['leftbranch%d' % (l - 1)] = BatchNorm_step_timefirst_Layer(
                    net['leftbranch%d' % (l - 1)], axes=(0, 1))
                print('left branch')
            else:
                net['leftbranch%d' % (l - 1)] = net['sum%d' %
                                                    (l - args.residual_layers)]
            net['sum%d' % l] = ElemwiseSumLayer(
                (net['rnn%d' % (l - 1)], net['leftbranch%d' % (l - 1)]))
        else:
            net['sum%d' % l] = net['rnn%d' % (l - 1)]

        net['rnn%d' % l] = net['sum%d' % l]
        if not args.use_bn_afterrnn:
            net['rnn%d' % l] = BatchNorm_step_timefirst_Layer(
                net['rnn%d' % l],
                axes=(0, 1),
                beta=lasagne.init.Constant(args.ini_b))

        ini_hid_start = 0
        if act == tanh:
            ini_hid_start = -1 * U_bound
        net['rnn%d' % l] = rnnmodel(net['rnn%d' % l],
                                    units[l - 1],
                                    hid_init=net['hiddeninput%d' % l],
                                    W_hid_to_hid=Uniform(range=(ini_hid_start,
                                                                U_bound)),
                                    nonlinearity=act,
                                    only_return_final=False,
                                    grad_clipping=args.gradclipvalue)

        net['last_state%d' % l] = SliceLayer(net['rnn%d' % l], -1, axis=0)
        if l == 1:
            net['hid_out'] = net['last_state%d' % l]
        else:
            net['hid_out'] = ConcatLayer(
                [net['hid_out'], net['last_state%d' % l]], axis=1)

        if use_dropout and l % droplayers == 0:
            net['rnn%d' % l] = lasagne.layers.DropoutLayer(net['rnn%d' % l],
                                                           p=droprate,
                                                           shared_axes=taxdrop)

        if args.use_bn_afterrnn:
            net['rnn%d' % l] = BatchNorm_step_timefirst_Layer(net['rnn%d' % l],
                                                              axes=(0, 1))

    net['rnn%d' % num_layers] = DimshuffleLayer(net['rnn%d' % num_layers],
                                                (1, 0, 2))
    net['reshape_rnn'] = ReshapeLayer(net['rnn%d' % num_layers],
                                      (-1, units[num_layers - 1]))
    net['out'] = DenseLayer(
        net['reshape_rnn'], outputclass, nonlinearity=softmax
    )  #lasagne.init.HeNormal(gain='relu'))#,W=Uniform(inial_scale)
    return net
Ejemplo n.º 24
0
train = np.asarray(train, dtype=np.float32)

labels = np.asarray(labels, dtype=np.int32).reshape(-1, 1)

net = NeuralNet(
    layers=[
        ('input', InputLayer),
        ('hidden1', DenseLayer),
        ('hidden2', DenseLayer),
        ('hidden3', DenseLayer),
        ('output', DenseLayer),
    ],
    input_shape=(None, len(train[1])),
    hidden1_num_units=100,
    hidden1_W=Uniform(),
    hidden2_num_units=50,
    hidden2_W=Uniform(),
    hidden3_num_units=25,
    hidden3_W=Uniform(),
    output_nonlinearity=sigmoid,
    output_num_units=1,
    update=nesterov_momentum,
    update_learning_rate=theano.shared(np.float32(0.001)),
    update_momentum=theano.shared(np.float32(0.9)),

    # Decay the learning rate
    on_epoch_finished=[
        AdjustVariable('update_learning_rate', start=0.001, stop=0.0001),
        AdjustVariable('update_momentum', start=0.9, stop=0.99),
    ],
Ejemplo n.º 25
0
def exp_a(name):
    global source
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[['fridge freezer', 'fridge', 'freezer'],
                    'hair straighteners', 'television', 'dish washer',
                    ['washer dryer', 'washing machine']],
        max_appliance_powers=[300, 500, 200, 2500, 2400],
        on_power_thresholds=[5] * 5,
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1500,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1],
        skip_probability=0.7,
        n_seq_per_batch=10,
        subsample_target=5,
        #        input_padding=4,
        include_diff=False,
        clip_appliance_power=False,
        lag=0)

