Ejemplo n.º 1
0
def train(args):
    '''Training. Model will be saved after several iterations. 
    
    Args: 
      dataset_dir: string, directory of dataset
      workspace: string, directory of workspace
      taxonomy_level: 'fine' | 'coarse'
      model_type: string, e.g. 'Cnn_9layers_MaxPooling'
      holdout_fold: '1' | 'None', where '1' indicates using validation and 
          'None' indicates using full data for training
      batch_size: int
      cuda: bool
      mini_data: bool, set True for debugging on a small part of data
    '''

    # Arugments & parameters
    dataset_dir = args.dataset_dir
    workspace = args.workspace
    taxonomy_level = args.taxonomy_level
    model_type = args.model_type
    holdout_fold = args.holdout_fold
    batch_size = args.batch_size
    cuda = args.cuda and torch.cuda.is_available()
    mini_data = args.mini_data
    filename = args.filename

    seq_len = 640
    mel_bins = config.mel_bins
    frames_per_second = config.frames_per_second
    max_iteration = 10  # Number of mini-batches to evaluate on training data
    reduce_lr = True

    labels = get_labels(taxonomy_level)
    classes_num = len(labels)

    # Paths
    if mini_data:
        prefix = 'minidata_'
    else:
        prefix = ''

    train_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train.h5')

    validate_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'validate.h5')

    scalar_path = os.path.join(
        workspace, 'scalars',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train.h5')

    checkpoints_dir = os.path.join(
        workspace, 'checkpoints', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_folder(checkpoints_dir)

    _temp_submission_path = os.path.join(
        workspace, '_temp_submissions', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type, '_submission.csv')
    create_folder(os.path.dirname(_temp_submission_path))

    validate_statistics_path = os.path.join(
        workspace, 'statistics', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type,
        'validate_statistics.pickle')
    create_folder(os.path.dirname(validate_statistics_path))

    annotation_path = os.path.join(dataset_dir, 'annotations.csv')

    yaml_path = os.path.join(dataset_dir, 'dcase-ust-taxonomy.yaml')

    logs_dir = os.path.join(
        workspace, 'logs', filename, args.mode,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_logging(logs_dir, 'w')
    logging.info(args)

    if cuda:
        logging.info('Using GPU.')
    else:
        logging.info('Using CPU. Set --cuda flag to use GPU.')

    # Load scalar
    scalar = load_scalar(scalar_path)

    # Model
    Model = eval(model_type)
    model = Model(classes_num, seq_len, mel_bins, cuda)

    if cuda:
        model.cuda()

    # Optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=1e-3,
                           betas=(0.9, 0.999),
                           eps=1e-08,
                           weight_decay=0.,
                           amsgrad=True)
    print('cliqueNet parameters:',
          sum(param.numel() for param in model.parameters()))
    # Data generator
    data_generator = DataGenerator(train_hdf5_path=train_hdf5_path,
                                   validate_hdf5_path=validate_hdf5_path,
                                   holdout_fold=holdout_fold,
                                   scalar=scalar,
                                   batch_size=batch_size)

    # Evaluator
    evaluator = Evaluator(model=model,
                          data_generator=data_generator,
                          taxonomy_level=taxonomy_level,
                          cuda=cuda,
                          verbose=False)

    # Statistics
    validate_statistics_container = StatisticsContainer(
        validate_statistics_path)

    train_bgn_time = time.time()
    iteration = 0

    # Train on mini batches
    for batch_data_dict in data_generator.generate_train():

        # Evaluate
        if iteration % 200 == 0:
            logging.info('------------------------------------')
            logging.info('Iteration: {}, {} level statistics:'.format(
                iteration, taxonomy_level))

            train_fin_time = time.time()

            # Evaluate on training data
            if mini_data:
                raise Exception('`mini_data` flag must be set to False to use '
                                'the official evaluation tool!')

            train_statistics = evaluator.evaluate(data_type='train',
                                                  max_iteration=None)

            # Evaluate on validation data
            if holdout_fold != 'none':
                validate_statistics = evaluator.evaluate(
                    data_type='validate',
                    submission_path=_temp_submission_path,
                    annotation_path=annotation_path,
                    yaml_path=yaml_path,
                    max_iteration=None)

                validate_statistics_container.append_and_dump(
                    iteration, validate_statistics)

            train_time = train_fin_time - train_bgn_time
            validate_time = time.time() - train_fin_time

            logging.info('Train time: {:.3f} s, validate time: {:.3f} s'
                         ''.format(train_time, validate_time))

            train_bgn_time = time.time()

