Ejemplo n.º 1
0
def test_softmax_cputensor():
    sftmx = Softmax()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    temp = be.zeros((3, 1))
    outputs = np.exp(inputs-1) / np.sum(np.exp(inputs-1))
    sftmx.apply_function(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 2
0
def test_logistic_cputensor():
    lgstc = Logistic()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    temp = be.zeros((3, 1))
    outputs = 1.0 / (1.0 + np.exp(-inputs))
    lgstc.apply_function(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 3
0
def test_softmax_cputensor():
    sftmx = Softmax()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    temp = be.zeros((3, 1))
    outputs = np.exp(inputs - 1) / np.sum(np.exp(inputs - 1))
    sftmx.apply_function(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 4
0
def test_cross_entropy_derivative_cputensor():
    be = CPU(rng_seed=0)
    outputs = CPUTensor([0.5, 0.9, 0.1, 0.0001])
    targets = CPUTensor([0.5, 0.99, 0.01, 0.2])
    temp = [be.zeros(outputs.shape), be.zeros(outputs.shape)]
    expected_result = ((outputs.asnumpyarray() - targets.asnumpyarray()) /
                       (outputs.asnumpyarray() * (1 - outputs.asnumpyarray())))
    assert_tensor_near_equal(
        expected_result, cross_entropy_derivative(be, outputs, targets, temp))
Ejemplo n.º 5
0
def test_tanh_derivative_cputensor():
    tntest = Tanh()
    inputs = np.array([0, 1, -2])
    be = CPU(rng_seed=0)
    outputs = np.array(
        [1 - true_tanh(0)**2, 1 - true_tanh(1)**2, 1 - true_tanh(-2)**2])
    temp = be.zeros(inputs.shape)
    tntest.apply_derivative(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 6
0
def test_logistic_derivative_cputensor():
    lgstc = Logistic()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    outputs = 1.0 / (1.0 + np.exp(-inputs))
    outputs = outputs * (1.0 - outputs)
    temp = be.zeros(inputs.shape)
    lgstc.apply_derivative(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 7
0
def test_tanh_cputensor():
    tntest = Tanh()
    be = CPU(rng_seed=0)
    CPUTensor([0, 1, -2])
    inputs = np.array([0, 1, -2])
    temp = be.zeros(inputs.shape)
    outputs = np.array([true_tanh(0), true_tanh(1), true_tanh(-2)])
    tntest.apply_function(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 8
0
def test_tanh_cputensor():
    tntest = Tanh()
    be = CPU(rng_seed=0)
    CPUTensor([0, 1, -2])
    inputs = np.array([0, 1, -2])
    temp = be.zeros(inputs.shape)
    outputs = np.array([true_tanh(0), true_tanh(1), true_tanh(-2)])
    tntest.apply_function(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 9
0
def test_tanh_derivative_cputensor():
    tntest = Tanh()
    inputs = np.array([0, 1, -2])
    be = CPU(rng_seed=0)
    outputs = np.array([1 - true_tanh(0) ** 2,
                        1 - true_tanh(1) ** 2,
                        1 - true_tanh(-2) ** 2])
    temp = be.zeros(inputs.shape)
    tntest.apply_derivative(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 10
0
def test_cross_entropy_derivative_cputensor():
    be = CPU(rng_seed=0)
    outputs = CPUTensor([0.5, 0.9, 0.1, 0.0001])
    targets = CPUTensor([0.5, 0.99, 0.01, 0.2])
    temp = [be.zeros(outputs.shape), be.zeros(outputs.shape)]
    expected_result = ((outputs.asnumpyarray() - targets.asnumpyarray()) /
                       (outputs.asnumpyarray() * (1 - outputs.asnumpyarray())))
    assert_tensor_near_equal(expected_result,
                             cross_entropy_derivative(be, outputs,
                                                      targets, temp))
Ejemplo n.º 11
0
def test_softmax_derivative_cputensor():
    sftmx = Softmax()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    outputs = np.exp(inputs) / np.sum(np.exp(inputs))
    errmat = np.ones(inputs.shape)
    a = np.einsum('ij,ji->i', errmat.T, outputs)
    outputs = outputs * (errmat - a[np.newaxis, :])
    temp = be.zeros(inputs.shape)
    sftmx.apply_derivative(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 12
0
def test_cross_entropy_cputensor():
    be = CPU(rng_seed=0)
    outputs = CPUTensor([0.5, 0.9, 0.1, 0.0001])
    targets = CPUTensor([0.5, 0.99, 0.01, 0.2])
    temp = [be.zeros(outputs.shape), be.zeros(outputs.shape)]
    expected_result = np.sum((- targets.asnumpyarray()) *
                             np.log(outputs.asnumpyarray()) -
                             (1 - targets.asnumpyarray()) *
                             np.log(1 - outputs.asnumpyarray()), keepdims=True)
    assert_tensor_near_equal(expected_result, cross_entropy(be, outputs,
                                                            targets, temp))
Ejemplo n.º 13
0
def test_cross_entropy_cputensor():
    be = CPU(rng_seed=0)
    outputs = CPUTensor([0.5, 0.9, 0.1, 0.0001])
    targets = CPUTensor([0.5, 0.99, 0.01, 0.2])
    temp = [be.zeros(outputs.shape), be.zeros(outputs.shape)]
    expected_result = np.sum(
        (-targets.asnumpyarray()) * np.log(outputs.asnumpyarray()) -
        (1 - targets.asnumpyarray()) * np.log(1 - outputs.asnumpyarray()),
        keepdims=True)
    assert_tensor_near_equal(expected_result,
                             cross_entropy(be, outputs, targets, temp))
Ejemplo n.º 14
0
def test_softmax_derivative_cputensor():
    sftmx = Softmax()
    inputs = np.array([0, 1, -2]).reshape((3, 1))
    be = CPU(rng_seed=0)
    outputs = np.exp(inputs) / np.sum(np.exp(inputs))
    errmat = np.ones(inputs.shape)
    a = np.einsum('ij,ji->i', errmat.T, outputs)
    outputs = outputs * (errmat - a[np.newaxis, :])
    temp = be.zeros(inputs.shape)
    sftmx.apply_derivative(be, CPUTensor(inputs), temp)
    assert_tensor_near_equal(CPUTensor(outputs), temp)
Ejemplo n.º 15
0
def test_rectleaky_slope_zero_rectlin_equiv():
    be = CPU()
    inputs = be.uniform(low=-5.0, high=10.0, size=(10, 10))
    lin_buf = be.empty(inputs.shape)
    leaky_buf = be.empty(inputs.shape)
    be.rectlin(inputs, out=lin_buf)
    be.rectleaky(inputs, slope=0.0, out=leaky_buf)
    assert_tensor_equal(lin_buf, leaky_buf)
Ejemplo n.º 16
0
    def __setstate__(self, state):
        """
        Defines how we go about deserializing and loading an instance of this
        class from a specified state.

