Ejemplo n.º 1
0
from molecular_builder import create_bulk_crystal, carve_geometry, write
from molecular_builder.geometry import BoxGeometry

atoms = create_bulk_crystal("silicon_carbide_3c", [100, 100, 100])

geometry = BoxGeometry([50, 50, 50], [70, 70, 70])

carve_geometry(atoms, geometry, side="out")

write(atoms, "box.data")
write(atoms, "box.png", camera_dir=[3, 2, -1])
from molecular_builder import create_bulk_crystal, carve_geometry, fetch_prepared_system
from molecular_builder.geometry import BerkovichGeometry, CylinderGeometry

slab = fetch_prepared_system("vashishta_1990_like_amorphous_silica/quench_950K")
slab.cell[2,2] = 80 # Expand cell in z direction to fit indenter 

indenter = create_bulk_crystal("diamond", (144, 144, 80), round="down")
carve_geometry(indenter, BerkovichGeometry((75, 75, 40)), side="out")
carve_geometry(indenter, CylinderGeometry((75, 75, 50), 60, 200, orientation=(0,0,1)), side="out")

atoms = slab+indenter

atoms.write("indenter_and_glass.data", format="lammps-data")
Ejemplo n.º 3
0
from molecular_builder import create_bulk_crystal, write
atoms = create_bulk_crystal("beta_cristobalite", size=[20, 20, 20])
write(atoms, "beta_cristobalite.data")
write(atoms, "beta_cristobalite.png", viewport_type="orthogonal")
from molecular_builder import create_bulk_crystal, carve_geometry, write, pack_water
from molecular_builder.geometry import BoxGeometry
import numpy as np

L = np.array([80, 60, 80])
atoms = create_bulk_crystal("brucite", L)

L = atoms.cell.lengths()

geometry = BoxGeometry(center=L / 2,
                       length=[L[0], L[1] / 2 - 3, 4 * L[2] / 5 + 2],
                       periodic_boundary_condition=(True, True, True))

carve_geometry(atoms, geometry, side="out")

volume = atoms.cell.volume
water_volume = volume - geometry.volume()
pack_water(atoms=atoms, volume=water_volume, pbc=2.0, tolerance=1.8)

write(atoms, "brucite_in_water.data", bond_specs=("O", "H", 1.02))
write(atoms,
      "brucite_in_water_perspective.png",
      bond_specs=("O", "H", 1.02),
      camera_dir=[1, 0, 0],
      viewport_type="perspective",
      size=(480, 640))
write(atoms,
      "brucite_in_water_orthogonal.png",
      bond_specs=("O", "H", 1.02),
      camera_dir=[1, 0, 0],
      viewport_type="orthogonal",
c = 5.51891759  # length of triclinic unit cell in c-dir (and z-dir)
angle = 60
h = b * np.sin(np.deg2rad(angle))  # length of triclinic unit cell in y-dir

numcellsx = -(-xlen // a)   # number of cells in x-dir, rounded up
numcellsy = -(-ylen // h)   # number of cells in y-dir, rounded up
numcellsz = -(-zlen // c)   # number of cells in z-dir, rounded up

lengthx = numcellsx * a     # actual length in x-dir
lengthy = numcellsy * h     # actual length in y-dir
lengthz = numcellsz * c     # actual length in z-dir

lengthnoise = np.asarray((lengthx, lengthy, lengthz))
scalenoise = lengthnoise / scale

# Create bulk of alpha-quartz
quartz = create_bulk_crystal("alpha_quartz", (xlen, ylen, zlen))

# Carve out geometry from alpha-quartz
surface_geometry = ProceduralSurfaceGeometry(point=(xlen/2, ylen/2, zlen/2),
                                             normal=(0, 0, 1),
                                             thickness=noise_thickness,
                                             octaves=octaves,
                                             scale=scalenoise,
                                             pbc=lengthnoise,
                                             angle=angle,
                                             method='perlin',
                                             threshold=0)
carve_geometry(quartz, surface_geometry, side="in")
quartz.write("quartz.data", format="lammps-data")
from molecular_builder import create_bulk_crystal, carve_geometry
from molecular_builder.geometry import PlaneGeometry

atoms = create_bulk_crystal("alpha_quartz", [120, 120, 120])

geometry = PlaneGeometry([60, 60, 60], [1, 0, 0],
                         periodic_boundary_condition=(True, True, True))

num_carved, carved = carve_geometry(atoms,
                                    geometry,
                                    side="in",
                                    return_carved=True)

atoms.write("block_inside_plane.data", format="lammps-data")
carved.write("block_outside_plane.data", format="lammps-data")
Ejemplo n.º 7
0
from molecular_builder import create_bulk_crystal, write
atoms = create_bulk_crystal("alpha_quartz", size=[20, 20, 20])
write(atoms, "alpha_quartz.data")
write(atoms, "alpha_quartz.png", viewport_type="orthogonal")
from molecular_builder import create_bulk_crystal, carve_geometry, write
from molecular_builder.geometry import ProceduralSurfaceGeometry