        # Save model
        if iteration % 1000 == 0 and iteration > 0:
            checkpoint = {
                'iteration': iteration,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict()
            }

            checkpoint_path = os.path.join(
                checkpoints_dir, '{}_iterations.pth'.format(iteration))

            torch.save(checkpoint, checkpoint_path)
            logging.info('Model saved to {}'.format(checkpoint_path))

        # Reduce learning rate
        if reduce_lr and iteration % 200 == 0 and iteration > 0:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.9

        # Move data to GPU
        for key in batch_data_dict.keys():
            if key in ['feature', 'fine_target', 'coarse_target']:
                batch_data_dict[key] = move_data_to_gpu(
                    batch_data_dict[key], cuda)

        # Train
        model.train()
        batch_output = model(batch_data_dict['feature'])

        # loss
        batch_target = batch_data_dict['{}_target'.format(taxonomy_level)]
        loss = binary_cross_entropy(batch_output, batch_target)

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Stop learning
        if iteration == 3000:
            break

        iteration += 1
Ejemplo n.º 2
0
def train(args):
    '''Training. Model will be saved after several iterations. 
    
    Args: 
      dataset_dir: string, directory of dataset
      workspace: string, directory of workspace
      train_sources: 'curated' | 'noisy' | 'curated_and_noisy'
      segment_seconds: float, duration of audio recordings to be padded or split
      hop_seconds: float, hop seconds between segments
      pad_type: 'constant' | 'repeat'
      holdout_fold: '1', '2', '3', '4' | 'none', set `none` for training 
          on all data without validation
      model_type: string, e.g. 'Cnn_9layers_AvgPooling'
      batch_size: int
      cuda: bool
      mini_data: bool, set True for debugging on a small part of data
    '''

    # Arugments & parameters
    dataset_dir = args.dataset_dir
    workspace = args.workspace
    train_source = args.train_source
    segment_seconds = args.segment_seconds
    hop_seconds = args.hop_seconds
    pad_type = args.pad_type
    holdout_fold = args.holdout_fold
    model_type = args.model_type
    batch_size = args.batch_size
    cuda = args.cuda and torch.cuda.is_available()
    mini_data = args.mini_data
    filename = args.filename

    mel_bins = config.mel_bins
    classes_num = config.classes_num
    frames_per_second = config.frames_per_second
    max_iteration = 500  # Number of mini-batches to evaluate on training data
    reduce_lr = False

    # Paths
    if mini_data:
        prefix = 'minidata_'
    else:
        prefix = ''

    curated_feature_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train_curated.h5')

    noisy_feature_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train_noisy.h5')

    curated_cross_validation_path = os.path.join(
        workspace, 'cross_validation_metadata',
        'train_curated_cross_validation.csv')

    noisy_cross_validation_path = os.path.join(
        workspace, 'cross_validation_metadata',
        'train_noisy_cross_validation.csv')

    scalar_path = os.path.join(
        workspace, 'scalars',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train_noisy.h5')

    checkpoints_dir = os.path.join(
        workspace, 'checkpoints', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'train_source={}'.format(train_source),
        'segment={}s,hop={}s,pad_type={}'.format(segment_seconds, hop_seconds,
                                                 pad_type),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_folder(checkpoints_dir)

    validate_statistics_path = os.path.join(
        workspace, 'statistics', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'train_source={}'.format(train_source),
        'segment={}s,hop={}s,pad_type={}'.format(segment_seconds, hop_seconds,
                                                 pad_type),
        'holdout_fold={}'.format(holdout_fold), model_type,
        'validate_statistics.pickle')
    create_folder(os.path.dirname(validate_statistics_path))

    logs_dir = os.path.join(
        workspace, 'logs', filename, args.mode,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'train_source={}'.format(train_source),
        'segment={}s,hop={}s,pad_type={}'.format(segment_seconds, hop_seconds,
                                                 pad_type),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_logging(logs_dir, 'w')
    logging.info(args)