        Arguments:
            state (dict): attribute values to be loaded.
        """
        self.__dict__.update(state)
        if self.backend is None:
            # use CPU as a default backend
            self.backend = CPU()
Ejemplo n.º 17
0
def test_cross_entropy_limits():
    be = CPU(rng_seed=0)
    outputs = CPUTensor([0.5, 1.0, 0.0, 0.0001])
    targets = CPUTensor([0.5, 0.0, 1.0, 0.2])
    eps = 2**-23
    temp = [be.zeros(outputs.shape), be.zeros(outputs.shape)]
    expected_result = np.sum(
        (-targets.asnumpyarray()) * np.log(outputs.asnumpyarray() + eps) -
        (1 - targets.asnumpyarray()) *
        np.log(1 - outputs.asnumpyarray() + eps),
        keepdims=True)
    assert_tensor_near_equal(expected_result,
                             cross_entropy(be, outputs, targets, temp, eps))
Ejemplo n.º 18
0
 def test_coarse_labels(self):
     data = CIFAR100(coarse=True, repo_path=self.tmp_repo)
     data.backend = CPU(rng_seed=0)
     data.backend.actual_batch_size = 128
     data.load()
     assert len(data.inputs['train']) == 50000
     assert len(data.targets['train'][0]) == 20
Ejemplo n.º 19
0
 def test_get_inputs(self):
     d = MNIST(repo_path=self.tmp_repo)
     d.backend = CPU(rng_seed=0)
     d.backend.actual_batch_size = 128
     inputs = d.get_inputs(train=True)
     # TODO: make this work (numpy import errors at the moment)
     assert inputs['train'] is not None
Ejemplo n.º 20
0
def test_xcov_cputensor():
    np.random.seed(0)
    n = 10
    k = 8
    (k1, k2) = (3, 5)
    a = np.array(np.random.randn(k, n)*10, dtype='float32', order='C')
    acc = xcc(a[:k1], a[k1:])
    expected_result = 0.5 * (acc**2.).sum()

    be = CPU(rng_seed=0)
    outputs = CPUTensor(a.copy())
    tempbuf1 = be.empty((k1, n))
    tempbuf2 = be.empty((k2, n))
    tempbuf3 = be.empty((k1, k2))
    tempbuf4 = be.empty(outputs.shape)
    temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4]
    my_result = xcov_cost(be, outputs, [], temp, k1)
    assert_tensor_near_equal(expected_result, my_result)
Ejemplo n.º 21
0
def test_xcov_cputensor():
    np.random.seed(0)
    n = 10
    k = 8
    (k1, k2) = (3, 5)
    a = np.array(np.random.randn(k, n) * 10, dtype='float32', order='C')
    acc = xcc(a[:k1], a[k1:])
    expected_result = 0.5 * (acc**2.).sum()

    be = CPU(rng_seed=0)
    outputs = CPUTensor(a.copy())
    tempbuf1 = be.empty((k1, n))
    tempbuf2 = be.empty((k2, n))
    tempbuf3 = be.empty((k1, k2))
    tempbuf4 = be.empty(outputs.shape)
    temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4]
    my_result = xcov_cost(be, outputs, [], temp, k1)
    assert_tensor_near_equal(expected_result, my_result)
Ejemplo n.º 22
0
 def test_fine_labels(self):
     data = CIFAR100(coarse=False, repo_path=self.tmp_repo)
     data.backend = CPU(rng_seed=0)
     data.backend.actual_batch_size = 128
     par = NoPar()
     par.associate(data.backend)
     data.load()
     assert len(data.inputs['train']) == 50000
     assert len(data.targets['train'][0]) == 100
Ejemplo n.º 23
0
    def __setstate__(self, state):
        """
        Defines how we go about deserializing and loading an instance of this
        class from a specified state.

        Arguments:
            state (dict): attribute values to be loaded.
        """
        self.__dict__.update(state)
        if self.backend is None:
            # use CPU as a default backend
            self.backend = CPU()
Ejemplo n.º 24
0
def test_xcov_derivative_cputensor():
    np.random.seed(0)
    n = 10
    k = 8
    (k1, k2) = (3, 5)
    a = np.array(np.random.randn(k, n), dtype='float32', order='C')
    s = np.zeros_like(a)
    acc = xcc(a[:k1], a[k1:])  # k1 x k2
    c1 = a[k1:] - a[k1:].mean(1, keepdims=True)  # k2 x n
    c2 = a[:k1] - a[:k1].mean(1, keepdims=True)  # k1 x n

    s[:k1] = acc.dot(c1) / n
    s[k1:] = acc.T.dot(c2) / n

    be = CPU(rng_seed=0)
    outputs = CPUTensor(a.copy())
    tempbuf1 = be.empty((k1, n))
    tempbuf2 = be.empty((k2, n))
    tempbuf3 = be.empty((k1, k2))
    tempbuf4 = be.empty(outputs.shape)
    temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4]
    my_result = xcov_cost_derivative(be, outputs, [], temp, k1)
    expected_result = CPUTensor(s)
    assert_tensor_near_equal(expected_result, my_result)
Ejemplo n.º 25
0
def test_xcov_derivative_cputensor():
    np.random.seed(0)
    n = 10
    k = 8
    (k1, k2) = (3, 5)
    a = np.array(np.random.randn(k, n), dtype='float32', order='C')
    s = np.zeros_like(a)
    acc = xcc(a[:k1], a[k1:])  # k1 x k2
    c1 = a[k1:] - a[k1:].mean(1, keepdims=True)  # k2 x n
    c2 = a[:k1] - a[:k1].mean(1, keepdims=True)  # k1 x n

    s[:k1] = acc.dot(c1)/n
    s[k1:] = acc.T.dot(c2)/n

    be = CPU(rng_seed=0)
    outputs = CPUTensor(a.copy())
    tempbuf1 = be.empty((k1, n))
    tempbuf2 = be.empty((k2, n))
    tempbuf3 = be.empty((k1, k2))
    tempbuf4 = be.empty(outputs.shape)
    temp = [tempbuf1, tempbuf2, tempbuf3, tempbuf4]
    my_result = xcov_cost_derivative(be, outputs, [], temp, k1)
    expected_result = CPUTensor(s)
    assert_tensor_near_equal(expected_result, my_result)
Ejemplo n.º 26
0
def compare_cpu_tensors(inputs, outputs, deriv=False):
    rlin = RectLeaky()
    be = CPU()
    temp = be.zeros(inputs.shape)
    if deriv is True:
        rlin.apply_derivative(be, CPUTensor(inputs), temp)
    else:
        rlin.apply_function(be, CPUTensor(inputs), temp)
    be.subtract(temp, CPUTensor(outputs), temp)
    assert_tensor_equal(temp, be.zeros(inputs.shape))
Ejemplo n.º 27
0
 def test_round_split(self):
     split = 10
     batch_size = 32
     ntrain, ntest, nin, nout = 100, 10, 10, 5
     data = UniformRandom(ntrain, ntest, nin, nout, validation_pct=split)
     data.backend = CPU(rng_seed=0)
     data.backend.batch_size = batch_size
     data.load()
     split /= 100.0
     nb_batches = ntrain // batch_size
     expected_nb_train = floor((1.0 - split) * nb_batches)
     expected_nb_valid = floor(split * nb_batches)
     assert expected_nb_train == len(data.inputs['train'])
     assert expected_nb_train == len(data.targets['train'])
     assert expected_nb_valid == len(data.inputs['validation'])
     assert expected_nb_valid == len(data.targets['validation'])
Ejemplo n.º 28
0
def gen_backend(model=None,
                gpu=None,
                nrv=False,
                datapar=False,
                modelpar=False,
                flexpoint=False,
                rng_seed=None,
                numerr_handling=None,
                half=False,
                stochastic_round=0,
                device_id=None):
    """
    Construct and return a backend instance of the appropriate type based on
    the arguments given.  With no parameters, a single CPU core, float32
    backend is returned.

    Arguments:
        model (neon.models.model.Model): The instantiated model upon which we
                                         will utilize this backend.
        gpu (string, optional): Attempt to utilize a CUDA capable GPU if
                                installed in the system. Defaults to None which
                                implies a CPU based backend.  If 'cudanet',
                                utilize a cuda-convnet2 based backed, which
                                supports Kepler and Maxwell GPUs with single
                                precision. If 'nervanagpu', attempt to utilize
                                the NervanaGPU Maxwell backend with float16 and
                                float32 support.
        nrv (bool, optional): If True, attempt to utilize the Nervana Engine
                              for computation (must be installed on the
                              system).  Defaults to False which implies a CPU
                              based backend.
        datapar (bool, optional): Set to True to ensure that data is
                                  partitioned and each chunk is processed in
                                  parallel on different compute cores. Requires
                                  mpi4py.  Defaults to False which implies that
                                  all data will be processed sequentially on a
                                  single compute core.
        modelpar (bool, optional): Set to True to ensure that the nodes in each
                                   model layer are partitioned and distributed
                                   across multiple compute cores.  Requires
                                   mpi4py.  Defaults to False which implies
                                   that all nodes in all model layers will be
                                   processed by the same single compute core.
        flexpoint (bool, optional): If True, attempt to use FlexPoint(TM)
                                    element typed data instead of the default
                                    float32 which is in place if set to False.
        rng_seed (numeric, optional): Set this to a numeric value which can be
                                      used to seed the random number generator
                                      of the instantiated backend.  Defaults to
                                      None, which doesn't explicitly seed (so
                                      each run will be different)
        stochastic_round (numeric, optional): Only affects the max backend. If
                                              1, perform stochastic rounding.
                                              If 0, round to nearest.
        numerr_handling (dict, optional): Dictate how numeric errors are
                                          displayed and handled.  The keys and
                                          values permissible for this dict
                                          match that seen in numpy.seterr.
                                          If set to None (the default),
                                          behavior is equivalent to
                                          {'all': 'warn'}
        device_id (numeric, optional): Set this to a numeric value which can be
                                       used to select which device to run the
                                       process on

    Returns:
        Backend: newly constructed backend instance of the specifed type.