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=SAVE_PLOT_INTERVAL,
        loss_function=crossentropy,
        updates=partial(nesterov_momentum, learning_rate=1.0),
        layers_config=[
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(25),
                'b': Uniform(25)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(10),
                'b': Uniform(10)
            },
            {
                'type': LSTMLayer,
                'num_units': 40,
                'W_in_to_cell': Uniform(5),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            {
                'type': Conv1DLayer,
                'num_filters': 20,
                'filter_length': 5,
                'stride': 5,
                'nonlinearity': sigmoid
                #                'W': Uniform(1)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            # {
            #     'type': FeaturePoolLayer,
            #     'ds': 5, # number of feature maps to be pooled together
            #     'axis': 1 # pool over the time axis
            # },
            {
                'type': LSTMLayer,
                'num_units': 80,
                'W_in_to_cell': Uniform(5),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': sigmoid
                #                'W': Uniform(1)
            }
        ])
    return net
Ejemplo n.º 26
0
def exp_e(name):
    # D but with downsampling 5x
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television',
            'dish washer',
            ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=None,#[200, 100, 200, 2500, 2400],
        on_power_thresholds=[5, 5, 5, 5, 5],
        max_input_power=5900,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1500,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0,
        n_seq_per_batch=25,
        include_diff=True,
        subsample_target=5,
        input_padding=4
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=1000,
        loss_function=scaled_cost,
        updates=partial(nesterov_momentum, learning_rate=.0000001, clip_range=(-1, 1)),
        layers_config=[
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(25),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer, # convolve over the time axis
                'num_filters': 50,
                'filter_length': 5,
                'stride': 1,
                'nonlinearity': sigmoid,
                'W': Uniform(1)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1) # back to (batch, time, features)
            },
            {
                'type': FeaturePoolLayer,
                'ds': 5, # number of feature maps to be pooled together
                'axis': 1 # pool over the time axis
            },
            {
                'type': LSTMLayer,
                'num_units': 50,
                'W_in_to_cell': Uniform(1),
                'gradient_steps': GRADIENT_STEPS,
                'peepholes': False
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None,
                'W': Uniform(25)
            }
        ]
    )
    return net
Ejemplo n.º 27
0
net = Net(experiment_name="e83",
          source=source,
          learning_rate=1e-1,
          save_plot_interval=250,
          loss_function=crossentropy,
          layers_config=[{
              'type': DimshuffleLayer,
              'pattern': (0, 2, 1)
          }, {
              'type': Conv1DLayer,
              'num_filters': 50,
              'filter_length': 3,
              'stride': 1,
              'nonlinearity': sigmoid,
              'W': Uniform(25),
              'b': Uniform(25)
          }, {
              'type': Conv1DLayer,
              'num_filters': 50,
              'filter_length': 3,
              'stride': 1,
              'nonlinearity': sigmoid,
              'W': Uniform(10),
              'b': Uniform(10)
          }, {
              'type': DimshuffleLayer,
              'pattern': (0, 2, 1)
          }, {
              'type': BLSTMLayer,
              'num_units': 50,
Ejemplo n.º 28
0
def exp_b(name):
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[['fridge freezer', 'fridge', 'freezer'],
                    'hair straighteners', 'television', 'dish washer',
                    ['washer dryer', 'washing machine']],
        max_appliance_powers=[2500] * 5,
        on_power_thresholds=[5] * 5,
        max_input_power=2500,
        min_on_durations=[60, 60, 60, 1800, 1800],
        min_off_durations=[12, 12, 12, 1800, 600],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1520,
        output_one_appliance=False,
        boolean_targets=False,
        train_buildings=[1],
        validation_buildings=[1],
        skip_probability=0.7,
        n_seq_per_batch=25,
        input_padding=4,
        include_diff=False,
        clip_appliance_power=False)