    # Load scalar
    scalar = load_scalar(scalar_path)

    # Model
    Model = eval(model_type)
    model = Model(classes_num)

    if cuda:
        model.cuda()

    # Optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=1e-3,
                           betas=(0.9, 0.999),
                           eps=1e-08,
                           weight_decay=0.,
                           amsgrad=True)

    # Data generator
    data_generator = DataGenerator(
        curated_feature_hdf5_path=curated_feature_hdf5_path,
        noisy_feature_hdf5_path=noisy_feature_hdf5_path,
        curated_cross_validation_path=curated_cross_validation_path,
        noisy_cross_validation_path=noisy_cross_validation_path,
        train_source=train_source,
        holdout_fold=holdout_fold,
        segment_seconds=segment_seconds,
        hop_seconds=hop_seconds,
        pad_type=pad_type,
        scalar=scalar,
        batch_size=batch_size)

    # Evaluator
    evaluator = Evaluator(model=model,
                          data_generator=data_generator,
                          cuda=cuda)

    # Statistics
    validate_statistics_container = StatisticsContainer(
        validate_statistics_path)

    train_bgn_time = time.time()
    iteration = 0

    # Train on mini batches
    for batch_data_dict in data_generator.generate_train():

        # Evaluate
        if iteration % 500 == 0:
            logging.info('------------------------------------')
            logging.info('Iteration: {}'.format(iteration))

            train_fin_time = time.time()

            # Evaluate on partial of train data
            logging.info('Train statistics:')

            for target_source in ['curated', 'noisy']:
                validate_curated_statistics = evaluator.evaluate(
                    data_type='train',
                    target_source=target_source,
                    max_iteration=max_iteration,
                    verbose=False)

            # Evaluate on holdout validation data
            if holdout_fold != 'none':
                logging.info('Validate statistics:')

                for target_source in ['curated', 'noisy']:
                    validate_curated_statistics = evaluator.evaluate(
                        data_type='validate',
                        target_source=target_source,
                        max_iteration=None,
                        verbose=False)

                    validate_statistics_container.append(
                        iteration, target_source, validate_curated_statistics)

                validate_statistics_container.dump()

            train_time = train_fin_time - train_bgn_time
            validate_time = time.time() - train_fin_time

            logging.info('Train time: {:.3f} s, validate time: {:.3f} s'
                         ''.format(train_time, validate_time))

            train_bgn_time = time.time()

        # Save model
        if iteration % 1000 == 0 and iteration > 0:
            checkpoint = {
                'iteration': iteration,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict()
            }

            checkpoint_path = os.path.join(
                checkpoints_dir, '{}_iterations.pth'.format(iteration))

            torch.save(checkpoint, checkpoint_path)
            logging.info('Model saved to {}'.format(checkpoint_path))

        # Reduce learning rate
        if reduce_lr and iteration % 200 == 0 and iteration > 0:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.9

        # Move data to GPU
        for key in batch_data_dict.keys():
            if key in ['feature', 'mask', 'target']:
                batch_data_dict[key] = move_data_to_gpu(
                    batch_data_dict[key], cuda)

        # Train
        model.train()
        batch_output = model(batch_data_dict['feature'])

        # loss
        loss = binary_cross_entropy(batch_output, batch_data_dict['target'])

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Stop learning
        if iteration == 20000:
            break

        iteration += 1
]

epochs = 20
learning_rate = 0.1

# train
for e in range(epochs):
    error = 0
    for x, y in zip(x_train, y_train):
        # forward
        output = x
        for layer in network:
            output = layer.forward(output)

        # error
        error += binary_cross_entropy(y, output)

        # backward
        grad = binary_cross_entropy_prime(y, output)
        for layer in reversed(network):
            grad = layer.backward(grad, learning_rate)

    error /= len(x_train)
    print(f"{e + 1}/{epochs}, error={error}")

# test
for x, y in zip(x_test, y_test):
    output = x
    for layer in network:
        output = layer.forward(output)
    print(f"pred: {np.argmax(output)}, true: {np.argmax(y)}")
Ejemplo n.º 4
0
def train(args):
    '''Training. Model will be saved after several iterations. 
    