    Notes:
        * Attempts to construct a GPU instance without a CUDA capable card or
          without cudanet or nervanagpu package installed will cause the
          program to display an error message and exit.
        * Attempts to construct a parallel instance without mpi4py installed
          will cause the program to display an error message and exit.
        * The returned backend will still need to call its par.init_model()
          at some point after the model has been linked, in order for parallel
          training to proceed.
    """
    logger = logging.getLogger(__name__)
    gpuflag = False

    if datapar and modelpar:
        raise NotImplementedError('Hybrid parallelization scheme not '
                                  'implemented yet.  Try with at most one of'
                                  'datapar or modelpar')
    if modelpar:
        par = ModelPar()
    elif datapar:
        par = DataPar()
    else:
        par = NoPar()

    if par.device_id is not None:
        if device_id is not None:
            logger.warn('Ignoring device id specified in command line.')
        device_id = par.device_id

    if gpu is not None:
        gpu = gpu.lower()
        if sys.platform.startswith("linux"):
            gpuflag = (os.system("nvidia-smi > /dev/null 2>&1") == 0)
        elif sys.platform.startswith("darwin"):
            gpuflag = (
                os.system("kextstat | grep -i cuda > /dev/null 2>&1") == 0)
        if gpuflag and gpu == 'cudanet':
            try:
                import cudanet  # noqa
                from neon.backends.cc2 import GPU
                be_name = 'Cudanet'
                be = GPU(rng_seed=rng_seed, device_id=device_id)
            except ImportError:
                logger.warning("cudanet not found, can't run via GPU")
                gpuflag = False
        elif gpuflag and gpu == 'nervanagpu':
            try:
                import nervanagpu  # noqa
                try:
                    # import pycuda.autoinit
                    import pycuda.driver as drv
                    drv.init()
                    device_id = device_id if device_id is not None else 0
                    global ctx
                    ctx = drv.Device(device_id).make_context()
                    import atexit
                    atexit.register(ctx.pop)
                    from neon.backends.gpu import GPU
                    be_name = 'NervanaGPU'
                    be = GPU(rng_seed=rng_seed,
                             stochastic_round=stochastic_round,
                             device_id=device_id)
                except ImportError:
                    logger.warning("pycuda error, can't run via GPU")
                    gpuflag = False
            except ImportError:
                logger.warning("nervanagpu not found, can't run via GPU")
                gpuflag = False
        if gpuflag is False:
            raise RuntimeError("Can't find CUDA capable GPU")
    elif nrv:
        nrv = False
        try:
            from umd.nrv_backend import NRVBackend
            nrv = True
        except ImportError:
            logger.warning("Nervana Engine system software not found")

    if flexpoint:
        logger.warning("Flexpoint(TM) backend not currently available")

    if nrv:
        be_name = 'NRV'
        be = NRVBackend(rng_seed=rng_seed,
                        seterr_handling=numerr_handling,
                        device_id=device_id)
    elif not gpuflag:
        be_name = 'CPU'
        be = CPU(rng_seed=rng_seed, seterr_handling=numerr_handling)
    logger.info("{} backend, RNG seed: {}, numerr: {}".format(
        be_name, rng_seed, numerr_handling))

    par.associate(be)
    return be
Ejemplo n.º 29
0
 def __init__(self):
     # this code gets called prior to each test
     self.be = CPU()
Ejemplo n.º 30
0
class Dataset(object):
    """
    Base dataset class. Defines interface operations.
    """

    backend = None
    inputs = {'train': None, 'test': None, 'validation': None}
    targets = {'train': None, 'test': None, 'validation': None}

    def __getstate__(self):
        """
        Defines what and how we go about serializing an instance of this class.
        In this case we also want to include any loaded datasets and backend
        references.

        Returns:
            dict: keyword args, plus current inputs, targets, backend
        """
        self.__dict__['backend'] = self.backend
        self.__dict__['inputs'] = self.inputs
        self.__dict__['targets'] = self.targets
        return self.__dict__

    def __setstate__(self, state):
        """
        Defines how we go about deserializing and loading an instance of this
        class from a specified state.

        Arguments:
            state (dict): attribute values to be loaded.
        """
        self.__dict__.update(state)
        if self.backend is None:
            # use CPU as a default backend
            self.backend = CPU()

    def set_batch_size(self, batch_size):
        self.batch_size = batch_size

    def load(self, backend=None, experiment=None):
        """
        Makes the dataset data available for use.
        Needs to be implemented in every concrete Dataset child class.

        Arguments:
            backend (neon.backends.backend.Backend, optional): The
                     underlying data structure type used to hold this
                     data once loaded.  If None will use
                     `neon.backends.cpu.CPU`
            experiment (neon.experiments.experiment.Experiment, optional): The
                     object that loads this dataset.

        Raises:
            NotImplementedError: should be overridden in child class
        """
        raise NotImplementedError()

    def unload(self):
        """
        Perform cleanup tasks if any are required.
        """
        pass

    def download_to_repo(self, url, repo_path):
        """
        Fetches the dataset to a local repository for future use.

        Arguments:
            url (str): The external URI to a specific dataset
            repo_path (str): The local path to write the fetched dataset to.
        """
        repo_path = os.path.expandvars(os.path.expanduser(repo_path))
        logger.info(
            "fetching: %s, saving to: %s (this may take some time "
            "depending on dataset size)", url, repo_path)
        urllib.urlretrieve(url, os.path.join(repo_path, os.path.basename(url)))

    def get_inputs(self,
                   backend=None,
                   train=True,
                   test=False,
                   validation=False):
        """
        Loads and returns one or more input datasets.

        Arguments:
            backend (neon.backends.backend.Backend, optional): The underlying
                    data structure type used to hold this data once loaded.
                    If None will use whatever is set for this class
            train (bool, optional): load a training target outcome dataset.
                                    Defaults to True.
            test (bool, optional): load a hold-out test target outcome dataset.
                                   Defaults to False.
            validation (bool, optional): Load a separate validation target
                                         outcome dataset.  Defaults to False.

        Returns:
            dict: of loaded datasets with keys train, test, validation
                  based on what was requested.  Each dataset is a
                  neon.backends.backend.Tensor instance.
        """
        res = dict()
        if self.inputs['train'] is None:
            if backend is not None:
                self.load(backend)
            else:
                self.load()
        if train and self.inputs['train'] is not None:
            res['train'] = self.inputs['train']
        if test and self.inputs['test'] is not None:
            res['test'] = self.inputs['test']
        if validation and self.inputs['validation'] is not None:
            res['validation'] = self.inputs['validation']
        return res

    def get_targets(self,
                    backend=None,
                    train=True,
                    test=False,
                    validation=False):
        """
        Loads and returns one or more labelled outcome datasets.

        Arguments:
            backend (neon.backends.backend.Backend, None): The underlying
                    data structure type used to hold this data once loaded.
                    If None will use whatever is set for this class
            train (bool, optional): load a training target outcome dataset.
                                    Defaults to True.
            test (bool, optional): load a hold-out test target outcome dataset.
                                   Defaults to False.
            validation (bool, optional): Load a separate validation target
                                         outcome dataset.  Defaults to False.