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=1000,
        loss_function=scaled_cost,
        updates=partial(nesterov_momentum,
                        learning_rate=0.1,
                        clip_range=(-1, 1)),
        layers_config=[
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 50,
                'filter_length': 5,
                'stride': 1,
                'nonlinearity': sigmoid,
                'W': Uniform(10)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # back to (batch, time, features)
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None
            }
        ],
        layer_changes={
            10000: {
                'remove_from':
                -3,
                'new_layers': [{
                    'type': LSTMLayer,
                    'num_units': 50,
                    'W_in_to_cell': Uniform(1),
                    'gradient_steps': GRADIENT_STEPS,
                    'peepholes': False
                }, {
                    'type': DenseLayer,
                    'num_units': source.n_outputs,
                    'nonlinearity': None
                }]
            }
        })
    return net
Ejemplo n.º 29
0
def exp_a(name):
    # global source
    # source = RealApplianceSource(
    #     filename='/data/dk3810/ukdale.h5',
    #     appliances=[
    #         ['fridge freezer', 'fridge', 'freezer'],
    #         'hair straighteners',
    #         'television'
    #         # 'dish washer',
    #         # ['washer dryer', 'washing machine']
    #     ],
    #     max_appliance_powers=[2500] * 5,
    #     on_power_thresholds=[5] * 5,
    #     max_input_power=2500,
    #     min_on_durations=[60, 60, 60, 1800, 1800],
    #     min_off_durations=[12, 12, 12, 1800, 600],
    #     window=("2013-06-01", "2014-07-01"),
    #     seq_length=1520,
    #     output_one_appliance=False,
    #     boolean_targets=False,
    #     train_buildings=[1],
    #     validation_buildings=[1],
    #     skip_probability=0.7,
    #     n_seq_per_batch=25,
    #     input_padding=1,
    #     include_diff=False,
    #     clip_appliance_power=False
    # )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=1000,
        loss_function=scaled_cost,
        updates=partial(nesterov_momentum,
                        learning_rate=0.1,
                        clip_range=(-1, 1)),
        layers_config=[
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # (batch, features, time)
            },
            {
                'type': Conv1DLayer,  # convolve over the time axis
                'num_filters': 10,
                'filter_length': 2,
                'stride': 1,
                'nonlinearity': sigmoid,
                'W': Uniform(5)
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)  # back to (batch, time, features)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': rectify
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': None
                #                'W': Uniform()
            }
        ])
    return net
Ejemplo n.º 30
0
def test_uniform_glorot():
    from lasagne.init import Uniform

    sample = Uniform().sample((150, 450))
    assert -0.11 < sample.min() < -0.09
    assert 0.09 < sample.max() < 0.11
Ejemplo n.º 31
0
def test_uniform_mean_std():
    from lasagne.init import Uniform
    sample = Uniform(std=1.0, mean=5.0).sample((300, 400))
    assert 4.9 < sample.mean() < 5.1
    assert 0.9 < sample.std() < 1.1
Ejemplo n.º 32
0
net = Net(experiment_name="e77",
          source=source,
          learning_rate=1e-1,
          save_plot_interval=50,
          loss_function=crossentropy,
          layers_config=[{
              'type': DimshuffleLayer,
              'pattern': (0, 2, 1)
          }, {
              'type': Conv1DLayer,
              'num_filters': 50,
              'filter_length': 3,
              'stride': 1,
              'nonlinearity': sigmoid,
              'W': Uniform(1),
              'b': Uniform(1)
          }, {
              'type': Conv1DLayer,
              'num_filters': 50,
              'filter_length': 3,
              'stride': 1,
              'nonlinearity': sigmoid,
              'W': Uniform(1),
              'b': Uniform(1)
          }, {
              'type': DimshuffleLayer,
              'pattern': (0, 2, 1)
          }, {
              'type': LSTMLayer,
              'num_units': 80,
Ejemplo n.º 33
0
def test_uniform_glorot_receptive_field():
    from lasagne.init import Uniform

    sample = Uniform().sample((150, 150, 2))
    assert -0.11 < sample.min() < -0.09
    assert 0.09 < sample.max() < 0.11
Ejemplo n.º 34
0
def test_uniform_mean_std():
    from lasagne.init import Uniform
    sample = Uniform(std=1.0, mean=5.0).sample((300, 400))
    assert 4.9 < sample.mean() < 5.1
    assert 0.9 < sample.std() < 1.1
Ejemplo n.º 35
0
def exp_a(name):
    """Results: Learning rate of 0.1 still NaNs."""