    Args: 
      dataset_dir: string, directory of dataset
      workspace: string, directory of workspace
      taxonomy_level: 'fine' | 'coarse'
      model_type: string, e.g. 'Cnn_9layers_MaxPooling'
      holdout_fold: '1' | 'None', where '1' indicates using validation and 
          'None' indicates using full data for training
      batch_size: int
      cuda: bool
      mini_data: bool, set True for debugging on a small part of data
    '''

    # Arugments & parameters
    dataset_dir = args.dataset_dir
    workspace = args.workspace
    taxonomy_level = args.taxonomy_level
    model_type = args.model_type
    holdout_fold = args.holdout_fold
    batch_size = args.batch_size
    cuda = args.cuda and torch.cuda.is_available()
    mini_data = args.mini_data
    filename = args.filename
    plt_x = []
    plt_y = []
    T_max = 300
    mel_bins = config.mel_bins
    frames_per_second = config.frames_per_second
    max_iteration = 10  # Number of mini-batches to evaluate on training data
    reduce_lr = True

    labels = get_labels(taxonomy_level)
    classes_num = len(labels)

    def mixup_data(x1, x2, y, alpha=1.0, use_cuda=True):  # 数据增强,看下那个博客
        '''Returns mixed inputs, pairs of targets, and lambda'''
        if alpha > 0:
            lam = np.random.beta(alpha, alpha)  # 随机生成一个(1,1)的张量
        else:
            lam = 1
        #
        batch_size = x1.size()[0]
        if use_cuda:
            index = torch.randperm(
                batch_size).cuda()  # 给定参数n,返回一个从0到n-1的随机整数序列
        else:
            index = torch.randperm(batch_size)  # 使用cpu还是gpu

        mixed_x1 = lam * x1 + (1 - lam) * x1[index, :]
        mixed_x2 = lam * x2 + (1 - lam) * x2[index, :]  # 混合数据
        y_a, y_b = y, y[index]
        return mixed_x1, mixed_x2, y_a, y_b, lam

    def mixup_criterion(criterion, pred, y_a, y_b, lam):
        return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)

    # Paths
    if mini_data:
        prefix = 'minidata_'
    else:
        prefix = ''

    train_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train.h5')

    validate_hdf5_path = os.path.join(
        workspace, 'features',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'validate.h5')

    scalar_path = os.path.join(
        workspace, 'scalars',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins), 'train.h5')

    checkpoints_dir = os.path.join(
        workspace, 'checkpoints', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_folder(checkpoints_dir)

    _temp_submission_path = os.path.join(
        workspace, '_temp_submissions', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type, '_submission.csv')
    create_folder(os.path.dirname(_temp_submission_path))

    validate_statistics_path = os.path.join(
        workspace, 'statistics', filename,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type,
        'validate_statistics.pickle')
    create_folder(os.path.dirname(validate_statistics_path))
    loss_path = os.path.join(
        workspace, 'loss',
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type)
    create_folder(loss_path)

    annotation_path = os.path.join(dataset_dir, 'annotations.csv')

    yaml_path = os.path.join(dataset_dir, 'dcase-ust-taxonomy.yaml')

    logs_dir = os.path.join(
        workspace, 'logs', filename, args.mode,
        '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second,
                                             mel_bins),
        'taxonomy_level={}'.format(taxonomy_level),
        'holdout_fold={}'.format(holdout_fold), model_type)

    create_logging(logs_dir, 'w')
    logging.info(args)

    if cuda:
        logging.info('Using GPU.')
    else:
        logging.info('Using CPU. Set --cuda flag to use GPU.')

    # Load scalar
    scalar = load_scalar(scalar_path)

    # Model
    Model = eval(model_type)
    model = Model(classes_num)
    logging.info(
        " Space_Duo_Cnn_9_Avg  多一层 258*258 不共用FC,必须带时空标签 用loss 监测,使用去零one hot "
    )

    if cuda:
        model.cuda()

    # Optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=1e-3,
                           betas=(0.9, 0.999),
                           eps=1e-08,
                           weight_decay=0.,
                           amsgrad=True)

    logging.info('model parm:{} '.format(
        sum(param.numel() for param in model.parameters())))
    #计算模型参数量

    # Data generator
    data_generator = DataGenerator(train_hdf5_path=train_hdf5_path,
                                   validate_hdf5_path=validate_hdf5_path,
                                   holdout_fold=holdout_fold,
                                   scalar=scalar,
                                   batch_size=batch_size)