        Returns:
            dict: of loaded datasets with keys train, test, validation
                  based on what was requested.  Each dataset is a
                  neon.backends.backend.Tensor instance.
        """
        # can't have targets without inputs, ensure these are loaded
        res = dict()
        if self.inputs['train'] is None:
            self.load()
        if train and self.inputs['train'] is not None:
            res['train'] = self.targets['train']
        if test and self.inputs['test'] is not None:
            res['test'] = self.targets['test']
        if validation and self.inputs['validation'] is not None:
            res['validation'] = self.targets['validation']
        return res

    def sample_training_data(self):
        """
        Carries out actual downsampling of data, to the percentage specified in
        self.sample_pct.
        """
        if self.sample_pct != 100:
            train_idcs = np.arange(self.inputs['train'].shape[0])
            ntrain_actual = (self.inputs['train'].shape[0] *
                             int(self.sample_pct) / 100)
            np.random.seed(self.backend.rng_seed)
            np.random.shuffle(train_idcs)
            train_idcs = train_idcs[0:ntrain_actual]
            self.inputs['train'] = self.inputs['train'][train_idcs]
            self.targets['train'] = self.targets['train'][train_idcs]

    def transpose_batches(self, data):
        """
        Transpose and distribute each minibatch within a dataset.

        Arguments:
            data (ndarray): Dataset to be sliced into mini batches,
                            transposed, and loaded to appropriate device
                            memory.
        Returns:
            list: List of device loaded mini-batches of data.
        """
        bs = self.backend.actual_batch_size
        if data.shape[0] % bs != 0:
            logger.warning('Incompatible batch size. Discarding %d samples...',
                           data.shape[0] % bs)
        nbatches = data.shape[0] / bs
        batchwise = []
        for batch in range(nbatches):
            batchdata = np.empty((data.shape[1], bs))
            batchdata[...] = data[batch * bs:(batch + 1) * bs].transpose()
            dev_batchdata = self.backend.distribute(batchdata)
            batchwise.append(dev_batchdata)
        return batchwise

    def format(self):
        """
        Transforms the loaded data into the format expected by the
        backend. If a hardware accelerator device is being used,
        this function also copies the data to the device memory.
        """
        assert self.backend is not None
        for dataset in (self.inputs, self.targets):
            for key in dataset:
                item = dataset[key]
                if item is not None:
                    dataset[key] = self.transpose_batches(item)

    def get_batch(self, data, batch):
        """
        Extract and return a single batch from the data specified.

        Arguments:
            data (list): List of device loaded batches of data
            batch (int): 0-based index specifying the batch number to get

        Returns:
            neon.backends.Tensor: Single batch of data

        See Also:
            transpose_batches
        """
        return data[batch]

    def has_set(self, setname):
        """
        Indicate whether the specified setname type is part of this dataset.

        Arguments:
            setname (str): The type of data to look for. Typically this is one
                           of 'train', 'test', 'validation'.

        Returns:
            bool: True if this dataset contains setname type of data, and False
                  otherwise.
        """
        inputs_dic = self.get_inputs(train=True, validation=True, test=True)
        return True if (setname in inputs_dic) else False

    def init_mini_batch_producer(self, batch_size, setname, predict):
        """
        Setup the ability to generate mini-batches.

        Arguments:
            batch_size (int): The number of data examples will be contained in
                              each mini-batch
            setname (str): The type of data to produce mini-batches for:
                           'train', 'test', 'validation'
            predict (bool): Set this to False when training a model, or True
                            when generating batches to be used for prediction.

        Returns:
            int: The total number of examples to be mini-batched.

        Notes:
            This is the implementation for non-macro batched data.
            macro-batched datasets will override this (e.g. ImageNet)
        """
        self.cur_inputs = self.get_inputs(train=True,
                                          validation=True,
                                          test=True)[setname]
        self.cur_tgts = self.get_targets(train=True,
                                         validation=True,
                                         test=True)[setname]
        self.predict_mode = predict
        return len(self.inputs[setname])

    def get_mini_batch(self, batch_idx):
        """
        Return the specified mini-batch of input and target data.

        Arguments:
            batch_idx (int): 0-based index specifying the mini-batch number to
                             retrieve.

        Returns:
            tuple: 2-tuple of neon.backend.Tensor objects containing the
                   corresponding input, and target mini-batches.

        Notes:
            This is the implementation for non-macro batched data.
            macro-batched datasets will override this (e.g. ImageNet)
        """
        return self.get_batch(self.cur_inputs, batch_idx), self.get_batch(
            self.cur_tgts, batch_idx)

    def del_mini_batch_producer(self):
        """
        Perform any cleanup needed once all mini-batches have been produced.

        Notes:
            macro-batched datasets will likely override this
        """
        pass
Ejemplo n.º 31
0
class TestCPU(object):

    def __init__(self):
        # this code gets called prior to each test
        self.be = CPU()

    def test_empty_creation(self):
        tns = self.be.empty((4, 3))
        assert tns.shape == (4, 3)

    def test_array_creation(self):
        tns = self.be.array([[1, 2], [3, 4]])
        assert tns.shape == (2, 2)
        assert_tensor_equal(tns, CPUTensor([[1, 2], [3, 4]]))

    def test_zeros_creation(self):
        tns = self.be.zeros([3, 1])
        assert tns.shape == (3, 1)
        assert_tensor_equal(tns, CPUTensor([[0], [0], [0]]))

    def test_ones_creation(self):
        tns = self.be.ones([1, 4])
        assert tns.shape == (1, 4)
        assert_tensor_equal(tns, CPUTensor([[1, 1, 1, 1]]))

    def test_all_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]]))

    def test_some_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.array([[0, 1], [0, 1]])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 1], [0, 1]]))

    def test_none_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.zeros([2, 2])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]]))

    def test_all_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.zeros([2, 2])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]]))

    def test_some_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.array([[0, 1], [0, 1]])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 0], [1, 0]]))

    def test_none_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]]))

    def test_greater(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.greater(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 1]]))

    def test_greater_equal(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.greater_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [1, 1]]))

    def test_less(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.less(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [0, 0]]))

    def test_less_equal(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.less_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 0]]))

    def test_argmin_noaxis(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty([1, 1])
        be.argmin(tsr, None, out)
        assert_tensor_equal(out, CPUTensor([[0]]))

    def test_argmin_axis0(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty((1, 2))
        be.argmin(tsr, 0, out)
        assert_tensor_equal(out, CPUTensor([[0, 0]]))

    def test_argmin_axis1(self):
        be = CPU()
        tsr = be.array([[-1, 10], [11, 9]])
        out = be.empty((2, 1))
        be.argmin(tsr, 1, out)
        assert_tensor_equal(out, CPUTensor([0, 1]))

    def test_argmax_noaxis(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty([1, 1])
        be.argmax(tsr, None, out)
        assert_tensor_equal(out, CPUTensor(3))

    def test_argmax_axis0(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty((2, ))
        be.argmax(tsr, 0, out)
        assert_tensor_equal(out, CPUTensor([1, 1]))

    def test_argmax_axis1(self):
        be = CPU()
        tsr = be.array([[-1, 10], [11, 9]])
        out = be.empty((2, ))
        be.argmax(tsr, 1, out)
        assert_tensor_equal(out, CPUTensor([1, 0]))

    def test_2norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        rpow = 1. / 2
        # -> sum([[1, 0], [1, 9]], axis=0)**.5 -> sqrt([2, 9])
        assert_tensor_equal(self.be.norm(tsr, order=2, axis=0),
                            CPUTensor([[2**rpow, 9**rpow]]))
        # -> sum([[1, 0], [1, 9]], axis=1)**.5 -> sqrt([1, 10])
        assert_tensor_equal(self.be.norm(tsr, order=2, axis=1),
                            CPUTensor([1**rpow, 10**rpow]))