# Create bulk of beta-cristobalite
atoms = create_bulk_crystal("beta_cristobalite", [200, 200, 50])
write(atoms, "block.png")

# Carve out geometry from beta-cristobalite
geometry = ProceduralSurfaceGeometry(point=(100, 100, 40),
                                     normal=(0, 0, 1),
                                     thickness=20,
                                     octaves=1,
                                     method='simplex',
                                     )
num_carved, carved = carve_geometry(atoms, geometry, side="out", return_carved=True)

write(atoms, "block_with_procedural_surface.png")
Ejemplo n.º 9
0
from molecular_builder import create_bulk_crystal, carve_geometry, fetch_prepared_system, write, pack_water
from molecular_builder.geometry import BoxGeometry

blob = fetch_prepared_system("ch_blob/10nm", type_mapping=[(1, 6), (2, 1)])
blob.positions[:, 2] += 37

slab = fetch_prepared_system(
    "vashishta_1990_like_amorphous_silica/quench_950K",
    type_mapping=[(1, 14), (2, 8)])
slab.cell[2, 2] += 105

sodium_chlorate = create_bulk_crystal("sodium_chlorate",
                                      size=(slab.cell[0, 0], slab.cell[1,
                                                                       1], 25),
                                      round="down")
carve_geometry(sodium_chlorate,
               BoxGeometry([slab.cell[0, 0] * 3 / 4, slab.cell[1, 1] / 2, 0],
                           [slab.cell[0, 0] / 2, slab.cell[1, 1] + 100, 5]),
               side="in")
sodium_chlorate.translate((0, 0, 118))

atoms = (slab + blob) + sodium_chlorate

pack_water(atoms, 10000, pbc=2.0, tolerance=2.0)

write(atoms,
      "sodium_chlorate_hydrocarbon_blob_water.png",
      camera_dir=(0, 1, 0),
      viewport_type="orthogonal",
      bond_specs=[("O", "H", 0.95), ("Si", "O", 1.9)],
      atom_radii=[("Si", 0.2), ("O", 0.6)])
Ejemplo n.º 10
0
from molecular_builder import create_bulk_crystal, carve_geometry, write, pack_water
from molecular_builder.geometry import CylinderGeometry
import numpy as np

atoms = create_bulk_crystal("alpha_quartz", [60, 60, 60])

r = 25
l = atoms.cell[0][0]

geometry = CylinderGeometry([30, 30, 30], r, 100, orientation=[1, 0, 0])

water_volume = np.pi * r**2 * l

carve_geometry(atoms, geometry, side="in")

pack_water(atoms, volume=water_volume, pbc=4.0, tolerance=1.5, density=0.8)

write(atoms, "alpha_quartz_cylinder_hole_water.data")
write(atoms, "alpha_quartz_cylinder_hole_water.png", camera_dir=[3, 1, -1])
from molecular_builder import create_bulk_crystal, write

atoms = create_bulk_crystal("alpha_quartz", [50, 100, 50])

write(atoms, "alpha_quartz_mb.data", bond_specs=[("Si", "O", 2.8)])
write(atoms, "alpha_quartz_mb.png", bond_specs=[("Si", "O", 2.8)])
"""Here, we demonstrate how the PlaneGeometry can be used to carve polygons of
an arbitrary number of corners and a certain height, named polygonal cylinders.

The slope of the unit circle at point (sin(θ), cos(θ)) is (cos(θ), sin(θ)).
"""

from molecular_builder import create_bulk_crystal, carve_geometry
from molecular_builder.geometry import PlaneGeometry

# Declare polygon parameters
num_sides = 5
scaling = 30
center = (60, 60, 0)

# Create bulk of beta-cristobalite
atoms = create_bulk_crystal("beta_cristobalite", [120, 120, 120])

# Define the various planes (normal vector and point in plane)
import numpy as np
thetas = np.linspace(0, 2 * np.pi, num_sides + 1)[:-1]
normals = [np.sin(thetas), np.cos(thetas), np.zeros(num_sides)]
normals = np.asarray(normals).T
points = scaling * normals + center

# Carve out geometry from beta-cristobalite
geometry = PlaneGeometry(points, normals)
num_carved, carved = carve_geometry(atoms,
                                    geometry,
                                    side="in",
                                    return_carved=True)