    # Evaluator
    evaluator = Evaluator(model=model,
                          data_generator=data_generator,
                          taxonomy_level=taxonomy_level,
                          cuda=cuda,
                          verbose=False)

    # Statistics
    validate_statistics_container = StatisticsContainer(
        validate_statistics_path)

    train_bgn_time = time.time()
    iteration = 0
    best_inde = {}
    best_inde['micro_auprc'] = np.array([0.0])
    best_inde['micro_f1'] = np.array([0.0])
    best_inde['macro_auprc'] = np.array([0.0])
    best_inde['average_precision'] = np.array([0.0])
    best_inde['sum'] = best_inde['micro_auprc'] + best_inde[
        'micro_f1'] + best_inde['macro_auprc']
    last_loss1 = []
    last_loss2 = []
    last_loss = []
    best_map = 0
    # Train on mini batches
    for batch_data_dict in data_generator.generate_train():

        # Evaluate
        if iteration % 200 == 0:
            logging.info('------------------------------------')
            logging.info('Iteration: {}, {} level statistics:'.format(
                iteration, taxonomy_level))

            train_fin_time = time.time()

            # Evaluate on training data
            if mini_data:
                raise Exception('`mini_data` flag must be set to False to use '
                                'the official evaluation tool!')

            train_statistics = evaluator.evaluate(data_type='train',
                                                  max_iteration=None)
            if iteration > 5000:
                if best_map < np.mean(train_statistics['average_precision']):
                    best_map = np.mean(train_statistics['average_precision'])
                    logging.info('best_map= {}'.format(best_map))
                    # logging.info('iter= {}'.format(iteration))
                    checkpoint = {
                        'iteration': iteration,
                        'model': model.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'indicators': train_statistics
                    }
                    checkpoint_path = os.path.join(checkpoints_dir,
                                                   'best7.pth')
                    torch.save(checkpoint, checkpoint_path)
                    logging.info(
                        'best_models saved to {}'.format(checkpoint_path))

            # Evaluate on validation data
            if holdout_fold != 'none':
                validate_statistics = evaluator.evaluate(
                    data_type='validate',
                    submission_path=_temp_submission_path,
                    annotation_path=annotation_path,
                    yaml_path=yaml_path,
                    max_iteration=None)

                validate_statistics_container.append_and_dump(
                    iteration, validate_statistics)

            train_time = train_fin_time - train_bgn_time
            validate_time = time.time() - train_fin_time

            logging.info('Train time: {:.3f} s, validate time: {:.3f} s'
                         ''.format(train_time, validate_time))

            train_bgn_time = time.time()

        # Reduce learning rate
        if reduce_lr and iteration % 200 == 0 and iteration > 0:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.9
        batch_data2_dict = batch_data_dict.copy()
        n = []

        for i, l in enumerate(batch_data2_dict['coarse_target']):
            k = 0
            for j in range(0, 8):
                if l[j] > 0.6:
                    l[j] = 1
                else:
                    l[j] = 0
                    k += 1
                if k == 8:
                    if taxonomy_level == 'coarse':
                        n.append(i)

        for i, l in enumerate(batch_data2_dict['fine_target']):
            k = 0
            for j in range(0, 29):
                if l[j] > 0.6:
                    l[j] = 1
                else:
                    l[j] = 0
                    k += 1
                if k == 29:
                    if taxonomy_level == 'fine':
                        n.append(i)

        batch_data2_dict['fine_target'] = np.delete(
            batch_data2_dict['fine_target'], n, axis=0)
        batch_data2_dict['coarse_target'] = np.delete(
            batch_data2_dict['coarse_target'], n, axis=0)
        batch_data2_dict['audio_name'] = np.delete(
            batch_data2_dict['audio_name'], n, axis=0)
        batch_data2_dict['feature'] = np.delete(batch_data2_dict['feature'],
                                                n,
                                                axis=0)
        batch_data2_dict['spacetime'] = np.delete(
            batch_data2_dict['spacetime'], n, axis=0)
        if batch_data2_dict['audio_name'].size == 0:
            iteration += 1
            continue
        #使用 概率数据请注释下行,使用去零onehot数据不用注释
        batch_data_dict = batch_data2_dict