    def test_1norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> sum([[1, 0], [1, 3]], axis=0)**1 -> [2, 3]
        assert_tensor_equal(self.be.norm(tsr, order=1, axis=0),
                            CPUTensor([[2, 3]]))
        # -> sum([[1, 0], [1, 3]], axis=1)**1 -> [1, 4]
        assert_tensor_equal(self.be.norm(tsr, order=1, axis=1),
                            CPUTensor([1, 4]))

    def test_0norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> sum(tsr != 0, axis=0) -> [2, 1]
        assert_tensor_equal(self.be.norm(tsr, order=0, axis=0),
                            CPUTensor([[2, 1]]))
        # -> sum(tsr != 0, axis=1) -> [1, 2]
        assert_tensor_equal(self.be.norm(tsr, order=0, axis=1),
                            CPUTensor([1, 2]))

    def test_infnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> max(abs(tsr), axis=0) -> [1, 3]
        assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=0),
                            CPUTensor([[1, 3]]))
        # -> max(abs(tsr), axis=1) -> [1, 3]
        assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=1),
                            CPUTensor([1, 3]))

    def test_neginfnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> min(abs(tsr), axis=0) -> [1, 0]
        assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=0),
                            CPUTensor([[1, 0]]))
        # -> min(abs(tsr), axis=1) -> [0, 1]
        assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=1),
                            CPUTensor([0, 1]))

    def test_lrgnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        rpow = 1. / 5
        # -> sum([[1, 0], [1, 243]], axis=0)**rpow -> rpow([2, 243])
        assert_tensor_equal(self.be.norm(tsr, order=5, axis=0),
                            CPUTensor([[2**rpow, 243**rpow]]))
        # -> sum([[1, 0], [1, 243]], axis=1)**rpow -> rpow([1, 244])
        # 244**.2 == ~3.002465 hence the near_equal test
        assert_tensor_near_equal(self.be.norm(tsr, order=5, axis=1),
                                 CPUTensor([1**rpow, 244**rpow]), 1e-6)

    def test_negnorm(self):
        tsr = self.be.array([[-1, -2], [1, 3]])
        rpow = -1. / 3
        # -> sum([[1, .125], [1, .037037]], axis=0)**rpow -> rpow([2, .162037])
        assert_tensor_equal(self.be.norm(tsr, order=-3, axis=0),
                            CPUTensor([[2**rpow, .162037037037**rpow]]))
        # -> sum([[1, .125], [1, .037037]], axis=1)**rpow ->
        # rpow([1.125, 1.037037])
        assert_tensor_near_equal(self.be.norm(tsr, order=-3, axis=1),
                                 CPUTensor([1.125**rpow, 1.037037**rpow]),
                                 1e-6)
Ejemplo n.º 32
0
class TestValInit(object):

    def __init__(self):
        # this code gets called prior to each test
        self.be = CPU()

    def test_uni_basics(self):
        uni = UniformValGen(backend=self.be)
        assert str(uni) == ("UniformValGen utilizing CPU backend\n\t"
                            "low: 0.0, high: 1.0")

    def test_uni_gen(self):
        uni = UniformValGen(backend=self.be)
        res = uni.generate(shape=[1, 1])
        assert res.shape == (1, 1)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        assert out.asnumpyarray() >= 0.0
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < 1.0

    def test_uni_params(self):
        low = -5.5
        high = 10.2
        uni = UniformValGen(backend=self.be, low=low, high=high)
        assert str(uni) == ("UniformValGen utilizing CPU backend\n\t"
                            "low: {low}, high: {high}".format(low=low,
                                                              high=high))
        res = uni.generate(shape=[4, 4])
        assert res.shape == (4, 4)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        assert out.asnumpyarray() >= low
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < high

    def test_autouni_gen(self):
        autouni = AutoUniformValGen(backend=self.be, relu=True)
        assert autouni.relu is True
        assert str(autouni) == ("AutoUniformValGen utilizing CPU backend\n\t"
                                "low: nan, high: nan")
        res = autouni.generate([3, 3])
        assert res.shape == (3, 3)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        expected_val = math.sqrt(2) * (1.0 / math.sqrt(3))
        assert out.asnumpyarray() >= - expected_val
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < expected_val

    def test_gaussian_gen(self):
        loc = 5
        scale = 2.0
        gauss = GaussianValGen(backend=self.be, loc=loc, scale=scale)
        assert str(gauss) == ("GaussianValGen utilizing CPU backend\n\t"
                              "loc: {}, scale: {}".format(loc, scale))
        res = gauss.generate([5, 10])
        assert res.shape == (5, 10)
        # TODO: test distribution of vals to ensure ~gaussian dist

    def test_normal_gen(self):
        loc = -2.5
        scale = 3.0
        gauss = NormalValGen(backend=self.be, loc=loc, scale=scale)
        assert str(gauss) == ("GaussianValGen utilizing CPU backend\n\t"
                              "loc: {}, scale: {}".format(loc, scale))
        res = gauss.generate([9, 3])
        assert res.shape == (9, 3)
        # TODO: test distribution of vals to ensure ~gaussian dist

    def test_sparseeig_gen(self):
        sparseness = 10
        eigenvalue = 3.1
        eig = SparseEigenValGen(backend=self.be, sparseness=sparseness,
                                eigenvalue=eigenvalue)
        assert str(eig) == ("SparseEigenValGen utilizing CPU backend\n\t"
                            "sparseness: {}, eigenvalue: "
                            "{}".format(sparseness, eigenvalue))
        res = eig.generate([20, 20])
        assert res.shape == (20, 20)
        # TODO: test distribution of vals

    def test_nodenorm_gen(self):
        scale = 3.0
        nodenorm = NodeNormalizedValGen(backend=self.be, scale=scale)
        assert str(nodenorm) == ("NodeNormalizedValGen utilizing CPU backend"
                                 "\n\tscale: {}".format(scale))
        res = nodenorm.generate([8, 9])
        assert res.shape == (8, 9)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        expected_val = scale * math.sqrt(6) / math.sqrt(8 + 9.)
        assert out.asnumpyarray() >= - expected_val
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < expected_val
Ejemplo n.º 33
0
 def test_argmin_axis0(self):
     be = CPU()
     tsr = be.array([[-1, 0], [1, 92]])
     out = be.empty((1, 2))
     be.argmin(tsr, 0, out)
     assert_tensor_equal(out, CPUTensor([[0, 0]]))
Ejemplo n.º 34
0
 def test_argmax_noaxis(self):
     be = CPU()
     tsr = be.array([[-1, 0], [1, 92]])
     out = be.empty([1, 1])
     be.argmax(tsr, None, out)
     assert_tensor_equal(out, CPUTensor(3))
Ejemplo n.º 35
0
 def test_argmin_axis0(self):
     be = CPU()
     tsr = be.array([[-1, 0], [1, 92]])
     out = be.empty((1, 2))
     be.argmin(tsr, 0, out)
     assert_tensor_equal(out, CPUTensor([[0, 0]]))
Ejemplo n.º 36
0
class Dataset(object):

    """
    Base dataset class. Defines interface operations.
    """

    backend = None
    inputs = {'train': None, 'test': None, 'validation': None}
    targets = {'train': None, 'test': None, 'validation': None}

    def __getstate__(self):
        """
        Defines what and how we go about serializing an instance of this class.
        In this case we also want to include any loaded datasets and backend
        references.

        Returns:
            dict: keyword args, plus current inputs, targets, backend
        """
        self.__dict__['backend'] = self.backend
        self.__dict__['inputs'] = self.inputs
        self.__dict__['targets'] = self.targets
        return self.__dict__

    def __setstate__(self, state):
        """
        Defines how we go about deserializing and loading an instance of this
        class from a specified state.

        Arguments:
            state (dict): attribute values to be loaded.
        """
        self.__dict__.update(state)
        if self.backend is None:
            # use CPU as a default backend
            self.backend = CPU()

    def set_batch_size(self, batch_size):
        self.batch_size = batch_size

    def load(self, backend=None, experiment=None):
        """
        Makes the dataset data available for use.
        Needs to be implemented in every concrete Dataset child class.