    """e91d but learning rate 0.01 
    and smaller inits (to try to capture 
    smaller changes) and larger first layer

    And e96 centres input data.  And I've fixed a problem where only the last
    instance of an appliance if multiple appliances occured within a batch would
    be shown in the targets.

    e98:
    Output just the fridge and use bool targets

    e99
    seq_length = 1000
    learning rate = 0.01 (tried 0.1 and 0.05 but both NaN'd)
    max_input_power = 500
    don't bother centering X
    only 50 units in first layer
    back to just 3 appliances
    skip prob = 0

    e100
    boolean_targets = False
    output_one_appliance=False

    e101
    max_input_power = 1000
    init back to Uniform(25)
    conv layer back to 20 filters
    """
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[
            ['fridge freezer', 'fridge', 'freezer'], 
            'hair straighteners', 
            'television'
            # 'dish washer',
            # ['washer dryer', 'washing machine']
        ],
        max_appliance_powers=[300, 500, 200], #, 2500, 2400],
        on_power_thresholds=[20, 20, 20], #, 20, 20],
        max_input_power=1000,
        min_on_durations=[60, 60, 60], #, 1800, 1800],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1000,
        output_one_appliance=False,
        boolean_targets=False,
        min_off_duration=60,
        subsample_target=5,
        train_buildings=[1],
        validation_buildings=[1], 
        skip_probability=0
    )

    net = Net(
        experiment_name=name,
        source=source,
        save_plot_interval=SAVE_PLOT_INTERVAL,
        loss_function=crossentropy,
        updates=partial(nesterov_momentum, learning_rate=0.01),
        layers_config=[
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(25),
                'b': Uniform(25)
            },
            {
                'type': DenseLayer,
                'num_units': 50,
                'nonlinearity': sigmoid,
                'W': Uniform(10),
                'b': Uniform(10)
            },
            {
                'type': BLSTMLayer,
                'num_units': 40,
                'W_in_to_cell': Uniform(5),
                'gradient_steps': GRADIENT_STEPS
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            {
                'type': Conv1DLayer,
                'num_filters': 20,
                'filter_length': 5,
                'stride': 5,
                'nonlinearity': sigmoid
            },
            {
                'type': DimshuffleLayer,
                'pattern': (0, 2, 1)
            },
            {
                'type': BLSTMLayer,
                'num_units': 80,
                'W_in_to_cell': Uniform(5),
                'gradient_steps': GRADIENT_STEPS
            },
            {
                'type': DenseLayer,
                'num_units': source.n_outputs,
                'nonlinearity': sigmoid
            }
        ]
    )
    return net
Ejemplo n.º 36
0
def exp_b(name):
    # e59 but ReLU
    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(
        experiment_name=name,
        source=source,
        learning_rate=1e-3,
        learning_rate_changes_by_iteration={
            1000: 1e-4,
            2000: 1e-5
        }
    ))
    net_dict_copy['layers_config']= [
        {
            'type': DenseLayer,
            'num_units': 50,
            'nonlinearity': rectify,
            'W': Uniform(25),
            'b': Uniform(25)
        },
        {
            'type': DenseLayer,
            'num_units': 50,
            'nonlinearity': rectify,
            'W': Uniform(10),
            'b': Uniform(10)
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 40,
            'W_in_to_hid': Uniform(5),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': rectify,
            'learn_init': False, 
            'precompute_input': False,
            'W_hid_to_hid': Identity(0.5)
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': Conv1DLayer,
            'num_filters': 20,
            'filter_length': 4,
            'stride': 4,
            'nonlinearity': rectify
        },
        {
            'type': DimshuffleLayer,
            'pattern': (0, 2, 1)
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 80,
            'W_in_to_hid': Uniform(5),
            'W_hid_to_hid': Identity(0.5),
            'gradient_steps': GRADIENT_STEPS,
            'nonlinearity': rectify,
            'learn_init': False, 
            'precompute_input': False
        },
        {
            'type': DenseLayer,
            'num_units': source.n_outputs,
            'nonlinearity': sigmoid
        }
    ]
    net = Net(**net_dict_copy)
    return net