        # if iteration <8655:
        #      batch_data_dict = batch_data2_dict
        # elif iteration >=8655 and  iteration % 2 == 0:
        #     batch_data_dict = batch_data2_dict

        # Move data to GPU                                       ,'external_target','external_feature'
        for key in batch_data_dict.keys():
            if key in ['feature', 'fine_target', 'coarse_target', 'spacetime']:
                batch_data_dict[key] = move_data_to_gpu(
                    batch_data_dict[key], cuda)
        # Train
        model.train()
        # 使用mix_up  数据增强
        feature1, spacetime1, targets1_a, targets1_b, lam1 = mixup_data(
            batch_data_dict['feature'],
            batch_data_dict['spacetime'],
            batch_data_dict['fine_target'],
            alpha=1.0,
            use_cuda=True)
        feature2, spacetime2, targets2_a, targets2_b, lam2 = mixup_data(
            batch_data_dict['feature'],
            batch_data_dict['spacetime'],
            batch_data_dict['coarse_target'],
            alpha=1.0,
            use_cuda=True)
        batch_output1 = model.forward1(feature1, spacetime1)
        batch_output2 = model.forward2(feature2, spacetime2)
        lam1 = int(lam1)
        lam2 = int(lam2)
        loss1 = (lam1 * binary_cross_entropy(batch_output1, targets1_a) +
                 (1 - lam1) * binary_cross_entropy(batch_output1, targets1_b))
        loss2 = (lam2 * binary_cross_entropy(batch_output2, targets2_a) +
                 (1 - lam2) * binary_cross_entropy(batch_output2, targets2_b))

        #不使用mix_up  数据增强,请使用以下代码
        # batch_target1 = batch_data_dict['fine_target']
        # batch_output1 = model.forward1(batch_data_dict['feature'], batch_data_dict['spacetime'])
        # batch_target2 = batch_data_dict['coarse_target']
        # batch_output2 = model.forward2(batch_data_dict['feature'], batch_data_dict['spacetime'])
        # loss1 = binary_cross_entropy(batch_output1, batch_target1)
        # loss2 = binary_cross_entropy(batch_output2, batch_target2)

        loss = loss1 + loss2

        #使用loss监测请使用以下代码否者注释
        if iteration > 4320:
            new_loss = loss.item()
            if len(last_loss) < 5:
                last_loss.append(new_loss)
            else:
                cha = 0
                for i in range(4):
                    cha += abs(last_loss[i + 1] - last_loss[i])
                if new_loss > last_loss[4] and cha >= (new_loss -
                                                       last_loss[4]) > cha / 2:
                    for i in range(4):
                        last_loss[i] = last_loss[i + 1]
                    last_loss[4] = new_loss
                    logging.info(' drop iteration:{}'.format(iteration))
                    iteration += 1
                    continue
                elif new_loss > last_loss[4] and (new_loss -
                                                  last_loss[4]) > cha / 2.75:
                    for i in range(4):
                        last_loss[i] = last_loss[i + 1]
                    last_loss[4] = new_loss
                    logging.info(' low weightiteration:{}'.format(iteration))
                    loss = loss / 2

                else:
                    for i in range(4):
                        last_loss[i] = last_loss[i + 1]
                    last_loss[4] = new_loss

        # # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if iteration % 50 == 0:
            plt_x.append(iteration)
            plt_y.append(loss)

        if iteration % 13000 == 0 and iteration != 0:
            plt.figure(1)
            plt.suptitle('test result ', fontsize='18')
            plt.plot(plt_x, plt_y, 'r-', label='loss')
            plt.legend(loc='best')
            plt.savefig(
                loss_path + '/' +
                time.strftime('%m%d_%H%M%S', time.localtime(time.time())) +
                'loss.jpg')
            plt.savefig(loss_path + '/loss.jpg')

        # Stop learning
        if iteration == 13000:
            # logging.info("best_micro_auprc:{:.3f}".format(best_inde['micro_auprc']))
            # logging.info("best_micro_f1:{:.3f}".format(best_inde['micro_f1']))
            # logging.info("best_macro_auprc:{:.3f}".format(best_inde['macro_auprc']))
            # labels = get_labels(taxonomy_level)
            # for k, label in enumerate(labels):
            #     logging.info('    {:<40}{:.3f}'.format(label, best_inde['average_precision'][k]))
            break
        iteration += 1