        Arguments:
            backend (neon.backends.backend.Backend, optional): The
                     underlying data structure type used to hold this
                     data once loaded.  If None will use
                     `neon.backends.cpu.CPU`
            experiment (neon.experiments.experiment.Experiment, optional): The
                     object that loads this dataset.

        Raises:
            NotImplementedError: should be overridden in child class
        """
        raise NotImplementedError()

    def unload(self):
        """
        Perform cleanup tasks if any are required.
        """
        pass

    def process_result(self, result):
        """
        Accept and process results of running inference.

        Arguments:
            result (ndarray): Array containing predictions obtained by
                    processing a minibatch of input data.
        """
        pass

    def download_to_repo(self, url, repo_path):
        """
        Fetches the dataset to a local repository for future use.

        Arguments:
            url (str): The external URI to a specific dataset
            repo_path (str): The local path to write the fetched dataset to.
        """
        repo_path = os.path.expandvars(os.path.expanduser(repo_path))
        logger.info("fetching: %s, saving to: %s (this may take some time "
                    "depending on dataset size)", url, repo_path)
        urllib.urlretrieve(url, os.path.join(repo_path,
                                             os.path.basename(url)))

    def get_inputs(self, backend=None, train=True, test=False,
                   validation=False):
        """
        Loads and returns one or more input datasets.

        Arguments:
            backend (neon.backends.backend.Backend, optional): The underlying
                    data structure type used to hold this data once loaded.
                    If None will use whatever is set for this class
            train (bool, optional): load a training target outcome dataset.
                                    Defaults to True.
            test (bool, optional): load a hold-out test target outcome dataset.
                                   Defaults to False.
            validation (bool, optional): Load a separate validation target
                                         outcome dataset.  Defaults to False.

        Returns:
            dict: of loaded datasets with keys train, test, validation
                  based on what was requested.  Each dataset is a
                  neon.backends.backend.Tensor instance.
        """
        res = dict()
        if self.inputs['train'] is None:
            if backend is not None:
                self.load(backend)
            else:
                self.load()
        if train and self.inputs['train'] is not None:
            res['train'] = self.inputs['train']
        if test and self.inputs['test'] is not None:
            res['test'] = self.inputs['test']
        if validation and self.inputs['validation'] is not None:
            res['validation'] = self.inputs['validation']
        return res

    def get_targets(self, backend=None, train=True, test=False,
                    validation=False):
        """
        Loads and returns one or more labelled outcome datasets.

        Arguments:
            backend (neon.backends.backend.Backend, None): The underlying
                    data structure type used to hold this data once loaded.
                    If None will use whatever is set for this class
            train (bool, optional): load a training target outcome dataset.
                                    Defaults to True.
            test (bool, optional): load a hold-out test target outcome dataset.
                                   Defaults to False.
            validation (bool, optional): Load a separate validation target
                                         outcome dataset.  Defaults to False.

        Returns:
            dict: of loaded datasets with keys train, test, validation
                  based on what was requested.  Each dataset is a
                  neon.backends.backend.Tensor instance.
        """
        # can't have targets without inputs, ensure these are loaded
        res = dict()
        if self.inputs['train'] is None:
            self.load()
        if train and self.inputs['train'] is not None:
            res['train'] = self.targets['train']
        if test and self.inputs['test'] is not None:
            res['test'] = self.targets['test']
        if validation and self.inputs['validation'] is not None:
            res['validation'] = self.targets['validation']
        return res

    def sample_training_data(self):
        """
        Carries out actual downsampling of data, to the percentage specified in
        self.sample_pct.
        """
        if self.sample_pct != 100:
            train_idcs = np.arange(self.inputs['train'].shape[0])
            ntrain_actual = (self.inputs['train'].shape[0] *
                             int(self.sample_pct) / 100)
            np.random.seed(self.backend.rng_seed)
            np.random.shuffle(train_idcs)
            train_idcs = train_idcs[0:ntrain_actual]
            self.inputs['train'] = self.inputs['train'][train_idcs]
            self.targets['train'] = self.targets['train'][train_idcs]

    def transpose_batches(self, data):
        """
        Transpose and distribute each minibatch within a dataset.

        Arguments:
            data (ndarray): Dataset to be sliced into mini batches,
                            transposed, and loaded to appropriate device
                            memory.
        Returns:
            list: List of device loaded mini-batches of data.
        """
        bs = self.backend.actual_batch_size
        if data.shape[0] % bs != 0:
            logger.warning('Incompatible batch size. Discarding %d samples...',
                           data.shape[0] % bs)
        nbatches = data.shape[0] / bs
        batchwise = []
        for batch in range(nbatches):
            batchdata = np.empty((data.shape[1], bs))
            batchdata[...] = data[batch * bs:(batch + 1) * bs].transpose()
            dev_batchdata = self.backend.distribute(batchdata)
            batchwise.append(dev_batchdata)
        return batchwise

    def format(self):
        """
        Transforms the loaded data into the format expected by the
        backend. If a hardware accelerator device is being used,
        this function also copies the data to the device memory.
        """
        assert self.backend is not None
        for dataset in (self.inputs, self.targets):
            for key in dataset:
                item = dataset[key]
                if item is not None:
                    dataset[key] = self.transpose_batches(item)

    def get_batch(self, data, batch):
        """
        Extract and return a single batch from the data specified.

        Arguments:
            data (list): List of device loaded batches of data
            batch (int): 0-based index specifying the batch number to get

        Returns:
            neon.backends.Tensor: Single batch of data

        See Also:
            transpose_batches
        """
        return data[batch]

    def has_set(self, setname):
        """
        Indicate whether the specified setname type is part of this dataset.

        Arguments:
            setname (str): The type of data to look for. Typically this is one
                           of 'train', 'test', 'validation'.

        Returns:
            bool: True if this dataset contains setname type of data, and False
                  otherwise.
        """
        inputs_dic = self.get_inputs(train=True, validation=True,
                                     test=True)
        return True if (setname in inputs_dic) else False

    def init_mini_batch_producer(self, batch_size, setname, predict):
        """
        Setup the ability to generate mini-batches.

        Arguments:
            batch_size (int): The number of data examples will be contained in
                              each mini-batch
            setname (str): The type of data to produce mini-batches for:
                           'train', 'test', 'validation'
            predict (bool): Set this to False when training a model, or True
                            when generating batches to be used for prediction.

        Returns:
            int: The total number of examples to be mini-batched.

        Notes:
            This is the implementation for non-macro batched data.
            macro-batched datasets will override this (e.g. ImageNet)
        """
        self.cur_inputs = self.get_inputs(train=True, validation=True,
                                          test=True)[setname]
        self.cur_tgts = self.get_targets(train=True, validation=True,
                                         test=True)[setname]
        self.predict_mode = predict
        return len(self.inputs[setname])

    def get_mini_batch(self, batch_idx):
        """
        Return the specified mini-batch of input and target data.

        Arguments:
            batch_idx (int): 0-based index specifying the mini-batch number to
                             retrieve.

        Returns:
            tuple: 2-tuple of neon.backend.Tensor objects containing the
                   corresponding input, and target mini-batches.

        Notes:
            This is the implementation for non-macro batched data.
            macro-batched datasets will override this (e.g. ImageNet)
        """
        return self.get_batch(self.cur_inputs, batch_idx), self.get_batch(
            self.cur_tgts, batch_idx)

    def del_mini_batch_producer(self):
        """
        Perform any cleanup needed once all mini-batches have been produced.

        Notes:
            macro-batched datasets will likely override this
        """
        pass
Ejemplo n.º 37
0
 def test_argmax_axis1(self):
     be = CPU()
     tsr = be.array([[-1, 10], [11, 9]])
     out = be.empty((2, ))
     be.argmax(tsr, 1, out)
     assert_tensor_equal(out, CPUTensor([1, 0]))
Ejemplo n.º 38
0
def gen_backend(model=None,
                gpu=None,
                nrv=False,
                flexpoint=False,
                rng_seed=None,
                numerr_handling=None,
                half=False,
                stochastic_round=0,
                device_id=None):
    """
    Construct and return a backend instance of the appropriate type based on
    the arguments given.  With no parameters, a single CPU core, float32
    backend is returned.

    Arguments:
        model (neon.models.model.Model): The instantiated model upon which we
                                         will utilize this backend.
        gpu (string, optional): Attempt to utilize a CUDA capable GPU if
                                installed in the system. Defaults to None which
                                implies a CPU based backend.  If 'cudanet',
                                utilize a cuda-convnet2 based backed, which
                                supports Kepler and Maxwell GPUs with single
                                precision. If 'nervanagpu', attempt to utilize
                                the NervanaGPU Maxwell backend with float16 and
                                float32 support.
        nrv (bool, optional): If True, attempt to utilize the Nervana Engine
                              for computation (must be installed on the
                              system).  Defaults to False which implies a CPU
                              based backend.
        rng_seed (numeric, optional): Set this to a numeric value which can be
                                      used to seed the random number generator
                                      of the instantiated backend.  Defaults to
                                      None, which doesn't explicitly seed (so
                                      each run will be different)
        stochastic_round (numeric, optional): Only affects the max backend. If
                                              1, perform stochastic rounding.
                                              If 0, round to nearest.
        numerr_handling (dict, optional): Dictate how numeric errors are
                                          displayed and handled.  The keys and
                                          values permissible for this dict
                                          match that seen in numpy.seterr.
                                          If set to None (the default),
                                          behavior is equivalent to
                                          {'all': 'warn'}
        device_id (numeric, optional): Set this to a numeric value which can be
                                       used to select which device to run the
                                       process on

    Returns:
        Backend: newly constructed backend instance of the specifed type.

    Notes:
        * Attempts to construct a GPU instance without a CUDA capable card or
          without cudanet or nervanagpu package installed will cause the
          program to display an error message and exit.
        * Attempts to construct a parallel instance without mpi4py installed
          will cause the program to display an error message and exit.
        * The returned backend will still need to call its par.init_model()
          at some point after the model has been linked, in order for parallel
          training to proceed.
    """
    logger = logging.getLogger(__name__)
    gpuflag = False

    if gpu is not None:
        gpu = gpu.lower()
        if sys.platform.startswith("linux"):
            gpuflag = (os.system("nvcc --version > /dev/null 2>&1") == 0)
        elif sys.platform.startswith("darwin"):
            gpuflag = (
                os.system("kextstat | grep -i cuda > /dev/null 2>&1") == 0)
        if gpuflag and gpu == 'cudanet':
            try:
                import cudanet  # noqa
                from neon.backends.cc2 import GPU
                be_name = 'Cudanet'
                be = GPU(rng_seed=rng_seed, device_id=device_id)
            except ImportError:
                raise RuntimeError("cudanet not found, can't run via GPU")
        elif gpuflag and gpu.startswith('nervanagpu'):
            try:
                import nervanagpu  # noqa
                try:
                    be_name = 'NervanaGPU'
                    if gpu == 'nervanagpu':
                        device_id = 0 if device_id is None else device_id[0]
                        from neon.backends.gpu import GPU
                        be = GPU(rng_seed=rng_seed,
                                 stochastic_round=stochastic_round,
                                 device_id=device_id)
                    else:
                        from neon.backends.mgpu import MGPU
                        try:
                            num_dev = int(gpu.strip('nervanagpu'))
                        except (ValueError):
                            raise ValueError("invalid number of GPUs" +
                                             " specified")
                        if not device_id:
                            device_id = range(num_dev)
                        if len(device_id) != num_dev:
                            raise RuntimeError(
                                "Incorrect number of devices"
                                " specified ", device_id, num_dev)
                        be = MGPU(rng_seed=rng_seed,
                                  stochastic_round=stochastic_round,
                                  device_id=device_id,
                                  num_dev=num_dev)
                except ImportError:
                    logger.warning("pycuda error, can't run via GPU")
                    gpuflag = False
            except ImportError:
                logger.warning("nervanagpu not found, can't run via GPU")
                gpuflag = False
        if gpuflag is False:
            raise RuntimeError("Can't find CUDA capable GPU")
    elif nrv:
        nrv = False
        try:
            from umd.nrv_backend import NRVBackend
            nrv = True
        except ImportError:
            logger.warning("Nervana Engine system software not found")

    if flexpoint:
        logger.warning("Flexpoint(TM) backend not currently available")

    if nrv:
        be_name = 'NRV'
        be = NRVBackend(rng_seed=rng_seed,
                        seterr_handling=numerr_handling,
                        device_id=device_id)
    elif not gpuflag:
        be_name = 'CPU'
        be = CPU(rng_seed=rng_seed, seterr_handling=numerr_handling)
    logger.info("{} backend, RNG seed: {}, numerr: {}".format(
        be_name, rng_seed, numerr_handling))

    return be
Ejemplo n.º 39
0
class TestValInit(object):
    def __init__(self):
        # this code gets called prior to each test
        self.be = CPU()

    def test_uni_basics(self):
        uni = UniformValGen(backend=self.be)
        assert str(uni) == ("UniformValGen utilizing CPU backend\n\t"
                            "low: 0.0, high: 1.0")

    def test_uni_gen(self):
        uni = UniformValGen(backend=self.be)
        res = uni.generate(shape=[1, 1])
        assert res.shape == (1, 1)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        assert out.asnumpyarray() >= 0.0
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < 1.0

    def test_uni_params(self):
        low = -5.5
        high = 10.2
        uni = UniformValGen(backend=self.be, low=low, high=high)
        assert str(uni) == ("UniformValGen utilizing CPU backend\n\t"
                            "low: {low}, high: {high}".format(low=low,
                                                              high=high))
        res = uni.generate(shape=[4, 4])
        assert res.shape == (4, 4)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        assert out.asnumpyarray() >= low
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < high

    def test_autouni_gen(self):
        autouni = AutoUniformValGen(backend=self.be, relu=True)
        assert autouni.relu is True
        assert str(autouni) == ("AutoUniformValGen utilizing CPU backend\n\t"
                                "low: nan, high: nan")
        res = autouni.generate([3, 3])
        assert res.shape == (3, 3)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        expected_val = math.sqrt(2) * (1.0 / math.sqrt(3))
        assert out.asnumpyarray() >= -expected_val
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < expected_val

    def test_gaussian_gen(self):
        loc = 5
        scale = 2.0
        gauss = GaussianValGen(backend=self.be, loc=loc, scale=scale)
        assert str(gauss) == ("GaussianValGen utilizing CPU backend\n\t"
                              "loc: {}, scale: {}".format(loc, scale))
        res = gauss.generate([5, 10])
        assert res.shape == (5, 10)
        # TODO: test distribution of vals to ensure ~gaussian dist

    def test_normal_gen(self):
        loc = -2.5
        scale = 3.0
        gauss = NormalValGen(backend=self.be, loc=loc, scale=scale)
        assert str(gauss) == ("GaussianValGen utilizing CPU backend\n\t"
                              "loc: {}, scale: {}".format(loc, scale))
        res = gauss.generate([9, 3])
        assert res.shape == (9, 3)
        # TODO: test distribution of vals to ensure ~gaussian dist

    def test_sparseeig_gen(self):
        sparseness = 10
        eigenvalue = 3.1
        eig = SparseEigenValGen(backend=self.be,
                                sparseness=sparseness,
                                eigenvalue=eigenvalue)
        assert str(eig) == ("SparseEigenValGen utilizing CPU backend\n\t"
                            "sparseness: {}, eigenvalue: "
                            "{}".format(sparseness, eigenvalue))
        res = eig.generate([20, 20])
        assert res.shape == (20, 20)
        # TODO: test distribution of vals

    def test_nodenorm_gen(self):
        scale = 3.0
        nodenorm = NodeNormalizedValGen(backend=self.be, scale=scale)
        assert str(nodenorm) == ("NodeNormalizedValGen utilizing CPU backend"
                                 "\n\tscale: {}".format(scale))
        res = nodenorm.generate([8, 9])
        assert res.shape == (8, 9)
        out = self.be.empty((1, 1))
        self.be.min(res, axes=None, out=out)
        expected_val = scale * math.sqrt(6) / math.sqrt(8 + 9.)
        assert out.asnumpyarray() >= -expected_val
        self.be.max(res, axes=None, out=out)
        assert out.asnumpyarray() < expected_val
Ejemplo n.º 40
0
 def test_cpu_bprop(self):
     backend = CPU(rng_seed=0)
     layer = self.create_layer(backend=backend)
     check_bprop(layer, backend)
Ejemplo n.º 41
0
 def __init__(self):
     # this code gets called prior to each test
     self.be = CPU()
Ejemplo n.º 42
0
class TestCPU(object):
    def __init__(self):
        # this code gets called prior to each test
        self.be = CPU()

    def test_empty_creation(self):
        tns = self.be.empty((4, 3))
        assert tns.shape == (4, 3)

    def test_array_creation(self):
        tns = self.be.array([[1, 2], [3, 4]])
        assert tns.shape == (2, 2)
        assert_tensor_equal(tns, CPUTensor([[1, 2], [3, 4]]))

    def test_zeros_creation(self):
        tns = self.be.zeros([3, 1])
        assert tns.shape == (3, 1)
        assert_tensor_equal(tns, CPUTensor([[0], [0], [0]]))

    def test_ones_creation(self):
        tns = self.be.ones([1, 4])
        assert tns.shape == (1, 4)
        assert_tensor_equal(tns, CPUTensor([[1, 1, 1, 1]]))

    def test_all_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]]))

    def test_some_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.array([[0, 1], [0, 1]])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 1], [0, 1]]))

    def test_none_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.zeros([2, 2])
        out = self.be.empty([2, 2])
        self.be.equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]]))

    def test_all_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.zeros([2, 2])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 1]]))

    def test_some_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.array([[0, 1], [0, 1]])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 0], [1, 0]]))

    def test_none_not_equal(self):
        left = self.be.ones([2, 2])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.not_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 0]]))

    def test_greater(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.greater(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [0, 1]]))

    def test_greater_equal(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.greater_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[0, 0], [1, 1]]))

    def test_less(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.less(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [0, 0]]))

    def test_less_equal(self):
        left = self.be.array([[-1, 0], [1, 92]])
        right = self.be.ones([2, 2])
        out = self.be.empty([2, 2])
        self.be.less_equal(left, right, out)
        assert out.shape == (2, 2)
        assert_tensor_equal(out, CPUTensor([[1, 1], [1, 0]]))

    def test_argmin_noaxis(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty([1, 1])
        be.argmin(tsr, None, out)
        assert_tensor_equal(out, CPUTensor([[0]]))

    def test_argmin_axis0(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty((1, 2))
        be.argmin(tsr, 0, out)
        assert_tensor_equal(out, CPUTensor([[0, 0]]))

    def test_argmin_axis1(self):
        be = CPU()
        tsr = be.array([[-1, 10], [11, 9]])
        out = be.empty((2, 1))
        be.argmin(tsr, 1, out)
        assert_tensor_equal(out, CPUTensor([0, 1]))

    def test_argmax_noaxis(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty([1, 1])
        be.argmax(tsr, None, out)
        assert_tensor_equal(out, CPUTensor(3))

    def test_argmax_axis0(self):
        be = CPU()
        tsr = be.array([[-1, 0], [1, 92]])
        out = be.empty((2, ))
        be.argmax(tsr, 0, out)
        assert_tensor_equal(out, CPUTensor([1, 1]))

    def test_argmax_axis1(self):
        be = CPU()
        tsr = be.array([[-1, 10], [11, 9]])
        out = be.empty((2, ))
        be.argmax(tsr, 1, out)
        assert_tensor_equal(out, CPUTensor([1, 0]))

    def test_2norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        rpow = 1. / 2
        # -> sum([[1, 0], [1, 9]], axis=0)**.5 -> sqrt([2, 9])
        assert_tensor_equal(self.be.norm(tsr, order=2, axis=0),
                            CPUTensor([[2**rpow, 9**rpow]]))
        # -> sum([[1, 0], [1, 9]], axis=1)**.5 -> sqrt([1, 10])
        assert_tensor_equal(self.be.norm(tsr, order=2, axis=1),
                            CPUTensor([1**rpow, 10**rpow]))

    def test_1norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> sum([[1, 0], [1, 3]], axis=0)**1 -> [2, 3]
        assert_tensor_equal(self.be.norm(tsr, order=1, axis=0),
                            CPUTensor([[2, 3]]))
        # -> sum([[1, 0], [1, 3]], axis=1)**1 -> [1, 4]
        assert_tensor_equal(self.be.norm(tsr, order=1, axis=1),
                            CPUTensor([1, 4]))

    def test_0norm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> sum(tsr != 0, axis=0) -> [2, 1]
        assert_tensor_equal(self.be.norm(tsr, order=0, axis=0),
                            CPUTensor([[2, 1]]))
        # -> sum(tsr != 0, axis=1) -> [1, 2]
        assert_tensor_equal(self.be.norm(tsr, order=0, axis=1),
                            CPUTensor([1, 2]))

    def test_infnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> max(abs(tsr), axis=0) -> [1, 3]
        assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=0),
                            CPUTensor([[1, 3]]))
        # -> max(abs(tsr), axis=1) -> [1, 3]
        assert_tensor_equal(self.be.norm(tsr, order=float('inf'), axis=1),
                            CPUTensor([1, 3]))

    def test_neginfnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        # -> min(abs(tsr), axis=0) -> [1, 0]
        assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=0),
                            CPUTensor([[1, 0]]))
        # -> min(abs(tsr), axis=1) -> [0, 1]
        assert_tensor_equal(self.be.norm(tsr, order=float('-inf'), axis=1),
                            CPUTensor([0, 1]))

    def test_lrgnorm(self):
        tsr = self.be.array([[-1, 0], [1, 3]])
        rpow = 1. / 5
        # -> sum([[1, 0], [1, 243]], axis=0)**rpow -> rpow([2, 243])
        assert_tensor_equal(self.be.norm(tsr, order=5, axis=0),
                            CPUTensor([[2**rpow, 243**rpow]]))
        # -> sum([[1, 0], [1, 243]], axis=1)**rpow -> rpow([1, 244])
        # 244**.2 == ~3.002465 hence the near_equal test
        assert_tensor_near_equal(self.be.norm(tsr, order=5, axis=1),
                                 CPUTensor([1**rpow, 244**rpow]), 1e-6)

    def test_negnorm(self):
        tsr = self.be.array([[-1, -2], [1, 3]])
        rpow = -1. / 3
        # -> sum([[1, .125], [1, .037037]], axis=0)**rpow -> rpow([2, .162037])
        assert_tensor_equal(self.be.norm(tsr, order=-3, axis=0),
                            CPUTensor([[2**rpow, .162037037037**rpow]]))
        # -> sum([[1, .125], [1, .037037]], axis=1)**rpow ->
        # rpow([1.125, 1.037037])
        assert_tensor_near_equal(self.be.norm(tsr, order=-3, axis=1),
                                 CPUTensor([1.125**rpow, 1.037037**rpow]),
                                 1e-6)
Ejemplo n.º 43
0
 def test_argmax_noaxis(self):
     be = CPU()
     tsr = be.array([[-1, 0], [1, 92]])
     out = be.empty([1, 1])
     be.argmax(tsr, None, out)
     assert_tensor_equal(out, CPUTensor(3))
Ejemplo n.º 44
0
 def test_argmax_axis1(self):
     be = CPU()
     tsr = be.array([[-1, 10], [11, 9]])
     out = be.empty((2, ))
     be.argmax(tsr, 1, out)
     assert_tensor_equal(out, CPUTensor([1, 0]))